
HDDLGym: A Tool for Studying Multi-Agent Hierarchical Problems Defined in
HDDL with OpenAI Gym

Ngoc La1, Ruaridh Mon-Williams2

1MIT
2University of Edinburgh

ntmla@mit.edu, ruaridh.mw@ed.ac.uk

Abstract

In recent years, reinforcement learning (RL) methods have
been widely tested using tools like OpenAI Gym, although
many tasks in these environments could also benefit from
hierarchical planning. However, there is a lack of tools that
enable the seamless integration of hierarchical planning with
RL. Hierarchical Domain Definition Language (HDDL), used
in classical planning, introduces a structured approach well-
suited for model-based RL to address this gap. To facilitate
this integration, we introduce HDDLGym, a Python-based
tool that automatically generates OpenAI Gym environments
from HDDL domains and problems. HDDLGym serves as a
link between RL and hierarchical planning, supporting multi-
agent scenarios and enabling collaborative planning among
agents. This paper provides an overview of HDDLGym’s de-
sign and implementation, highlighting the challenges and de-
sign choices involved in integrating HDDL with the Gym in-
terface and applying RL policies to support hierarchical plan-
ning. We also provide detailed instructions and demonstra-
tions for using the HDDLGym framework, including how to
work with existing HDDL domains and problems from In-
ternational Planning Competitions, such as the Transport do-
main. Additionally, we offer guidance on creating new HDDL
domains for multi-agent scenarios and demonstrate the prac-
tical use of HDDLGym in the Overcooked domain. By lever-
aging the advantages of HDDL and Gym, HDDLGym aims
to be a valuable tool for studying RL in hierarchical planning,
particularly in multi-agent contexts.

Code — https://github.com/HDDLGym/HDDLGym

1 Introduction
Hierarchical planning is essential for addressing complex,
long-horizon planning problems by decomposing them into
smaller, manageable subproblems. In reinforcement learn-
ing (RL), hierarchical strategies can guide exploration along
specific pathways, potentially enhancing learning efficiency.
However, implementing RL policies within hierarchical
frameworks often requires custom modifications to the origi-
nal environments to incorporate high-level actions (Wu et al.
2021; Liu et al. 2017; Xiao, Hoffman, and Amato 2020).
For example, in a Bayesian inference study using the Over-
cooked game, subtasks are integrated as high-level actions

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through specific rules embedded in the system codebase (Wu
et al. 2021). Similarly, several RL studies use author-defined
high-level actions, or macro-actions, to organize complex
tasks (Liu et al. 2017; Xiao, Hoffman, and Amato 2020).
While these studies highlight the benefits of hierarchical ap-
proaches in complex scenarios, the additional programming
required to integrate hierarchical layers can make it chal-
lenging for external users to modify or implement alternative
high-level strategies. This limitation reduces users’ flexibil-
ity to implement diverse hierarchical strategies tailored to
their specific requirements.

The Hierarchical Domain Definition Language (HDDL)
(Höller et al. 2020) is an extension of Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998) that in-
corporates hierarchical task networks (HTN) (Erol, Hendler,
and Nau 1994). HDDL provides a standardized language for
hierarchical planning systems and is supported by extensive
documentation as well as a variety of domains and prob-
lems. Many of these resources are sourced from the hier-
archical task network tracks of the International Planning
Competitions (IPC-HTN) (IPC 2023 HTN Tracks). HDDL’s
intuitive and flexible design also allows users to define or
modify problem-solving approaches by adjusting the hierar-
chical task networks to suit their specific needs. To lever-
age HDDL’s strengths in studying RL within hierarchical
planning problems, we present HDDLGym — a framework
that integrates HDDL with OpenAI Gym (Brockman et al.
2016), a standardized RL interface. HDDLGym is a Python-
based tool that automatically generates Gym environments
from HDDL domain and problem files.

Multi-agent contexts are a key area in automated planning
and hierarchical planning research. While HDDL is not in-
herently designed for multi-agent systems, multi-agent fea-
tures have been explored in planning formalisms like MA-
PDDL (Kovacs 2012) and MA-HTN (Cardoso, Bordini et al.
2017). However, to utilize the extensive, well-documented
HDDL domains and problems from IPC-HTN, HDDLGym
is designed to work closely with the HDDL defined by
Höller et al. (2020). We introduce a new protocol for ex-
tending HDDL domains and problems to support HDDL-
Gym with multi-agent features. This includes making minor
modifications to existing HDDL files from IPC-HTN.



