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Abstract

In many real-world applications, agents must make sequen-
tial decisions in environments where conditions are sub-
ject to change due to various exogenous factors. These non-
stationary environments pose significant challenges to tradi-
tional decision-making models, which typically assume sta-
tionary dynamics. Non-stationary Markov decision processes
(NS-MDPs) offer a framework to model and solve decision
problems under such changing conditions. However, the lack
of standardized benchmarks and simulation tools has hin-
dered systematic evaluation and advance in this field. We
present NS-Gym, the first simulation toolkit designed explic-
itly for NS-MDPs, integrated within the popular Gymnasium
framework. In NS-Gym, we segregate the evolution of the
environmental parameters that characterize non-stationarity
from the agent’s decision-making module, allowing for mod-
ular and flexible adaptations to dynamic environments. We
review prior work in this domain and present a toolkit encap-
sulating key problem characteristics and types in NS-MDPs.
This toolkit is the first effort to develop a set of standardized
interfaces and benchmark problems to enable consistent and
reproducible evaluation of algorithms under non-stationary
conditions. We also benchmark six algorithmic approaches
from prior work on NS-MDPs using NS-Gym. Our vision
is that NS-Gym will enable researchers to assess the adapt-
ability and robustness of their decision-making algorithms to
non-stationary conditions.

Introduction
Many real-world problems involve agents making sequen-
tial decisions over time under exogenous sources of un-
certainty. Such problems exist in autonomous driving (Ki-
ran et al. 2021), medical diagnosis and treatment (Yu et al.
2021), emergency response (Mukhopadhyay et al. 2022), ve-
hicle routing (Li, Yan, and Wu 2021), and financial portfolio
optimization (Pendharkar and Cusatis 2018). We define an
agent as an entity capable of computation that acts based on
observations from the environment (Kochenderfer, Wheeler,
and Wray 2022). Decision-making for such agents is widely
modeled by Markov decision processes (MDPs), a general
mathematical model for stochastic control processes.

A canonical challenge in such problems, motivated by
practical scenarios, is non-stationarity, where the distribu-
tion of environmental conditions can change over time.
While non-stationarity has been well-explored from both

control and decision-theoretic perspectives, several concep-
tual paradigms of non-stationarity exist, which lead to dif-
ferent mathematical formalisms for how the environmental
parameters change and how the agent (and the control pro-
cess) interacts with the changes. Ackerson and Fu (1970)
provide one of the earliest conceptualizations of a system
operating in “switching” environments, where the mean and
covariance of the underlying process can change over time.
Campo, Mookerjee, and Bar-Shalom (1991) formalize the
switching process, where some environment parameters can
change after a random sojourn time, as a sojourn-time-
dependent Markov chain, which is semi-Markovian.

Recent investigations of non-stationary stochastic con-
trol processes involve two major threads: the first problem
deals with an agent trying to adapt to a single change in
the environment (which can either be observed (Pettet et al.
2024) or unobserved (Luo et al. 2024)); and the second prob-
lem models situations where environmental parameters can
change continuously over time (Lecarpentier and Rachelson
2019). In an orthogonal line of work, Chandak et al. (2020b)
present a problem formulation where the agent’s goal is
to maximize a forecast of future performance (of the con-
trol policy) instead of directly modeling the non-stationarity.
Notably, these problem classes provide fundamentally dif-
ferent formalisms (or treatments) for non-stationarity.

Indeed, not only are the formalisms different, but we point
out another interesting observation from prior work on non-
stationary stochastic control processes: while recent prior
work on stationary Markov decision processes (MDP) use
standard benchmark problems, e.g., by using the popular
Gymnasium toolkit (Towers et al. 2023), there are no stan-
dard problems or benchmarks for non-stationary MDPs. For
example, Lecarpentier and Rachelson (2019) evaluate non-
stationarity using a custom non-stationary bridge environ-
ment (an abstract problem where an agent must navigate on a
grid-based slippery maze where the properties of the surface
change over time), Chandak et al. (2020b) use problems mo-
tivated by real-world applications such as recommendation
systems and diabetes treatment, and Pettet et al. (2024) use
well-known benchmark problems used for stationary MDPs
(e.g., the cartpole problem from Gymnasium (Towers et al.
2023)) and introduce non-stationarity manually.

In this paper, we identify key characteristics of non-
stationary MDPs that affect decision-making, review prior



work in this area, and present the first simulation toolkit
specifically tailored for non-stationary MDPs. We argue
that four key considerations affect decision-making in non-
stationary MDPs, where environmental factors can change
over time: what changes? how does it change? can the agent
detect the change? can the agent know the updated parame-
ter that has changed? These questions summarize the nature
of the change and the key properties of modeling approaches
from prior work. Based on these questions, we present NS-
Gym (Non-Stationary Gym), the first collection of simu-
lation environments for non-stationary MDPs. Inspired by
the seminal work of Campo, Mookerjee, and Bar-Shalom
(1991), we segregate the evolution of the environmental pa-
rameters that characterize non-stationarity and the agent’s
decision-making module. This modularization enables us to
configure various components (and types) of non-stationary
MDPs seamlessly. The NS-Gym toolkit is based on Python
and is completely compatible with the widely popular Gym-
nasium framework. Instead of developing a new simulation
environment from scratch, we build upon the existing Gym-
nasium toolkit due to its popularity and ensure that the large
user base already familiar with Gymnasium can easily use
NS-Gym (we keep all standard Gymnasium functionalities
and interfaces intact). Specifically, we make the following
contributions. We make the following contributions:

1. We present the first simulation toolkit for NS-MDPs that
provides a tailored, standardized, and principled set of inter-
faces for non-stationary environments.
2. We identify canonical problem instances for decision-
making in non-stationary environments, e.g., decision-
making where the agent knows about the change but is not
aware of exactly what the change is, or decision-making
where the agent is aware of the change.
3. We present an overview of prior work on non-stationary
decision-theoretic models and a programming interface that
unifies prior work.
4. Our simulation framework extends the widely popular
Gymnasium toolkit, thereby requiring minimal added efforts
from researchers in online planning, reinforcement learning,
and decision-making in using our toolkit.
5. We present the first set of benchmark results (and open-
source implementations using NS-Gym) that compares six
algorithmic approaches for solving NS-MDPs.
6. Our benchmark results are presented across a series of
problem types in non-stationary environments.

