8th Workshop on

Generalization in Planning (GenPlan)

AAAI 2025, Philadelphia, PA, USA

Overview

Generalization and transfer are essential components of intelligence, and significant research efforts have been dedicated to addressing these challenges in sequential decision-making. However, this research is often fragmented across largely parallel research communities such as AI planning, reinforcement learning, model learning, robotics, etc. Recent advances in deep reinforcement learning and generative AI have led to data-driven methods that are effective for short-horizon reasoning and decision-making, with open problems regarding sample efficiency, guarantees of correctness, and applicability to long-horizon settings. Conversely, the AI planning community has made complementary strides, developing robust analytical methods that enable sample-efficient generalization and transferability in long-horizon planning, with open problems in designing and modeling the necessary representations.

Humans are good at solving sequential decision-making problems, generalizing from a few examples, and learning skills that can be transferred to solve unseen problems. However, these problems remain long-standing open problems in AI. This workshop will feature a synthesis of the best ideas on the topic from multiple highly active research communities. We welcome submissions addressing the problem of generalizable and transferable learning in all forms of sequential decision-making. This event represents the eighth edition of the recurring and well-attended GenPlan series of Workshops.

Call for Papers

The workshop will focus on research related to all aspects of learning, generalization, and transfer in sequential decision-making (SDM). This topic features technical problems that are of interest not only in multiple subfields of AI research (including reinforcement learning, automated planning, and learning for knowledge representation) but also in other fields of research, including formal methods and program synthesis. We will welcome submissions that address formal as well as empirical issues on topics such as:

  • Formulations of generalized SDM problems.
  • Learning for transfer and generalization in reinforcement learning.
  • Learning and representing hierarchical policies and behaviors for SDM.
  • Learning and synthesis of generalizable solutions for SDM problem classes.
  • Learning paradigms, representations, and algorithms for transferring learned knowledge and solutions to new SDM problems.
  • Learning and representing generalized Q/V-functions and heuristics for plan and policy generalization.
  • Learning high-level models and hierarchical solutions for generalizable SDM.
  • Neuro-symbolic approaches for generalization and transfer in SDM.
  • Few-shot learning and transfer for SDM.
  • Meta-learning for generalizable policies.
  • Learning for program synthesis.
  • Learning domain control knowledge and partial policies.
  • Representation of solution structures that enable generalization and transfer.

  • Submission Guidelines

    Submissions can describe either work in progress or mature work that would be of interest to researchers working on generalization in planning. We also welcome “highlights” papers summarizing and highlighting results from multiple recent papers by the authors. Preference will be given to new work (including highlights) and work in progress rather than exact resubmissions of previously published work.

    Submissions of papers being reviewed at other venues are welcome since GenPlan is a non-archival venue, and we will not require a transfer of copyright. If such papers are currently under blind review, please anonymize the submission.

    Two types of papers can be submitted:

    Submissions may use as many pages of appendices (after the references) as they wish, but the reviewers are not required to read the appendix. Submissions should use the AAAI paper format.

    Now accepting submissions through OpenReview: https://bit.ly/SubmitToGenPlan25

    Important Dates

    Paper Submission Deadline Dec 11, 2024 (AoE) (final extension)
    Author Notification Dec 18, 2024
    Camera-ready Version Due TBD
    Workshop March 4, 2025

    Schedule

    TBA

    Invited Speakers

    Micheal Littman
    Michael Littman
    Brown University


    Beomjoon Kim
    Sheila McIlraith
    University of Toronto


    Daniele Meli
    Daniele Meli
    Universita di Verona


    Matthew Taylor
    Matthew Taylor
    University of Alberta


    Organizing Committees


    Rashmeet Kaur Nayyar
    Rashmeet Kaur Nayyar
    Arizona State University


    Forest Agostinelli
    Forest Agostinelli
    University of South Carolina


    Abhinav Bhatia
    Abhinav Bhatia
    UMass Amherst


    Naman Shah
    Naman Shah
    Brown University


    Yiqing Xu
    Misagh Soltani
    University of South Carolina


    Advisory Board