Main contributions This paper makes the following three
key contributions:

• We introduce HDDLGym, a novel framework that auto-
matically bridges reinforcement learning and hierarchi-
cal planning by automatically generating Gym environ-
ments from HDDL domains and problems.

• We provide a protocol for modifying HDDL domains to
support multi-agent configurations within HDDLGym,
thereby extending hierarchical planning techniques to
complex multi-agent environments.

• We detail HDDLGym’s design and usage, demonstrating
its effectiveness with examples from the Transport do-
main (in IPC-HTN) and the Overcooked environment (as
Figure 1a and 1b, respectively).

The remainder of this paper is organized as follows: Sec-
tion 2 provides background information on HDDL and Ope-
nAI Gym, the two foundational frameworks on which our
system is built. Section 3 discusses relevant prior works, thus
highlights our contributions to the field. Section 4 then intro-
duces the formal framework of HDDLGym, detailing how
HDDL is modified to align with the agent-centric design of
this tool. Section 5 covers the design and implementation de-
tails of HDDLGym. Following this, section 6 demonstrates
the use of HDDLGym with examples from the Transport
domain, representing domains from IPC-HTN, and Over-
cooked, representing customized environments. Section 7
discusses the key benefits and current limitations of the HD-
DLGym tool, along with future developments to address
these limitations and expand its applications within artificial
intelligence research. Finally, Section 8 concludes the paper.

2 Background
2.1 HDDL
HDDL (Höller et al. 2020) is an extension of PDDL (Mc-
Dermott et al. 1998). Höller et al. (2020) define the domain
and problem as follows.

Definition of Planning Domain: A planning domain D is
a tuple (L, TP , TC ,M) defined as follows.

• L is the underlying predicate logic.
• TP and TC are finite sets of primitive and compound

tasks, respectively.
• M is a finite set of decomposition methods with com-

pound tasks from TC and task networks over the name
TP ∪ TC

Definition of Planning Problem: A planning problem P
is a tuple (D, sI , tnI , g), where:

• sI ∈ S is the initial state, a ground conjunction of posi-
tive literals over the predicates assuming the closed world
assumption.

• tnI is the initial task network that may not necessarily be
ground.

• g is the goal description, being a first-order formula over
the predicates (not necessarily ground).

In other words, beyond the action definition in PDDL,
which establishes the rules of interaction with the environ-
ment, HDDL introduces two additional operators: task and
method. In HDDL, a task represents a high-level action,
while a method is a strategy for accomplishing a task. Multi-
ple methods can exist to perform a single task. Essentially, a
method is a task network that decomposes a high-level task
into a partially or totally ordered list of tasks and actions.

In HDDL, task is defined with its parameters, and method
is defined with parameters, the associated task, precondi-
tions, a list of subtasks with their ordering or a list of
ordered-subtasks. Examples of task and method definitions
from the original HDDL work (Höller et al. 2020) are:

1 (:task get-to :parameters (?l - location))

2 (:method m-drive-to-via

3 :parameters (?li ?ld - location)

4 :task (get-to ?ld)

5 :precondition ()

6 :subtasks (and

7 (t1 (get-to ?li))

8 (t2 (drive ?li ?ld)))

9 :ordering (and

10 (t1 < t2)))

In HDDL, state-based goal definition is optional. Goals is
instead defined as a list goal tasks in the HDDL problem file.
An example of the goal in a transport problem is as follows.

1 (:htn

2 :tasks (and

3 (deliver package-0 city-loc-0)

4 (deliver package-1 city-loc-2))

5 :ordering ()

6 :constraints ())

More details of HDDL domain and problem files can be
found in Höller et al. (2020). In addition to the original for-
mat of HDDL, some modifications are required to make the
HDDL domains and problems work smoothly with HDDL-
Gym. Details of the modifications are discussed in Section 4.