The rest of the paper is organized as follows. We begin
by describing characteristics of NS-MDPs and prior work.
Then, we identify canonical problem instances, describe our
framework, and present a tutorial of how to use it. Finally,
we present benchmark results using NS-Gym.

Characteristics of NS-MDPs and Prior Work
We begin by describing a comprehensive framework for
decision-making in non-stationary environments. Admit-
tedly, we point out that the conceptual boundaries of what
constitutes an agent are unclear in this context. Instead, we
leave this question open and point out the key components
relevant to decision-making; whether these components are

Figure 1: An overall framework for non-stationary Markov
decision processes. At time t, the agent observes the state
st ∈ S and takes an action a ∈ A. The environment emits a
reward signal r(st, a) and transitions to the next state st+1.
The transition and the reward are governed by parameters θ,
which do not necessarily have a stationary distribution. In
general, the evolution of θ occurs through a semi-Markov
chain whose textitsojourn time is distributed as S, which
might be non-memoryless. Depending on the problem, the
agent can detect and/or observe the evolution of θ.

part of the agent or those supporting the agent is orthogonal
to our discussion.

We refer to an agent as an entity that receives observations
from an environment and can act or make decisions that in-
teract with said environment. For simplicity, we assume a
discrete-time process, although this discussion also extends
to continuous-time stochastic control processes. Our funda-
mental model is that of a Markov decision process (Puter-
man 2014). We refer to the current state of the environment
by s ∈ S and an action by a ∈ A, where S and A denote
the set of all states and actions, respectively. After taking
an action: 1) the agent receives a scalar signal r(s, a) from
the environment, which can be perceived as a reward or a
loss and is a measure of the agent’s utility, and 2) the agent
transitions to a new state, governed by a transition function
P (s′ | s, a, θ), where θ ∈ Θ denotes a set of observable
environmental parameters. We argue that explicitly specify-
ing θ is critical to modeling non-stationary decision-making
problems, as highlighted below.

We show a schematic of the major decision-theoretic
components in Figure 1. In a non-stationary stochastic con-
trol process, the environmental parameters θ or the agent’s
utility function r(s, a) can change over time. The manner
in which the change evolves over time can be modeled
by a Markov chain or, more generally, by a semi-Markov
chain as proposed by Campo, Mookerjee, and Bar-Shalom
(1991). While this formalism has often not been used in re-
cent work (which has focused less on the statistical prop-
erties of the changes), we argue that a formal representa-
tion of how the environmental parameters evolve is particu-
larly important from the perspective of studying NS-MDPs.
We use the same high-level formalism as Campo, Mooker-
jee, and Bar-Shalom (1991), i.e., the parameters θ evolve in
time through a sojourn time distribution, which can be non-
memoryless, thereby making the resulting stochastic pro-
cess semi-Markovian (Hu and Yue 2007). If the sojourn-time
distribution is memoryless, then the resulting process is a



Model Reference
Is the change

notified?

Is the change

known?

What

changes?
Nature of the change

Is the change

bounded?

Piecewise Stationary MAB Garivier and Moulines (2011) No No Reward

The reward distribution is fixed

over certain time periods, and then

changes at unknown time steps.

No

Non-stationary MAB Besbes, Gur, and Zeevi (2014) No No Reward
The reward can change at arbitrary

time points.
Yes

Piecewise Stationary MDP Auer, Jaksch, and Ortner (2008) No No
Transition,

Reward

Bounded change analyzed as part of

the UCRL2 algorithm
Yes

Non-Stationary MDP Cheung, Simchi-Levi, and Zhu (2020) N/A No
Transition,

Reward

The reward and transition can

change at every time step
Yes

Non-Stationary MDP Chandak et al. (2020b) Yes No
Transition,

Reward

Transition and reward can change

after each episode, but remain fixed

within an episode

No

Non-Stationary MDP Chandak et al. (2020a) Yes No
Transition,

Reward

Transition and reward can change

after each episode, but remain fixed

within an episode

Yes

Non-Stationary MDP Lecarpentier and Rachelson (2019) Yes Yes Transition

The agent knows the current

parameters, but not the future

evolution.

Yes

Non-Stationary MDP Pettet et al. (2024) Yes Yes Transition A single discrete change Yes

Non-Stationary MDP Luo et al. (2024) Yes No Transition A single discrete change No

Non-Stationary Bandits

with Periodic Variation
Chakraborty and Shettiwar (2024) No No Reward Periodic Variation Yes

Table 1: Prior work on non-stationary Markov decision processes, categorized by important characteristics that affect decision
making.

continuous-time Markov chain (Hu and Yue 2007).

Motivated by how decision-making components are im-
plemented in practice, we introduce two additional com-
ponents: first, we introduce a runtime monitor that tracks
the parameters θ and detects changes; in practice, the mon-
itor can be implemented as an anomaly detector (Chan-
dola, Banerjee, and Kumar 2009). Note that while a mon-
itor can track and detect changes in θ; it might not by itself
be equipped to update the transition model P . For exam-
ple, consider an autonomous driving agent trained on video
feeds without rain. During decision-making, if it rains, an
anomaly detector can trivially identify feeds that are out-
of-distribution of the training data. However, the detector is
usually not equipped to update the agent’s internal model
of how rainfall might affect the car’s movement. From the
agent’s perspective, we refer to the ability to detect these
environmental changes as receiving a notification about the
change; note that we use this terminology to emphasize the
segregation between the agent and the anomaly detector.

We introduce a second component, a model updater,
which is a computational entity that can update the transi-
tion model by observing the changed parameters θ. We do
not argue that every agent designed for decision-making in
non-stationary environments must have these components;
indeed, we point out algorithmic prior work where one or
both of these components are absent. Instead, we argue that
these components sufficiently describe the infrastructure re-

quired for decision-making in non-stationary environments,
whether a specific agent designs these components or sim-
ply assumes their existence is orthogonal to our discussion.
Given these components, we categorize prior work in non-
stationary stochastic control processes by answering four
key questions, as highlighted in Table 1.

Framework Description
In this section, we outline the general structure of NS-Gym,
elaborate upon our design decisions, and describe the gen-
eral experimental pipeline using NS-Gym. The project’s
source code can be found in the supplementary material.

