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Abstract
Diffusion-based Neural Combinatorial Optimization (NCO)
has demonstrated effectiveness in solving NP-complete
(NPC) problems by learning discrete diffusion models for
solution generation, eliminating hand-crafted domain knowl-
edge. Despite their success, existing NCO methods face sig-
nificant challenges in both cross-scale and cross-problem
generalization, and high training costs compared to tradi-
tional solvers. While recent studies have introduced training-
free guidance approaches that leverage pre-defined guidance
functions for zero-shot conditional generation, such method-
ologies have not been extensively explored in combinato-
rial optimization. To bridge this gap, we propose a general
energy-guided sampling framework during inference time
that enhances both the cross-scale and cross-problem gener-
alization capabilities of diffusion-based NCO solvers with-
out requiring additional training. Our experimental results
demonstrate that a diffusion solver, trained exclusively on the
Traveling Salesman Problem (TSP), can achieve competitive
zero-shot solution generation on TSP variants, such as Prize
Collecting TSP (PCTSP), through energy-guided sampling
across different problem scales.

Introduction
Combinatorial optimization (CO) problems are fundamen-
tal challenges across numerous domains, from logistics
and supply chain management to network design and re-
source allocation. While traditional exact solvers and heuris-
tic methods have been widely studied, they often struggle
with scalability and require significant domain expertise to
design problem-specific algorithms (Arora 1998; Gonzalez
2007).

Recent advances in deep learning have sparked interest in
Neural Combinatorial Optimization (NCO), which aims to
learn reusable solving strategies directly from data, eliminat-
ing the need for hand-crafted heuristics (Bengio, Lodi, and
Prouvost 2021). Among various deep learning approaches,
diffusion-based models (Ho, Jain, and Abbeel 2020; Song
et al. 2020) have emerged as a particularly promising direc-
tion for solving combinatorial optimization problems. These
models have demonstrated remarkable capabilities in learn-
ing complex solution distributions by adapting discrete dif-
fusion processes to graph structures. Recent works like (Sun
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and Yang 2023; Li et al. 2024) have achieved state-of-the-
art performance on classical problems such as the Travel-
ing Salesman Problem (TSP), showcasing the potential of
diffusion-based approaches in combinatorial optimization.

However, the practical applicability of existing NCO ap-
proaches is limited by several critical challenges. First, cur-
rent models suffer from cross-scale generalization, with per-
formance degrading significantly when applied to larger
problem instances than those seen during training, espe-
cially for transformer-based solvers (Khalil et al. 2017;
Kool, Van Hoof, and Welling 2018). Second, these models
show limited cross-problem transfer capabilities, struggling
to adapt to problem variants with modified objectives or ad-
ditional constraints. While several studies have attempted to
enhance learning-based solvers’ generalization through ap-
proaches such as training additional networks (Wang et al.
2024) and fine-tuning (Lin et al. 2024), these methods re-
quire substantial computational costs for training separate
models for each problem type and scale.

In parallel, recent advances in diffusion models, partic-
ularly in computer vision, have demonstrated the effec-
tiveness of training-free guidance approaches for enhanc-
ing conditional generation (Bansal et al. 2023; Chung et al.
2022; Yu et al. 2023). These approaches leverage pre-
defined guidance functions or pre-trained networks to enable
zero-shot conditional generation without additional training
overhead. Inspired by these developments, we explore the
adaptation of energy-based guidance to address the general-
ization challenges in combinatorial optimization.

In this work, we propose an energy-guided sampling
framework that enhances the generalization capabilities of
diffusion-based NCO solvers without requiring additional
training costs. By incorporating problem-specific objectives
and constraints during inference time, this approach enables
zero-shot cross-problem transfer while maintaining solution
feasibility. Through experiments on the TSP and its vari-
ant Prize Collecting TSP (PCTSP), we numerically demon-
strate that our framework achieves effective zero-shot trans-
fer from simpler to more complex problem variants while
maintaining consistent performance across different prob-
lem scales. Our work represents a significant step toward
more flexible and generalizable diffusion-based combinato-
rial optimization solvers, potentially reducing the need for
problem-specific model training while maintaining compet-



Figure 1: Overview of energy-guided sampling framework for achieving cross-problem generalization. Left: Pre-trained diffu-
sion model performs denoising on original problem G (TSP). Right: Proposed energy-guided sampling on target problem G′

(PCTSP) conducts K rewrite iterations of noise addition and guided denoising.

itive performance.