2.2 OpenAI Gym

OpenAI Gym (Brockman et al. 2016) has become a widely
adopted toolkit that offers a standardized interface for
benchmarking and developing reinforcement learning (RL)
algorithms. Its consistent application programming interface
(API) includes key methods for environment initialization,
resetting, and interaction, allowing researchers to focus on
advancing RL algorithms without handling environment-
specific implementation details. The toolkit includes a di-
verse set of environments, ranging from simple control tasks
to complex simulations like Atari games, providing a com-
mon platform that enhances reproducibility and enables di-
rect comparisons across different RL methodologies. There-
fore, integrating OpenAI Gym with HDDL enables the de-
velopment of a unified framework for designing and eval-
uating hierarchical RL approaches, combining the adap-
tive learning strengths of RL with the structured decision-
making of hierarchical planning.



1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

task-deliver package city-0
⇒ method-deliver
⇒ get-to city-1
⇒ method-drive-to city-1
⇒ action-drive city-1

task-deliver package city-0
⇒ method-deliver
⇒ task-load package
⇒ method-load package
⇒ action-pickup package

task-deliver package city-0
⇒ method-deliver
⇒ task-unload package
⇒ method-unload package
⇒ action-drop package

task-deliver package city-0
⇒ method-deliver
⇒ task-get-to city-0
⇒ method-drive-to city-0
⇒ action-drive city-0

t = 0 t = 1

t = 2 t = 3 t = 4

(a) Transport scenario

Hierarchy of chef-1

t-make-soup 1-onion soup

t-add-ingredient onion pot1

m-make-soup 1-onion soup

a-interact chef-1 onion-pile

Task Method Primitive 
Action

Belief about chef-2’s hierarchy

None chef-2
m-add-ingredient onion pot

t-interact chef-1 onion-pile

m-interact-direct chef-1 onion-pile

t-make-soup 1-onion soup

m-make-soup 1-onion soup

(b) Overcooked scenario

Figure 1: Environments used to demonstrate HDDLGym

3 Related Work
PDDLGym (Silver and Chitnis 2020) constructs Gym en-
vironments from PDDL domains and problems, serving as
a valuable reference for our work. However, HDDL signif-
icantly differs from PDDL, particularly in managing hier-
archical task networks or task and method operators. Ad-
ditionally, PDDLGym operates under a single-action-per-
step model, which suits many PDDL domains but lacks the
complexity needed for advanced applications, such as multi-
agent contexts. In contrast, our framework, HDDLGym,
is designed to accommodate multi-agent environments, en-
abling the study of RL policies in more complex settings.

Similarly, PyRDDLGym (Taitler et al. 2022) integrates
a planning domain language, Relational Dynamic Influ-
ence Diagram Language (RDDL) (Sanner et al. 2010), with
Gym. RDDL is adept at modeling probabilistic domains
with intricate relational structures; however, it does not in-
herently support multi-level actions. This limitation requires
significant adjustments when defining hierarchical prob-
lems within PyRDDLGym. Users must creatively structure
RDDL descriptions to represent sequences of actions, which
can complicate the modeling of hierarchical tasks.

NovelGym is a versatile platform that supports hybrid
planning and learning agents in open-world environments
(Goel et al. 2024). It effectively combines hierarchical task
decomposition with modular environmental interactions to
facilitate agent adaptation in unstructured settings. Never-
theless, its hierarchical structure is relatively straightfor-
ward, primarily relying on primitive and parameterized ac-
tions defined in PDDL. Conversely, HDDLGym offers more
advanced hierarchical capabilities through HDDL, granting
users greater flexibility and complexity in specifying high-
level strategies and problem-solving approaches.

In conclusion, while prior Gym-based frameworks like
PDDLGym, PyRDDLGym, NovelGym, etc. provide valu-
able foundations for working with planning and learning
agents, HDDLGym contributes to the field with its ability

to manage complex multi-agent hierarchical environments.

4 Formal Framework
Due to various differences in original formalities and pur-
poses between HDDL and Gym, some modifications in
HDDL domain files are required to enable HDDLGym
working smoothly. In this section, we introduce the agent-
centric extension of HDDL, modified from the standard
HDDL by Höller et al. (2020). The agent-centric extension
only includes changes to the HDDL domain. The agent-
centric planning domain is defined below:

Definition 1. An agent-centric planning domainD is a tuple
D = ⟨ta, L, TP , TC ,M⟩, where:

• ta is an agent type hierarchy in the domain.
• L is the underlying predicate logic.
• TP is a finite set of primitive tasks, also known as actions.