Background
The environment object in Gymnasium encapsulates an
MDP, providing a set of states and possible actions and
defining how actions influence state transitions and rewards.
The observation object represents the current state informa-
tion available to the agent. Additionally, Info object is a dic-
tionary containing auxiliary diagnostic information benefi-
cial for debugging or gaining additional insights about the
environment, though not used for learning. The standard
workflow in Gymnasium involves initializing the environ-
ment to set up the initial state and obtain the first observa-
tion. The agent then interacts with the environment in a loop:
it receives an observation, decides on an action, executes the
action, and receives the next observation, a reward, and a



done status indicating if the episode has ended, after which
the environment is reset for a new episode.

Overview
We develop NS-Gym to allow researchers access to the
breadth of NS-MDP specifications in the literature while
maintaining the familiar interface popularized by the Gym-
nasium library (Towers et al. 2023). In its current version,
NS-Gym provides a set of wrappers to augment the clas-
sic control suite of Gymnasium environments and three grid
world environments. We refer to these Gymnasium environ-
ments (i.e., the stationary counterparts of the non-stationary
environments we develop) as base environments. At a high
level, each wrapper introduces non-stationarity by modify-
ing some parameters that the base environment exposes. The
modification potentially occurs at each decision epoch or
through specific functions over decision epochs configured
by the user. For example, in a deterministic environment
such as the “CartPole” (we provide a detailed description
of the environment in the technical appendix), an example
change is varying the value of the gravity, thereby altering
the dynamics of the cart. In stochastic environments, the
probability distribution over possible next states, given the
current state action pair, changes. For example, in the classic
Frozen Lake environment (see a detailed description of the
environment in the technical appendix), this change might
increase (or decrease) the coefficient of friction, making the
movement of the agent more (or less) uncertain. Figure 2
illustrates the high-level structure of the wrapper.

Problem Types and Notifications
A key feature of the NS-Gym library is its ability to manage
the interaction between the environment and the decision-
making agent. These interactions encapsulate the following
problem types, which we explain using the Frozen Lake en-
vironment. Consider the problem setting in the Frozen Lake
environment where the agent’s probability of going in its in-
dented direction is θ1 in the base environment. Now, the lake
becomes more slippery, and this probability changes to θ2.
We model the following settings.

1. Problems where the agent receives a message that the ex-
tent to which the lake is slippery has changed (correspond-
ing to a successful anomaly detection), but it is unaware of
the exact change (i.e., it does not know θ2). This setting is
motivated by prior work by Luo et al. (2024)).
2. Problems where the user is aware of the exact environ-
mental change, i.e., it knows θ2. However, in non-stationary
settings, the agent might not have time to train a new pol-
icy from scratch. This setting is motivated by prior work by
Pettet et al. (2024) and Lecarpentier and Rachelson (2019).
3. Problems where the agent is not notified about the
change, i.e., it is unaware that the probability is no longer
θ1. This setting is motivated by prior work by Garivier and
Moulines (2011).
4. In an orthogonal thread, we identify the frequency of the
change, i.e., problems with a single change in an environ-
ment variable (Luo et al. 2024; Pettet et al. 2024) (e.g.,
the change is from θ1 to θ2) or multiple changes within

an episode (Cheung, Simchi-Levi, and Zhu 2020) (e.g., the
change is θ1 → θ2 → θ3 → . . .) or changes within multiple
episodes (Chandak et al. 2020b).

Users can configure notifications the agent receives about
changes in the NS-MDP at three distinct levels:1

1. Basic Notification: The agent receives a boolean flag in-
dicating a change in an environment parameter.
2. Detailed Notification: In addition to the boolean flag, the
agent is informed of the magnitude of the change.
3. Full Environment Model: Additionally, if the agent re-
quires an environmental model for planning purposes (such
as in Monte Carlo tree search), NS-Gym can provide a sta-
tionary snapshot of the environment. This snapshot aligns
with the basic or detailed notification settings configured by
the user. If the user seeks a model without detailed notifi-
cation, the planning environment is a stationary snapshot of
the base environment. Conversely, if detailed notifications
are enabled, the agent receives the most up-to-date version
of the environment model (but not any future evolutions).

Custom Observation for NS-MDPs
In building on top of Gymnasium, users familiar with
the existing Gymnasium API can easily adapt to NS-Gym
with minor modifications. Like Gymnasium, the agent-
environment interaction consists of a sequence of steps
where, at each step, the agent receives an observation and
reward. In NS-Gym, we return custom observation and re-
ward data types to accommodate information unique to
non-stationary environments. Table 2 outlines the NS-Gym
observation type. The observation type encapsulates infor-
mation regarding the NS-MDP state and basic and de-
tailed notification. The custom observation type consists of
four fields: state, env change, delta change, and
relative time. The state field encodes the current
state of the environment. The env change field is a dictio-
nary of boolean flags indicating what environment parame-
ter has changed. The delta change reports the amount
of change in each environment parameter. By default, NS-
gym returns the difference in value for scalar parameters
and the Wasserstein distance for probability distributions.
The relative time is the number of decision epochs
that have lapsed since the start of the environment episode.
The reward type is similarly constructed, but instead of the
state field, we have a reward.

Schedulers and Parameter Update Functions
We recognize that users may need to model non-stationarity
differently depending on the specific problem settings. To
accommodate this, NS-Gym allows users to specify which
parameters change, when they change, and how they change
through “schedulers” and parameter “update functions.” We
decouple the timing (and thereby, the frequency) and the
manner of parameter changes, providing users with greater
flexibility in designing experiments.

1Note that the user refers to the programmer using NS-Gym, as
opposed to the autonomous agent that is being configured.



NS-Gym Wrapper
Agent

Agent

Gymnasium Environment

Gymnasium Environment

Parameter Update Function

Parameter Update Function

Scheduler

Scheduler

Checks if reset is required

1 Get planning environment
env.get_planning_env()

2 Check notification level

3
Return planning
environment
at notification level

4 Send action [step(action)]

5 Send parameters for update

6 Check if should update

7
Update parameter
and calculate difference

in magnitude

8
Return parameters,
change boolean,

delta change

9 Return Observation and Reward

Loop until done

Figure 2: A sequence diagram of the agent-environment in-
teraction in NS-Gym. Steps 4–9 in the diagram show how
parameters are updated. Step 6 checks the current MDP time
step and notifies if the parameter should be updated. Step 9
returns Observation and Reward types outlined in Table 2.

Observation Type

Field Name Data Type

state Union[array,int]

env change Union[dict[str,bool],None]

delta change Union[dict[str,float],None]

relative time Union[int,float]

Table 2: The custom observation types of NS-Gym capture
essential components of NS-MDPs.