Related Works
Neural Network-based Combinatorial Solvers. Neural
Combinatorial Optimization (NCO) approaches focus on
leveraging neural networks to learn feasible solution dis-
tributions for combinatorial optimization problems (Bengio,
Lodi, and Prouvost 2021; Zhang et al. 2023). Autoregressive
construction solvers (Khalil et al. 2017; Kool, Van Hoof, and
Welling 2018; Kwon et al. 2020; Kim, Park, and Park 2022;
Hottung, Bhandari, and Tierney 2021) are built upon the
success of transformer-based (Vaswani 2017) architectures
in sequential generation tasks. Non-autoregressive construc-
tion solvers (Joshi, Laurent, and Bresson 2019; Fu, Qiu, and
Zha 2021; Qiu, Sun, and Yang 2022; Wang et al. 2024; Sun
and Yang 2023; Sanokowski, Hochreiter, and Lehner 2024)
have also been proposed to learn high quality solution dis-
tributions.
Diffusion-based Generative Modeling. Recent advances in
generative modeling have revolutionized various domains
through diverse approaches, including Variational Autoen-
coders (VAE) (Kingma 2013), Generative Adversarial Net-
works (GAN) (Goodfellow et al. 2020), Diffusion models
(Ho, Jain, and Abbeel 2020), and GFlowNet (Bengio et al.
2023). In particular, score-based diffusion models (Ho, Jain,
and Abbeel 2020; Song et al. 2020; Sohl-Dickstein et al.
2015; Song and Ermon 2019; Dhariwal and Nichol 2021)
have emerged as a powerful framework operating in contin-
uous domains.

Beyond their state-of-the-art performance in traditional
generative tasks, these models have shown remarkable po-
tential in combinatorial optimization (CO). Pioneering work
by (Sun and Yang 2023) established new state-of-the-art re-
sults for the Traveling Salesman Problem (TSP) by adapt-
ing discrete diffusion models (Austin et al. 2021) to graph
structures. Building upon this foundation, (Li et al. 2024)
enhanced the framework’s performance through gradient
search iterations during testing. (Sanokowski, Hochreiter,
and Lehner 2024) proposed the first diffusion-based unsu-
pervised learning framework.
Training-free Guidance for Diffusion Models. Condi-
tional generation has emerged as a crucial component in
real-world applications, enabling precise control over gen-

erated outputs. While traditional approaches such as clas-
sifier guidance (Dhariwal and Nichol 2021) and classifier-
free guidance (Ho and Salimans 2022) have proven effec-
tive, they require substantial computational overhead due to
additional training requirements for either the classifier or
the diffusion model.

A promising alternative has emerged through training-
free guidance methods (Bansal et al. 2023; Chung et al.
2022; Yu et al. 2023), which are guided by pre-trained net-
works or loss function. In the context of discrete diffusion
models, this approach remained largely unexplored until (Li
et al. 2024) pioneered the adaptation of loss-based guidance
during inference, building upon the pre-trained discrete dif-
fusion solver framework (Sun and Yang 2023). Our work
demonstrates the significant potential of energy-guided sam-
pling in enhancing the cross-problem generalization capabil-
ities of diffusion-based NCO solvers.

Theoretical Analysis
Problem Formulation
Combinatorial optimization (CO) problems on graphs are
fundamental to numerous real-world applications. Follow-
ing recent advances (Sun and Yang 2023; Li et al. 2024),
we address these problems by formalizing graph-based CO
instances as follows.

We represent each problem instance as an undirected
graph G(V,E) ∈ G, where V and E denote the vertex
and edge sets, respectively. This representation encompasses
both vertex selection and edge selection problems, covering
a broad spectrum of practical CO scenarios. For any instance
G ∈ G, we define a binary decision variable x ∈ XG , where
XG = {0, 1}N represents the feasible solution space. The
optimization objective is to find the optimal solution x∗ that
minimizes a problem-specific objective function f(·;G) :
{0, 1}N → R:

x∗ = argmin
x∈XG

f(x;G), (1)

where the objective function decomposes into:

f(x;G) = fcost(x;G) + β · fvalid(x;G). (2)

Here fcost(·;G) measures the solution quality, and
fvalid(·;G) enforces problem-specific constraints through a



penalty coefficient β > 0. The validity function returns 0 for
feasible solutions and is strictly positive for infeasible ones.