Actions can be further classified into agent actions and
environment actions.

• TC is a finite set of compound tasks.
• M is a finite set of decomposition methods with com-

pound tasks from TC and task networks over the name
TP ∪ TC .

We next discuss the elements in Def. 1 that are different
from the definition of planning domain in Sec. 2.

Agent type hierarchy ta One major difference compared
to the standard HDDL (Höller et al. 2020) is the addition
of ta. ta is used to specify which types are classified as
agent types within the domain. In an HDDL domain, this
classification is done by defining the type “agent” within the
:types block. For instance, in the Transport domain, the
“vehicle” is designated as an agent type, as shown in the
line 5 of the types block below. This approach allows the
domain to clearly differentiate agent types from other enti-
ties, enabling more structured interactions within hierarchi-
cal planning tasks.



1 (:types

2 location target locatable - object

3 vehicle package - locatable

4 capacity-number - object

5 vehicle - agent)

Primitive Task Set TP The primitive task set, TP , en-
compasses all actions defined within the domain, classi-
fied as either agent actions or environment actions. Agent
actions include one or more agents as parameters, while
some actions—initially defined without agent parameters
due to the nature of their predicates—must be modified to
include agents if these actions are performed on behalf of
agents. Additionally, in reinforcement learning, particularly
in multi-agent settings, it is essential to ensure that the do-
main includes a none action for each agent, enabling an
agent to choose no action for a given step. Therefore, the
HDDL domain file should incorporate the following action
block to support the none action functionality.

1 (:action none

2 :parameters (?agent - agent)

3 :precondition ()

4 :effect ())

On the other hand, environment actions exclude agents
from their parameters, making them non-agent actions.
These actions execute automatically as soon as their precon-
ditions are met immediately after all agents have completed
their actions, enabling flexible environment dynamics.

Compound Task Set TC The compound task set, TC , in-
cludes all high-level tasks, aligning with the standard HDDL
structure as described by Höller et al. (2020). However, in
HDDLGym’s implementation, additional task definition de-
tails are required. Specifically, to ensure task completion,
HDDLGym checks the current world state against the de-
fined task effects. Thus, task definitions must include ex-
plicit effects. In the following example from the Transport
domain, the highlighted text indicates the additions made to
the original HDDL task definition.

1 (:task get-to

2 :parameters (?agent - agent ?dest - location)

3 :effect (at ?agent ?destination))

The remaining components in the tuple, L and M, are con-
sistent with the standard HDDL formulation as defined by
Höller et al. (2020).

5 HDDLGym Framework
This section explains design and implementation of HDDL-
Gym. It covers (1) details of HDDLEnv as a Gym environ-
ment, (2) the definition of Agent class, (3) observation and
action space details, (4) RL policy, (5) planning for multi-
agent scenarios, and (6) the overall high-level architecture
of HDDLGym.

5.1 Gym and HDDLEnv
In the HDDLGym framework, we introduce HDDLEnv, a
Python class that extends the Gym environment to support
hierarchical planning with HDDL. Details of the HDDLEnv
implementation are available in the hddl env.py file.

Initialize and reset functions HDDLEnv is initialized us-
ing HDDL domain and problem files, together with an op-
tional list of policies for all agents. During initialization, the
HDDL files are converted into an environment dictionary,
setting the initial state and goals. Agents are then initialized
with their associated policies.

The reset function optionally accepts a new list of agents’
policies and resets the environment to its initial state and
goal tasks as specified in the HDDL problem file. It also re-
initializes agents with their associated policies.

Step function The step function in HDDLEnv accepts an
action dictionary from the agents and returns the new state,
reward, ’done’ flag (indicating win or loss), and debug infor-
mation, similar to the format of OpenAI Gym’s step func-
tion. After executing agents’ actions, it also checks and ap-
plies any valid environment actions. Environment actions
are actions that are not associated with any agent. This de-
sign enables the environment to change independently from
agents’ behaviors.

5.2 Agent
HDDLGym is designed as an agent-centric system. It inher-
ently focuses on the interactions and actions of agents within
the environment. Therefore, defining an Agent class, as in
Definition 2 below, is critical in implementing HDDLEnv.