Schedulers in NS-Gym are a collection of functions that
return a boolean flag at a given time step indicating whether
environmental conditions should change. If a scheduler re-
turns True, the update functions modify the specified pa-
rameter accordingly. NS-Gym includes schedulers that trig-
ger continuous, stepwise, random, and periodic time steps.
Users can easily implement custom schedulers by inheriting
them from the base NS-Gym scheduler class. The parameter
update functions determine how parameters change at time
steps specified by the scheduler. Example update functions
include a random walk with a budget-bounded constraint or
a change bounded by Lipschitz Continuity.

Experimental Pipeline
This section illustrates the straightforward integration of the
NS-Gym with the typical Gymnasium training pipeline. The
general experimental setup procedure is: 1) Create a Stan-
dard Gymnasium Environment: Begin by making a stan-
dard Gymnasium environment. 2) Define Parameters to Up-
date: Identify which environmental parameters will be up-
dated during the experiment episode. 3) Map Parameters
to Schedulers and Update Functions: Assign each param-

eter a scheduler and an update function. 4) Generate a
Non-Stationary Environment: Pass the standard Gymnasium
environment, along with the parameter mappings and up-
date functions, into the NS-Gym wrapper to create a non-
stationary Gymnasium-style environment.

Consider that the user seeks to model a non-stationary
environment in the classical CartPole environment, where
the pole’s mass increases by 0.1 units at each time step, and
the system’s gravity increases through a random walk every
three time steps. Furthermore, we want the decision-making
agent to have a basic notification level. The following code
snippet shows the general experimental setup in this Cart-
Pole Gymnasium environment using NS-Gym.

The first step involves importing the necessary modules
from ns gym, i.e.,

import gymnasium as gym
from ns_gym.wrappers import *
from ns_gym.schedulers import *
from ns_gym.update_functions import *

Next, we create the base gymnasium environment, i.e.,
env = gym.make("CartPole-v1")

Next, to describe the evolution of the non-stationary param-
eters, we define the two schedulers and update functions that
model the semi-Markov chain over the relevant parameters.

scheduler_1 = ContinuousScheduler()
scheduler_2 = PeriodicScheduler(period =

3)
U_Fn_1 = IncrementUpdate(scheduler_1,k =

0.1)
U_Fn_2 = RandomWalk(scheduler_2)

Next, we map the parameters to the update functions, i.e.,
tunable_params = {"masspole":U_Fn_1,"

gravity": U_Fn_2}

Then, we set the notification level and pass the parameters
and environment into the wrapper.

ns_env = NSClassicControlWrapper(env,
tunable_params,
change_notification=True)
obs,info = ns_env.reset()

Finally, we grab an environment model for planning, i.e.,
planning_env = ns_env.get_planning_env()

The supplementary material includes a detailed tutorial for
users to interact with NS-Gym.

Non-Stationary Environment Details
Below, we describe environments included in NS-Gym and
how we induce non-stationarity. We focus on observable
parameters θ here (available to the NS-Gym wrapper) and
present descriptions of the environments in the appendix.

1) CartPole Changes in gravity, the mass of the cart,
the mass of the pole, the length of the pole, or the mag-
nitude of the force applied to the cart can be made to cre-
ate a non-stationary MDP. 2) Mountain Car and Contin-
uous Mountain Car NS-Gym induces non-stationary ef-
fects by changing the gravity and force applied to the car.
3) Acrobot NS-Gym induces non-stationarity by altering
the link lengths, link masses, center of mass position, and



link moment of inertia. 4) Pendulum NS-Gym induces non-
stationarity by increasing the link mass or length. 5) Frozen-
Lake NS-Gym induces non-stationarity by modifying the
probability distribution over actions. 6) CliffWalker NS-
Gym induces non-stationary by introducing stochastic tran-
sitions that vary with time. 7) Bridge Originally proposed by
Lecarpentier and Rachelson (2019), the Bridge environment
has two probability distributions for the left and right halves
of the grid world. NS-Gym at each decision epoch can make
either or both halves of the map more or less slippery.

Benchmark Experiments
In this section, we demonstrate the utility of this package
by evaluating decision-making algorithms in environments
built using the NS-Gym library. Our experimental setup is
designed to assess agent performance across multiple di-
mensions, providing insights into which decision-making
agents are best suited for practical challenges. Consider a
system modeled as a known MDP, where an exogenous force
induces changes in the MDP’s transition function. Specifi-
cally, we seek to explore the following questions: how ef-
fectively can an agent adapt when this change is known or
unknown? What if the system undergoes continuous evolu-
tion? How well can an agent handle frequent updates?

We benchmark six algorithms across four base environ-
ments. We consider settings where the MDP transition func-
tion changes at a single discrete instance and for cases in
which the transition function changes from some continuous
sequence of time steps. Additionally, for each environment
and agent pair, we consider instances with no notification
and access to either the up-to-date environment model or a
basic notification level. We evaluate agent performance by
comparing cumulative undiscounted episodic rewards.

In this paper, we benchmark the CartPole, FrozenLake,
CliffWalker, and Bridge environments. For the CartPole en-
vironment, we vary the mass of the cart’s pole in single
and continuous experiments. In the three grid-world envi-
ronments, we adjust the probability of moving in the in-
tended direction, with corresponding updates to the proba-
bilities of moving in other directions. In the single experi-
ments, the probability shifts from a default value to either
0.4, 0.6, or 0.8. In the continuous change case, the probabil-
ity decreases by a fixed constant at each decision epoch until
a lower threshold is met. Additional details on environment
setup are provided in the appendix.

Baseline Algorithms
We evaluate the non-stationary environment across six dif-
ferent decision-making agents: Monte Carlo tree search
(MCTS), double deep Q learning (DDQN), AlphaZero,
adaptive Monte Carlo tree search, risk-averse tree search
(RATS), and policy-augmented Monte Carlo tree search
(PA-MCTS). Note that our work is the first effort to bench-
mark approaches for tackling non-stationarity on standard-
ized problem settings. We briefly describe the benchmark ap-
proaches below. For all environments, we provide the algo-
rithms that require a model of the environment with a sta-
tionary snapshot of the model for planning according to the
appropriate notification level.