As a concrete example, consider the classical Traveling
Salesman Problem (TSP): given a complete graph G with
edge weights, the objective is to find a minimum-weight
Hamiltonian cycle. The decision variable x ∈ {0, 1}N en-
codes edge selections, where fcost(·;G) measures the total
tour length and fvalid(·;G) ensures the solution forms a valid
Hamiltonian cycle. See (Sun and Yang 2023) for the de-
tailed definition. For the Prize Collecting TSP (PCTSP) that
we considered, each vertex has a prize ri > 0 and penalty
pi > 0. The decision variables include edge selections x and
vertex visits y, where fcost(x,y;G) =

∑
(i,j)∈E dijxij +∑

i∈V \S pi(1 − yi) −
∑

i∈V riyi balances the travel costs
dij , the penalties for the unselected vertices V \ S and the
prizes, while fvalid(x,y;G) ensures a valid tour through se-
lected vertices.

Probabilistic Modeling for CO
To leverage recent advances in deep generative models, we
reformulate the CO objective through an energy-based per-
spective (Lucas 2014). Specifically, we establish an energy
function E(·;G) := |y − f(·;G)| that maps each solution to
its corresponding energy state. This energy-based formula-
tion naturally leads to a probabilistic framework through the
Boltzmann distribution (LeCun et al. 2006):

p(y|x;G) =
exp

(
− 1

τ E(y,x;G)
)

Z
, (3)

where Z =
∑
x

exp
(
− 1

τ
E(y,x;G)

)
, (4)

where τ controls the temperature of the system and Z de-
notes the partition function that normalizes the distribution.

Recent works have demonstrated promising approaches
to approximate this distribution using deep generative mod-
els by parameterizing a conditional distribution pθ(x|G) to
minimize the energy function. Both supervised (Sun and
Yang 2023; Li et al. 2024) and unsupervised (Sanokowski,
Hochreiter, and Lehner 2024) learning paradigms have
shown significant advances. Since our proposed training-
free guidance mechanism is applicable to any pre-trained
diffusion-based solver, we focus on the supervised learning
framework in this work for ease of presentation.

Given a training set G = {Gi}ki=1 of i.i.d. problem in-
stances with their optimal solutions x and the corresponding
optimal objective values y∗G, we optimize the model parame-
ters θ by maximizing the likelihood of the optimal solutions:

L(θ) = EG∼G [− log pθ(x|y∗G, G)]. (5)

Discrete Diffusion Generation Modeling
We adopt a discrete diffusion framework to effectively
sample optimal solutions from the learned distribution
pθ(x|y∗, G). In contrast to continuous diffusion models that
employ Gaussian noise, our discrete formulation is particu-
larly well-suited for graph-based combinatorial optimization
problems (Sun and Yang 2023; Li et al. 2024).

The diffusion process consists of two key components: a
forward process that gradually corrupts the data, and a re-
verse process that learns to reconstruct the original distribu-
tion. The forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1)

maps clean data x0 ∼ q(x0|G) to a sequence of increas-
ingly corrupted latent variables x1:T . The reverse process
pθ(x0:T |G) = p(xT )

∏T
t=1 pθ(xt−1|xt, G) learns to grad-

ually denoise these latent variables to recover the original
distribution. From a variational perspective, we optimize the
model by minimizing an upper bound on the negative log-
likelihood, where C is a constant:

L(θ) = EG∼G [− log pθ(x0|G)]

≤
T∑

t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt, G)]

− log pθ(x0|x1, G)

]
+ C.

(6)
For discrete state spaces, we define the forward process

using a categorical distribution:

q(xt|xt−1) = Cat(xt;p = x̃t−1Qt), (7)

where x̃t ∈ {0, 1}N×2 represents the one-hot encoding of
xt ∈ {0, 1}N . The forward transition matrix Qt is defined
as:

Qt =

[
(1− βt) βt

βt (1− βt)

]
, βt ∈ [0, 1], (8)

where [Qt]ij denotes the state transition probability from
state i to state j. The t-step marginal distribution and poste-
rior can be derived as:

q(xt|x0) = Cat(xt;p = x̃0Qt),

q(xt−1|xt,x0) = Cat

(
xt−1;p =

x̃tQ
⊤
t ⊙ x̃0Qt−1

x̃0Qtx̃
⊤
t

)
,

(9)
where Qt = Q1Q2 . . .Qt and ⊙ denotes element-wise
multiplication.