Definition 2. An agent A is defined with a tuple
⟨N,P,B,H,U⟩ where:

• N is the agent’s name,
• P is a policy,
• B B is the set of agents, representing the agent’s belief

about the configuration of other agents in the environ-
ment.

• H is a list of tasks, methods, and actions representing the
action hierarchy of the agent,

• U is a function to update the agent’s hierarchy based on
the current state of the world.

Initialize an agent All agents in the environment are ini-
tialized when an HDDLEnv instance is created or reset. Each
agent is initialized with a name N and a policy P . The
agent’s name N is derived directly from the HDDL domain
and problem files. The policy P refers to an RL strategy
that the agent employs to support its hierarchical planning
process. This initialization framework enables the agent to
operate autonomously, with clearly defined parameters and
behaviors, while accounting for both its own actions and the
predictions of others within a multi-agent environment.

Update agent’s hierarchy H An important method in the
Agent class is the update hierarchy function U . This method
checks whether any tasks or actions in the agent’s hierarchy
H have been completed by comparing their effects with the
current state of the world. Once tasks or actions are com-
pleted, they are removed from both the agent’s hierarchy H
and the agent’s belief about other agents’ action hierarchies
(B). U is called for each agent after the environment’s step
function is executed, ensuring that the agents are prepared
for planning the next step.



5.3 Observation and Action Spaces

In general multi-agent problems, each agent can be assumed
to have knowledge about the current state of the world, its
own hierarchical actions, and other agents’ previous actions.
While different RL methods may have different designs re-
garding which information should be included in the models,
in this work, we set the observation of each agent to include
information of (1) current state of the world, (2) goal tasks,
(3) the agent’s action hierarchy, and (4) other agents’ previ-
ous primitive actions.

The first element of the observation, the current state of
the world, is represented by dynamic grounded predicates.
Predicates are considered dynamic if they appear in at least
one action, meaning they can be added to or removed from
the current state of the world. For the other three elements,
using grounded operators to capture agents’ action hierar-
chies would result in an extremely large observation space.
To address this, our approach represents the last three ele-
ments of the observation as a one-hot encoded vector based
on all possible lifted operators and associated objects.

Unlike PDDL or non-hierarchical planning problems,
HDDLGym outputs not only primitive actions but also ac-
tion hierarchies that reflect the high-level strategies guid-
ing these actions. Therefore, similar to the last three ele-
ments of the observation, an agent’s action hierarchies are
represented as a one-hot encoded vector encompassing all
possible lifted operators and objects. The observation ele-
ments and action elements are also illustrated in the Obser-
vation box and Operators box of Figure 2, respectively. Fur-
ther discussion on our choices for observation and action
spaces can be found in Appendix A. Defining and imple-
menting observation and action spaces are handled in the
file learning methods.py, making it easy for users to
modify and experiment with different representation choices
for observations and actions.

5.4 RL Policy

The RL policy plays a crucial role in the HDDLGym frame-
work by supporting the search for an optimal hierarchi-
cal plan for each agent. The policy takes the observa-
tion as input, which includes information about dynamic
grounded predicates, goal tasks, and previous action hier-
archies. Its output is the probabilities of lifted operators and
objects, which are then used to compute the probabilities
of grounded operators. These probabilities guide the search
for action hierarchies within the HDDLGym planner, as dis-
cussed in Sec. 5.5.

In this work, we implemented Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) for discrete domains to ef-
fectively explore the application of RL in hierarchical plan-
ning problems. All components of the RL policy (including
input-output spaces, training methods, and evaluation pro-
cesses) are defined in the learning methods.py file.
By modifying this Python file, users can easily experiment
with and implement alternative RL frameworks, supporting
further research in multi-agent hierarchical planning.

Hierarchies 
of operators 
for all agents

HDDL 
Env Action: last element of 

each agent’s hierarchy

HDDLGym 
Planner

Dynamic 
grounded 
predicates

Previous lifted 
operators 

(opers’ names)

Previous 
objects 

(parameters of 
operators)

Observation

RL 
Policy

Probability 
of lifted 

operators

Probability 
of objects

Operators

New world state

Figure 2: HDDLGym high-level architecture.