1) MCTS is an anytime online search algorithm that uses
a model of the environment to select optimal actions. We
use the Upper Confidence bound for Trees (UTC) algorithm
(Kocsis and Szepesvári 2006) with random rollouts.
2) The AlphaZero algorithm (Silver et al. 2017) is a gen-
eral game-playing algorithm that combines tree search with
a deep value and policy neural network. The policy network
is learned through self-play. We train the AlphaZero pol-
icy network on a stationary version and the environment
but evaluate the agent on an NS-MDP. At each decision
epoch the AlphaZero agent receives an environment model
for planning at the appropriate notification level.
3) We include the widely popular DDQN approach as a pure
reinforcement learning method (van Hasselt, Guez, and Sil-
ver 2015). In the “with notification” experiments, we let the
DDQN do some gradient update steps using the most up-
to-date model of the MDP (to resemble the baseline setting
used by (Pettet et al. 2024)).
4) ADA-MCTS as a heuristic tree search algorithm that
learns the environmental dynamics and acts as it learns Luo
et al. (2024). ADA-MCTS uses a risk-averse strategy to ex-
plore the environment safely by balancing epistemic and
aleatoric uncertainties. In our experiments, we only bench-
marked ADA-MCTS when the updated environmental pa-
rameters are unavailable, as its core lies in learning about
the updated change through environmental interactions.
5) The RATS algorithm proposed by Lecarpentier and
Rachelson (2019) uses a minimax search strategy to act in
a risk-averse manner to future environmental changes. The
approach was originally designed against changes bounded
by Lipschitz continuity.
6) We benchmark the Policy-Augmented-MCTS algorithm
from Pettet et al. (2024), which computes a convex com-
bination of returns generated through online search and a
stale policy. Crucially, this combination occurs outside the
tree (as opposed to the AlphaZero algorithm). Using the
estimates outside the tree stabilizes the search under non-
stationarity and has faster convergence. We consider PAM-
CTS performance across three α values, 0.25, 0.5, and 0.75,
which control the extent to which the stale policy is preferred
over online search.

Results
Table 3 shows results from the single change experiments
without notifications, and Table 4 reports agent performance
in the continuous experiment setting with and without notifi-
cation. We provide a complete table of experimental results
and figures in the supplemental materials. Building on the
unified design of NS-Gym and the benchmark results, we
have derived some key insights about how different strate-
gies perform under varying conditions. This analysis pro-
vides a clearer understanding of how algorithms respond to
dynamic environmental changes.
Impact of Detailed Notification on Performance with
Single Transition Change: The presence of detailed noti-
fications generally enhances the performance of most meth-
ods. AlphaZero, MCTS, PA-MCTS, and RATS demonstrate
marked improvements when notifications are available in



MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS

0.25 0.5 0.75

0.4 -0.58 ± 0.47 -0.26 ± 0.56 -0.82 ± 0.33 -0.58 ± 0.27 -0.20 ± 0.33 -0.16 ± 0.33 -0.54 ± 0.07 -0.98 ± 0.02

Bridge 0.6 -0.18 ± 0.57 0.58 ± 0.47 -0.78 ± 0.36 0.46±0.33 0.46 ± 0.3 0.38 ± 0.31 -0.16 ± 0.09 0.05 ± 0.08

0.8 0.64 ± 0.45 0.92 ± 0.23 -0.72 ± 0.4 0.4 ± 0.31 0.72 ± 0.23 0.8 ± 0.2 0.46 ± 0.09 -0.01 ± 0.01

Frozen

Lake

0.4 0.11 ± 0.18 0.06 ± 0.02 0.22 ± 0.17 0.15 ± 0.04 0.16 ± 0.03 0.12 ± 0.03 0.67 ± 0.05 0.6 ± 0.05

0.6 0.25 ± 0.25 0.25 ± 0.04 0.66 ± 0.19 0.3 ± 0.05 0.33 ± 0.05 0.27 ± 0.04 0.56± 0.05 0.88 ± 0.03

0.8 0.53 ± 0.29 0.39 ± 0.05 0.91 ± 0.12 0.74 ± 0.04 0.68 ± 0.05 0.54 ± 0.05 0.49 ± 0.05 0.97 ± 0.02

Cliff

Walking

0.4 -1593.89 ± 68.9 -543.94 ± 45.98 -1742.54 ± 91.29 -1572.21 ± 60.82 -477.50 ± 54.66 -1382.04 ± 77.88 -1503.34 ± 53.57 -777.55 +/- 31.19

0.6 -1216.72 ± 63.68 6.97 ± 8.2 -1018.27 ± 96.95 -1159.77 ± 53.85 -374.64 ± 44.31 -477.50 ± 54.65 -1019.72 ± 35.99 -314.84 ± 12.8

0.8 -773.62 ± 54.67 64.41 ± 3.44 -287.17 ± 40.55 -790.60 ± 46.66 -54.22 ± 14.25 -109.08 ± 25.99 -523.73 ± 23.79 -231.86 ± 4.22

Cart

Pole

1 600.90 ± 47.68 441.1 ± 51.96 135.53 ± 0.28 525.98 ± 31.91 120.48 ± 0.57 135.41 ± 0.32 – –

1.5 641.28 ± 50.47 272.82 ± 21.25 139.19 ± 0.27 467.35 ± 25.11 117.60 ± 1.24 135.42 ± 0.34 – –

Table 3: Mean episode reward with standard error for an agent in an environment with a single exogenous change without
notification. The best-performing agents are in bold. Blanks denote settings where the algorithm is not applicable.

MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS

0.25 0.5 0.75

Bridge WN 0.18 ± 0.1 0.6 ± 0.08 -0.44 +- 0.09 0.28 ± 0.56 0.34 ± 0.54 0.08 +/ 0.56 – 0.36 ± 0.09

WON 0.04 ± 0.10 1.00 ± 0.00 -0.84 ± 0.05 -0.02 ± 0.58 0.22 ± 0.57 0.20 ± 0.57 0.08 ± 0.1 0.36 ± 0.09

Frozen

Lake

WN 0.15 ± 0.04 0.25 ± 0.04 0.1 ± .04 0.2 ± 0.04 0.15 ± 0.04 0.04 ± 0.02 – 0.71 ± 0.05

WON 0.24 ± 0.04 0.25 ± 0.04 0.27 ± 0.04 0.14 ± 0.03 0.21 ± 0.04 0.08 ± 0.03 0.59 ± 0.05 0.71 ± 0.05

Cliff

Walking

WN -847.48 ± 55.83 77.95 ± 0.40 -137.89 ± 29.19 -803.94 ± 54.89 -56.56 ± 19.2 -75.06 ± 20.77 – -932.89 ± 50.55

WON -907.67 ± 54.62 76.0 ± 1.89 -359.97 ± 42.46 -732.28 ± 53.50 -31.84 ± 14.97 -132.26 ± 26.98 -1144.91 ± 43.83 -707.65 ± 36.33