To capture the structural properties of CO problems, we
employ an anisotropic graph neural network architecture
(Joshi, Laurent, and Bresson 2019). For a given instance
G, the network learns to predict the clean data distribution
pθ(x̃0|xt, G). Taking TSP as an example, where G encodes
the 2D Euclidean coordinates of vertices, the network out-
puts a probability matrix pθ(x̃0|xt, G) ∈ [0, 1]N×2. This
matrix parameterizes N independent Bernoulli distributions,
each corresponding to a binary decision variable in x̃0. The
reverse process during sampling follows:

pθ(xt−1|xt, G) =
∑
x̃0

q(xt−1|xt, x̃0)pθ(x̃0|xt, G). (10)

Energy-guided Sampling for Cross-problem
While training-free guidance has been extensively studied
in computer vision (Bansal et al. 2023; Chung et al. 2022;



Yu et al. 2023), its application to combinatorial optimiza-
tion problems has only recently emerged (Li et al. 2024). We
extend this approach by introducing energy-based training-
free guidance during inference, enabling flexible incorpo-
ration of additional constraints into pre-trained diffusion-
based CO solvers and enhancing their cross-problem gen-
eralization capabilities.

Let G′ = {G′
i}ni=1 denote a set of test instances rep-

resenting variants of the original training problems, such
as problems with additional constraints or multiple ob-
jectives. For a new instance G′ with its optimal solution
pair (x, y∗G′), we need to estimate the new reverse process
pθ(xt−1|xt, y

∗
G′ , G′) according to (10). Following the score

estimation perspective of diffusion processes (Song et al.
2020), we decompose the conditional score function at time
step t into two components:

∇xt
log pθ(xt|y∗G′ , G′) = ∇xt

log pθ(xt|G′)

+∇xt log pt(y
∗
G′ |xt, G

′).
(11)

The first term ∇xt
log pt(xt|G′) is estimated using the

pre-trained diffusion model. Since G′ represents an exten-
sion of the original problem G with additional constraints
or objectives, we assume that the solution distribution of xt

for G′ is encompassed within the distribution learned for G.
For instance, in the case of PCTSP, an optimal solution xt

can be viewed as an optimal TSP solution on the subgraph
consisting of selected vertices. However, while this ensures
solution feasibility, it does not guarantee optimality with re-
spect to the modified objectives in G′. To address this lim-
itation, we estimate the second term ∇xt

log pt(y
∗
G′ |xt, G

′)
using an energy function that specifically accounts for the
additional objectives and constraints of the variant problem:

∇xt
log pt(y

∗
G′ |xt, G

′) ∝ −∇xt
E(y∗G′ ,x0(xt);G

′), (12)

where E(y∗G′ ,xt;G
′) = |y∗G′ − f(x̃0(xt);G

′)| measures the
energy between the optimal value and the predicted solution.
Here, x̃0(xt) represents the predicted clean sample from the
current noisy state xt. To overcome this issue, we parameter-
ize the model outputs as [pθ(x̃0|xt)]i = (1−[Ex̃0]i, [Ex̃0]i),
representing the logits of N independent Bernoulli samples,
and estimate x̃0(xt) = Ex̃0∼pθ(x̃0|xt)[x̃0]. Combining equa-
tions (11) and (12), we derive an energy-guided reverse sam-
pling process:

pθ(xt−1|xt, y
∗
G′ , G′) ∝ pθ(xt−1|xt, G

′)p(y∗G′ |xt, G
′),

p(y∗G′ |xt, G
′) = exp

(
−1

τ
∇xtf (x̃0(xt);G

′)

)
.