Cart

Pole

WN 702.7 ± 21.95 203.68 ± 1.35 100.78 ± 2.62 1392.23 ± 65.57 96.15 ± 2.5 99.95 ± 2.58 – –

WON 149.0 ± 1.79 251.47 ± 5.81 95.97 ± 2.68 109.39 ± 2.69 55.17 ± 1.7 95.61± 2.73 – –

Table 4: Mean episode reward with standard error for with agent in an environment with continuous parameter updates. WO
and WON denote settings “with notification” and “without notification” respectively. The best-performing approaches are in
bold. Blanks denote settings where the algorithm is not applicable.

some environments, effectively leveraging the most up-to-
date dynamics to optimize decision-making processes. In
contrast, DDQN shows only a modest improvement as it is
difficult to adapt to changes in limited time.
Impact of Notification on Performance with continuous
Transition Change: Again, the presence of detailed notifi-
cations generally improves the performance of most meth-
ods across various environments. This highlights the impor-
tance of quickly adapting the planning model to the latest
dynamics of the environment. For example, methods like
MCTS and PAMCTS, which leverage online search, show
a consistent performance increase across different environ-
ments, emphasizing the effectiveness of an online approach
in maintaining robust performance amid continuous changes
when notifications are given. We observe that AlphaZero
performs exceptionally well with notifications.
Variability in Algorithm Effectiveness: When comparing
methods that incorporate risk-averse strategies with those
that do not, it is evident that the ones with risk-averse
strategies perform differently. In environments like Frozen-
Lake, where the agent is more vulnerable to varying levels

of unpredictability compared to other environments, meth-
ods like ADA-MCTS and RATS, which incorporate risk-
averse strategies, generally perform better with single tran-
sition changes and continuous changes. These methods are
designed to account for and mitigate the risks brought on
by the environment’s stochastic nature, leveraging worst-
case sampling strategies to make decisions robust to possi-
ble changes. This enables them to navigate more effectively
and avoid the pitfalls that non-risk-averse methods might en-
counter. We also point out that in prior work, ADA-MCTS is
the only approach that that learn the updated environmental
parameter through environmental interactions.

Conclusion
We present NS-Gym, the first simulation toolkit and set
of standardized problem instances and interfaces explic-
itly designed for NS-MDPs. NS-Gym incorporates problem
types and features from over fifty years of research in non-
stationary decision-making. We also present benchmark re-
sults using prior work. We will continue to maintain NS-
Gym, extend it, and maintain a leaderboard of approaches.
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Description of NS-Gym Environments
Below, we provide descriptions for each environment sup-
ported by NS-Gym.

CartPole

The CartPole environment has a discrete action space and a
continuous state space. As illustrated in Figure 3, the agent’s
objective is to keep the pole balanced on top of the cart for as
long as possible. The agent receives a reward of +1 for each
time step that the pole remains balanced. The state is rep-
resented by a four-dimensional vector, which includes the
cart’s position, cart’s velocity, pole’s angle, and pole’s angu-
lar velocity. At each time step, the agent can apply a fixed
force to push the cart either left or right.

Figure 3: The Gymnasium CartPole environment.

Mountain Car

The MountainCar environment (see Figure 4) is a continu-
ous state but discrete action space environment. In this en-
vironment, a car is stuck in a valley, and the agent must
apply force to the cart to build momentum so that the car
can escape. By default, the agent receives a zero reward for
escaping the valley and a -1 reward otherwise. The agent
can either push the car to the left, right, or not at all. The
continuous Mountain Car environment is similar to the stan-
dard Mountain Car environment but with a continuous ac-
tion space. In the continuous analog, the agent chooses the
direction in which to apply the force to the car.

Figure 4: The Gymnasium MountainCar environment.

Acrobot The Acrobot environment is a double pendulum
(see Figure 5). The agent can apply torque to the joint con-
necting the two links of the double pendulum to move the
free end above a threshold height. At each time step, the
agent can either apply +1, 0, or -1 units of torque.

Figure 5: The Gymnasium Acrobot environment.

Pendulum The Pendulum environment is a continuous
state and action space environment. The agent aims to keep
the pendulum inverted for as long as possible. The agent
receives a reward proportional to the pendulum’s angle. At
each time step, the agent applies some torque magnitude to
the pendulum’s free end. Figure 6 shows the pendulum en-
vironment.

Figure 6: The Gymnasium Pendulum environment.

FrozenLake The FrozenLake environment (Figure 7) is
a stochastic, discrete action, and discrete state space grid-
world environment. The agent navigates from a starting cell
in the top left corner of the map to a jail cell in the bottom
right corner while avoiding holes in the ”frozen lake.” The
agent can move in an intended direction, with some proba-
bility that it will move in a perpendicular direction instead.
The Agent will get a reward of +1 if it reaches the goal and
0 otherwise.

Figure 7: The Gymnasium FrozenLake environment.

CliffWalker The CliffWalking environment (Figure 8) is a
deterministic grid-world environment. The agent must navi-



Figure 8: The Gymnasium CliffWalking environment.

gate from the start to the goal cell in the fewest steps. If the
agent falls off a ”cliff,” it accrues a reward of -100 and re-
sets at the start cell without ending the episode. The agent
accrues -1 reward for each cell that is not a cliff or a goal
state. The goal cell is the only terminal state. The agent can
move up, down, left, and right.

Bridge The non-stationary bridge environment (Figure 9)
is a grid-world setting where the agent must navigate from
the starting cell to one of two goal cells. The environment
was originally introduced by Lecarpentier and Rachelson
(2019). To reach a goal cell, the agent must cross a “bridge”
surrounded by terminal cells. The secondary goal cell is
farther from the starting location but less risky because
fewer holes surround it. Unlike the CliffWalking environ-
ment, which has a single global transition probability, the
left and right halves of the Bridge map each have separate
probability distributions. NS-Gym allows for updates to just
the left or right halves of the map or to the global value.
Similar to the FrozenLake environment, if the agent moves
in some direction, there is some probability that is moves
in one of the perpendicular directions instead. The agent re-
ceives a +1 reward for reaching a goal cell, a -1 reward for
falling into a hole, and a 0 reward otherwise. Our version
of the non-stationary bridge environment is not included in
the standard Gymnasium Python package. We provide our
implementation of the Bridge environment, as described by
Lecarpentier and Rachelson (2019), as part of the NS-Gym
package.