(13)

Proposed Approach
Pre-trained Diffusion for Heatmap Generation. Building
upon our theoretical analysis of graph-based discrete diffu-
sion models, we employ these models to generate transition
matrices for solving combinatorial optimization problems,
where each matrix element encodes the selection probabil-
ity of nodes or edges as a heatmap representation. The pre-
trained diffusion model operates by progressively denois-
ing a randomly perturbed graph structure to generate these

Algorithm 1: Energy-guided Diffusion Sampling for Cross-
problem Transfer

Input:
1: pθ: Pre-trained diffusion model
2: G′: Target problem instance
3: T : Number of diffusion steps
4: τ : Energy guidance temperature
5: K: Number of re-inference iterations

Output: Optimal solution tK for problem instance G′

6: Initialize xT with random binary values;
7: for k = 1 to K do
8: Initialize xT with previous best solution tk−1

9: for t = T to 1 do
10: Compute pθ(xt|G′) from pre-trained model;
11: Compute energy gradient: ∇xt

f(x̃0(xt);G
′);

12: Compute pt(y
∗
G′ |xt, G

′)∝ exp(−∇xt
f/τ);

13: Compute guided posterior: pθ(xt−1|xt, y
∗
G′ , G′) ∝

pθ(xt−1|xt, G
′)pt(y

∗
G′ |xt, G

′);
14: Update next state with Bernoulli Sampling:

xt−1 ∼ Cat (xt−1; pθ(xt−1|xt, y
∗
G′ , G′));

15: end for
16: Decode x0 to the best solution tk;
17: end for
18: return tK

probability heatmaps, followed by a greedy decoding strat-
egy that constructs feasible solutions by iteratively selecting
nodes or edges with the highest probabilities until reach-
ing termination conditions (e.g., forming a complete cycle
in TSP applications).
Energy-guided Sampling. We propose a conditional
energy-guided sampling framework that enhances cross-
scale and cross-problem generalization of pre-trained diffu-
sion models without requiring additional training, leverag-
ing DDIM (Song, Meng, and Ermon 2020) to accelerate the
sampling process to 10 steps. Our initial experiments reveal
that single-round sampling, despite utilizing energy function
gradients for directional guidance, yields suboptimal cross-
problem performance. To address this limitation, we adopt
the rewrite technique from (Li et al. 2024), where we ini-
tialize each round by adding noise to the previous round’s
best solution and iteratively apply energy-guided sampling
in Algo. 1. This iterative process establishes a natural trade-
off between solution quality and computational efficiency,
which we systematically analyze in our experimental evalu-
ation.

Numerical Results
Dataset. We evaluate our approach on two classical NP-
complete combinatorial optimization problems: the Travel-
ing Salesman Problem (TSP) and its variant, the Prize Col-
lecting Traveling Salesman Problem (PCTSP).

• Traveling Salesman Problem (TSP) requires finding
the minimal-length Hamiltonian cycle in a complete
graph, where the salesman must visit each city exactly
once before returning to the starting point.



Method PCTSP-20 PCTSP-50 PCTSP-100

Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Avg Gap ↓ Training-based Training Time ↓
O

R

Gurobi 0.00% 3.10s — — — — — — —
OR-Tools 2.13% 12.31s 4.85% 2.02m 10.33% 5.84m 5.77% — —
ILS (C++) 1.07% 2.13s 0.00% 18.30s 0.00% 56.11s 0.36% — —
ILS (Python 10x)∗ 63.23% 3.05s 148.05% 4.70s 209.78% 5.27s 140.35% — —

A
ut

o-
re

g∗

AM (Greedy) 2.88% 0.02s 17.95% 0.06s 29.24% 0.14s 16.69% ✓ 3.5 days
AM (Sampling) 2.54% 2.43s 14.58% 7.08s 22.20% 15.13s 13.11% ✓ 3.5 days
MDAM (Greedy) 11.76% 41.10s 24.73% 1.31m 30.07% 1.96m 22.19% ✓ 4.3 days
MDAM (Beam Search) 5.88% 2.70m 18.81% 4.77m 26.09% 6.97m 16.93% ✓ 4.3 days
AM (ASP) 12.05% 0.03s 10.34% 0.08s 11.56% 0.18s 11.32% ✓ 1.1 days
AM-FT (Sampling) 1.02% 2.51s 14.11% 8.02s 25.19% 18.21s 13.44% ✓ 4.9 days

D
iff

. DIFUSCO (TSP) 19.21% 1.04s 18.61% 1.69s 43.42% 2.34s 27.08% ✗ 1.5 days
DIF-guide (Ours) 4.83% 4.58s 7.58% 6.37s 18.1% 10.79s 10.17% ✗ 0 days

Table 1: Comprehensive evaluation of cross-scale generalization capabilities across different solver categories on PCTSP
instances. Comparison includes exact solvers (Gurobi), OR-based heuristics (OR-Tools, ILS), autoregressive models (AM,
MDAM, AM-ASP, AM-FT), and diffusion-based approaches (DIFUSCO, DIF-guide). Performance metrics include optimality
gap, inference time, and training time. The best results marked with ∗ are reported from (Wang et al. 2024). The proposed
DIF-guide achieves competitive performance while requiring no training.

• Prize Collecting TSP (PCTSP) (Balas 1989) extends
the classical TSP by introducing node-specific prizes and
penalties. The objective is to optimize a trade-off be-
tween minimizing tour length and unvisited node penal-
ties while ensuring collected prizes exceed a predefined
threshold. This formulation creates a more complex opti-
mization landscape where node visitation decisions must
balance multiple competing factors.

Method PCTSP-20 PCTSP-50 PCTSP-100

Cost Gap Time Cost Gap Time Cost Gap Time

DIFUSCO 3.78 19.21% 1.04s 5.20 15.97% 1.35s 8.14 35.61% 2.01s

DIF-Guide (Ours) 3.32 4.83% 5.58s 4.69 3.51% 7.51s 6.67 13.32% 12.20s

Table 2: Zero-shot cross-problem transfer performance com-
parison between baseline DIFUSCO and our DIF-Guide ap-
proach on PCTSP instances. Results show solution cost, op-
timality gap, and computation time across three problem
scales (20, 50, and 100 nodes). The energy-guided sampling
uses 50 iterations with greedy decoding strategy.

Evaluation. Following (Kool, Van Hoof, and Welling 2018),
we generate 1000 test instances for each problem scale:
PCTSP-20, PCTSP-50, and PCTSP-100, where the numbers
denote the node counts. We evaluate model performance us-
ing two primary metrics: average solution cost and optimal-
ity gap relative to the exact solution. Additionally, we mea-
sure computational efficiency through total training time and
per-instance inference time.
Baselines. We compare our approach against multiple base-
line categories: (1) Exact solver: Gurobi; (2) OR-based
heuristics: OR-Tools and Iterated Local Search (ILS); (3)
Learning-based methods: autoregressive models including
AM (Kool, Van Hoof, and Welling 2018), MDAM (Xin
et al. 2021), AM-ASP (Wang et al. 2024), and AM-FT
(Lin et al. 2024), as well as the diffusion-based solver DI-

FUSCO (Sun and Yang 2023). Our proposed DIF-guide uti-
lizes DIFUSCO’s TSP-trained checkpoint with a PCTSP-
specific energy function for energy-guided sampling. All ex-
periments are conducted on a single Tesla V100 GPU.

First, we demonstrate the effectiveness of our energy-
guided sampling framework in cross-problem transfer. Table
2 reveals substantial zero-shot performance improvement
when applying our method to the pre-trained DIFUSCO
model on TSP. The enhancements are consistent across all
PCTSP scales, both in solution quality and optimality gap.

The cross-problem transfer capability of energy-guided
sampling improves progressively through iterative rewriting
rounds, as we initialize each round’s noisy data xT using
the previous best solution. Figure 2 illustrates how solutions
gradually adapt to new instances as rewrite rounds increase.
While this iterative sampling increases inference time, our
approach maintains computational efficiency and scalabil-
ity compared to OR solvers while eliminating the need for
problem-specific training.

Following (Wang et al. 2024), we evaluate our method’s
generalization capabilities across both problem scales and
problem types. For cross-scale evaluation on PCTSP, we se-
lect the best-performing base model across all scales. Ta-
ble 1 reveals that while existing autoregressive approaches
struggle with cross-scale generalization due to their sequen-
tial generation scheme, our DIF-guide framework demon-
strates competitive performance in cross-scale generaliza-
tion, while maintaining zero-shot solution generation with-
out any additional training. The framework’s ability to adapt
pre-trained diffusion models to new problem variants with-
out additional training represents a significant advancement
in CO applications.

Conclusions
In this work, we proposed an energy-guided sampling
framework that enables zero-shot cross-problem generaliza-



Figure 2: Trade-off between performance and inference time
of energy-guided sampling with respect to rewriting rounds.

tion for diffusion-based combinatorial optimization solvers.
By introducing an energy-based guidance mechanism dur-
ing inference, our approach transfers pre-trained diffusion
models to solve problem variants without additional train-
ing. Through numerical experiments on TSP and PCTSP, we
demonstrated that our framework achieves competitive per-
formance compared to other learning-based methods across
different problem scales.
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