Figure 9: The Bridge environment. The start cell is in red,
the two goals are in green, and the terminal ”holes” are in
gray.

Experimental Setup
In this section, we elaborate on how we set up the single and
continuous change experiments for each environment.

CartPole
• Single update case: We initialize the CartPole environ-

ment to its default state. After the first decision epoch,

we increase the mass of the pole from 0.1 to a value of
1.0 and 1.5.

• Continuous update case: We initialize the CartPole en-
vironment to its default state. After each decision epoch,
we increase the mass of the pole by 0.1.

We truncate the episode after 2500 episode steps if the
agent does not reach a terminal state.

FrozenLake
• Single update case: We initially set the probability of

moving in the intended direction to 0.7 and the proba-
bility of moving in each perpendicular direction to 0.15.
After the first decision epoch, we change the probability
of moving in the intended direction to 0.4, 0.6, or 0.8. We
update the chance of moving in a perpendicular direction
accordingly.

• Continuous update case: We initialize the FrozenLake
environment to be completely deterministic. We decrease
the chance of moving in the intended direction by 0.2 for
the first three decision epochs. We update the chance of
moving in a perpendicular direction accordingly.

We truncate the episode after 100 episode steps if the
agent does not reach a terminal state.

CliffWalking
• Single update case: We initialize the environment to be

determenistic. After the first decision epoch, we update
the transition probability to a value of 0.8, 0.6, or 0.4.
The probability of moving in the perpendicular and re-
verse directions is updated accordingly.

• Continuous update case: We initialize the environment
to be deterministic. For the first 10 decision epochs, we
decrease the chance of moving in the intended direction
by 0.02. The probabilities of moving in the perpendicular
and reverse directions are updated accordingly.

In our experimental setup we modify the standard Clif-
fWalking rewards so that the goal state has a reward of +100.
Additionally, after 200 decision epochs, if the agent has not
found the goal, we truncate the episode.

Bridge
• Single update case: We initially set the probability of

moving in the intended direction to 0.7 and the probabil-
ity of moving in each of the perpendicular directions to
0.15. After the first decision epoch, we change the prob-
ability of moving in the intended direction to a value of
0.4, 0.6, or 0.8. We update the chance of moving in a
perpendicular direction accordingly.

• Continuous update case: We initialize the environment
to be determenistic. At each decision epoch, the proba-
bility of going in the intended direction decreases by 0.1.

We truncate the episode after 200 steps if the agent does
not reach a terminal state.

Algorithm Parameters
The Tables 5, 6, 7, 8, 9, and 10 show the parameters used in
each experiment.



Single

Bridge FrozenLake CliffWalking CartPole

m 500 300 1000 300

d 100 100 200 500

c
√
2

√
2

√
2

√
2

γ 0.99 0.99 0.999 0.5

Continuous

m 500 300 1000 300

d 100 100 200 500

c
√
2

√
2

√
2

√
2

γ 0.99 0.99 0.999 0.5

Table 5: MCTS parameters for the single and continuous
change experiments, where m is the number of MCTS iter-
ations, d is the maximum rollout depth, c is the exploration
parameter, γ is the tree discount factor.

Bridge FrozenLake CliffWalking CartPole

m 500 300 300 500

c
√
2 1.44 1.44

√
2

γ 0.99 0.999 0.999 1

layers 3 3 3 2

units 64 64 64 128

α 1 1 5 1

ϵ 0 0 0.75 0

Table 6: AlphaZero parameters for the single and continuous
change experiments, where m is the number of MCTS iter-
ations, c is the exploration parameter, γ is the tree discount
factor, layers are the number of hidden layers in the neural
network, and units are the number of units in each hidden
layer. The parameter α is the concentration parameter for
the Dirichlet noise added to the priors in the root node of the
search tree. The parameter ϵ controls the amount of noise
added to the priors.

Bridge FrozenLake CliffWalking CartPole

layers 3 2 2 2

units 64 64 128 64

time 0.4 0.4 0.4 0.4

Table 7: DDQN parameters for both the single and continu-
ous change experiments. The parameter layers are the num-
ber of hidden layers in the DDQN network. The parameter
units are the number of units in each layer. In the ”with” no-
tification experiments, the time is the number of seconds the
agent has to collect data and do gradient updates.

Bridge FrozenLake CliffWalking CartPole

m 500 1000 1000 300

d 200 500 200 500

c
√
2

√
2

√
2

√
2

γ 0.99 0.99 0.999 1

layers 3 2 2 2

units 64 64 128 64

Table 8: PAMCTS experiment parameters for single and
continuous experiments, where m is the number of MCTS
iterations, d is the MCTS search depth, c is the exploration
parameter, γ is the discount factor, layers are the number of
layers in the DDQN, and units are the number of units in
each hidden layer.

Bridge FrozenLake CliffWalking

γ 0.99 0.99 0.99

d 3 3 3

Table 9: RATS algorithm parameters. γ is the discount factor
and d is the tree search depth.

Bridge FrozenLake CliffWalking

γ 0.99 0.99 0.99

m 3000 100 3000

Table 10: ADA-MCTS algorithm parameters. γ is the dis-
count factor and m is the number of iterations.



Experimental Results
In this section, we include additional experimental results
and figures. Table 11 shows the complete results for the sin-
gle change with and without notification experiments. Fig-
ures 10 , 11, 12, and 13 show the comparative performance
of each decision-making agent in the single change experi-
ments. Figures 14, 15, 16, and 17 show the comparative per-
formance between all agents in the continuous change case.



Single Transition Change With and Without Notification
MCTS AlphaZero DDQN PAMCTS PAMCTS PAMCTS ADA-MCTS RATS

0.25 0.5 0.75

With Notification

0.4 -0.28 ± 0.56 -0.18 ± 0.1 -0.82 ± 0.33 -0.52 ± 0.29 -0.12 ± 0.33 -0.02 ± 0.33 – 0.34 ± 0.09

Bridge 0.6 -0.32 ± 0.55 0.8 ± 0.06 -0.80 ± 0.35 -0.10 ± 0.33 0.3 ± 0.32 0.46 ± 0.3 – 0.30 ± 0.09

0.8 0.32 ± 0.55 0.98 ± 0.02 -0.90 ± 0.25 0.32 ± 0.2 0.84± 0.18 0.8 ± 0.2 – 0.08 ± 0.03

0.4 0.09 ± 0.17 0.1 ± 0.03 0.2 ± 0.04 0.13±0.08 0.01 ± 0.02 0.07 ± 0.06 – 0.61 ± 0.05

FrozenLake 0.6 0.31 ± 0.27 0.21 ± 0.04 0.47 ± 0.05 0.34 ± 0.11 0.28 ± 0.11 0.35 ± 0.11 – 0.86 ± 0.04

0.8 0.53 ± 0.29 0.51 ± 0.05 0.53 ± 0.05 0.62 ± 0.11 0.78 ± 0.10 0.66 ± 0.11 – 0.97 ± 0.02

0.4 -1767.75 ± 61.69 -588.23 ± 46.46 -912.50 ± 42.39 -1668.47 ± 64.08 -1285.94 ± 71.43 -1419.56 ± 68.83 – -1077.98 ± 48.82

CliffWalking 0.6 -1162.91 ± 62.46 -0.48 ± 10.77 -246.48 ± 2.08 -1184.65 ± 57.88 -495.81 ± 50.71 -543.45 ± 54.80 – -400.72 ± 26.59

0.8 -846.64 ± 53.13 63.11 ± 3.53 -20.89 ± 10.44 -852.95 ± 56.15 -43.06 ± 50.9 -136.81 ± 25.46 – -245.54 ± 9.27

CartPole 1 633.62 ± 49.27 230.81 ± 1.06 92.8 ± 33.38 2 740.84 ± 43.23 122.89 ± 0.5 136.07 ± 0.29 – –

1.5 678.58 ± 51.13 902.05 ± 83.01 230.57 ± 21.39 702.58 ± 43.60 124.29 ± 0.47 135.22 ± 0.3 – –

Without Notification

0.4 -0.58 ± 0.47 -0.26 ± 0.56 -0.82 ± 0.33 -0.58 ± 0.27 -0.20 ± 0.33 -0.16 ± 0.33 -0.54 ± 0.07 -0.98 ± 0.02

Bridge 0.6 -0.18 ± 0.57 0.58 ± 0.47 -0.78 ± 0.36 0.46±0.33 0.46 ± 0.3 0.38 ± 0.31 -0.16 ± 0.09 0.05 ± 0.08

0.8 0.64 ± 0.45 0.92 ± 0.23 -0.72 ± 0.4 0.4 ± 0.31 0.72 ± 0.23 0.8 ± 0.2 0.46 ± 0.09 -0.01 ± 0.01

0.4 0.11 ± 0.18 0.06 ± 0.02 0.22 ± 0.17 0.15 ± 0.04 0.16 ± 0.03 0.12 ± 0.03 0.67 ± 0.05 0.6 ± 0.05

FrozenLake 0.6 0.25 ± 0.25 0.25 ± 0.04 0.66 ± 0.19 0.3 ± 0.05 0.33 ± 0.05 0.27 ± 0.04 0.56± 0.05 0.88 ± 0.03

0.8 0.53 ± 0.29 0.39 ± 0.05 0.91 ± 0.12 0.74 ± 0.04 0.68 ± 0.05 0.54 ± 0.05 0.49 ± 0.05 0.97 ± 0.02

0.4 -1593.89 ± 68.9 -543.94 ± 45.98 -1742.54 ± 91.29 -1572.21 ± 60.82 -477.50 ± 54.66 -1382.04 ± 77.88 -1503.34 ± 53.57 -777.55 +/- 31.19

CliffWalking 0.6 -1216.72 ± 63.68 6.97 ± 8.2 -1018.27 ± 96.95 -1159.77 ± 53.85 -374.64 ± 44.31 -477.50 ± 54.65 -1019.72 ± 35.99 -314.84 ± 12.8

0.8 -773.62 ± 54.67 64.41 ± 3.44 -287.17 ± 40.55 -790.60 ± 46.66 -54.22 ± 14.25 -109.08 ± 25.99 -523.73 ± 23.79 -231.86 ± 4.22

CartPole 1 600.90 ± 47.68 441.1 ± 51.96 135.53 ± 0.28 525.98 ± 31.91 120.48 ± 0.57 135.41 ± 0.32 – –

1.5 641.28 ± 50.47 272.82 ± 21.25 139.19 ± 0.27 467.35 ± 25.11 117.60 ± 1.24 135.42 ± 0.34 – –

Table 11: Table of mean rewards and standard error across for the single change environmental parameter change experiment.
The best-performing agents for each environment are in bold.
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Figure 10: Distribution of rewards for the CliffWalking experiments with a single change.

0.
8

0.
6

0.
4

0

20

40

60

80

With Notification

0.
8

0.
6

0.
4

Probability of moving in the intended direction

0

20

40

60

80

Without Notification

Non-Stationary Bridge Single Change

M
ea

n
S

u
cc

es
s

R
at

e

PAMCTS - 0.25 PAMCTS - 0.5 PAMCTS - 0.75 MCTS AlphaZero DDQN ADA-MCTS RATS

Figure 11: Average success rate (i.e., the agent finds the goal state) for each agent in the single change experiments.



0.1 1.0 1.5
0

500

1000

1500

2000

2500

With Notification

0.1 1.0 1.5

Pole Mass

0

500

1000

1500

2000

2500

3000

Without Notification

R
ew

ar
d

Non-Stationary CartPole Single Transition Change

MCTS AlphaZero DDQN PAMCTS - 0.25 PAMCTS - 0.5 PAMCTS - 0.75

Figure 12: Distribution of episode rewards for each agent tested on non-stationary CartPole environment with and without
notification.
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Figure 13: Mean episode reward and standard error for each agent in a non-stationary FrozenLake environment with a single
change in its transition function.
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Figure 14: Distribution of episode reward for each agent under the continuous change experiment conditions.
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Figure 15: Mean reward and standard error for agents in the non-stationary Bridge environment under the continuous change
conditions.
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Figure 16: Mean reward and standard error for agents in the non-stationary FrozenLake environment under continuous change
conditions.
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Figure 17: Distribution of episode rewards for agents in the continuous non-stationary CartPole environment.