5.5 Planning for Multi-agent Scenarios
HDDLGym is designed to work in multi-agent settings;
therefore, the planner also considers collaboration between
agents. The HDDLGym planner is designed in a centralized
format. In the decentralized version, the centralized plan-
ner is executed with the real agent and its belief about other
agents.

In each step, the HDDLGym planner uses the outputs of
the RL policy to find the action hierarchy for each agent.
This work assumes that multiple agents in the environment
have similar priorities when choosing actions. Therefore, the
planner searches and updates each layer of the action hierar-
chies of all agents in the same iteration. Particularly, in each
iteration, the planner generates a list of valid operators for
each agent. Then, based on the probabilities given by the RL
policy, the planner chooses valid joint operators and assigns
the next layer of the agents’ action hierarchies. Details of the
HDDLGym Planner, including its algorithm, can be found in
Appendix B.

5.6 HDDLGym Architecture
The high-level architecture of HDDLGym is demonstrated
in Figure 2. As discussed in section 5.3, the input of the RL
policy is a one-hot encoded vector that includes (1) dynamic
grounded predicates, (2) lifted operators, and (3) objects rep-
resenting the goal tasks and previous action hierarchies of
all agents. The output of the RL policy is the probabilities of
the lifted operators and objects. From this list of probabili-
ties, we calculate the probabilities of the grounded operators
by averaging the log-probabilities of the lifted operators and
the objects involved in the grounded operators. The results
are used to direct the HDDLGym planner’s search for the
best action hierarchy for each agent.

6 Applications
In this section, we discuss the two classes of domains that
are supported in HDDLGym: the IPC-HTN and OpenAI
Gym-based domains. We also use one representative exam-
ple from each domain class; Transport from IPC-HTN and
Overcooked from OpenAI Gym.1 Additionally, an IPython

1More domains are included in the codebase of the system.



notebook tutorial is included in the codebase to walk users
through key aspects of the HDDLGym tool, including: (1)
generating and modifying HDDL domain and problem files,
(2) running basic features, including random search and sim-
ple policy execution, (3) designing and implementing an RL
policy, (4) training RL policies, and (5) deploying policies
including visualization tools for result analysis.

6.1 IPC-HTN Domains
As previously discussed, Gym defines interactions between
agents and the environment. Therefore, not all HDDL do-
mains from IPC-HTN are directly compatible with HDDL-
Gym. Since agent specification within a domain is neces-
sary, this requirement may not be feasible or appropriate
for every IPC-HTN domain (IPC 2023 HTN Tracks). HD-
DLGym is particularly well-suited to domains with agent-
focused systems, such as Transport (where the vehicle serves
as the agent), Rover (with the rover as the agent), and Satel-
lite (with the satellite as the agent). To better illustrate the ap-
plications of these agent-centric environments, we provide a
detailed explanation of how to modify HDDL domain files
for the Transport environment in the following section.

Transport domain The goal of a Transport problem is to
deliver one or more packages from their original locations
to designated locations.

To run the Transport domain with HDDLGym, several
modifications as described in Section 4 should be followed
first. In the Transport domain, the agent is designated as
‘vehicle’. All actions in the original Transport domain file
originally contain vehicle in their parameters. Particularly,
the block :type should include the line “vehicle -
agent” to specify that the agent is a super type of the vehi-
cle type. Then, add the none action for the agent as described
in 4.2. Next is to add effects to all tasks. An example is the
bold text in the following task definition.

1 (:task deliver

2 :parameters (?p - package ?l - location)

3 :effect (at ?p ?l))

At this point, the Transport domain and problem files are
ready for use in HDDLGym to find a hierarchical plan. The
resulting action hierarchy is illustrated in Figure 1a. In this
scenario, the truck completes the “delivery package” goal
task after four actions. At each step, the truck’s action hier-
archy begins with the goal task and concludes with a specific
action. The hierarchy updates after each step, following a se-
quence of tasks in “method-deliver” to accomplish the “de-
livery package” goal.

To evaluate the capability of handling collaborative inter-
actions in the Transport domain, we embed the collaborative
task, method, and action to the Transport domain. Specif-
ically, task transfer, method m-deliver-collab,
and action transfer-package are added in the domain
to enable the packages to be transferred from one vehicle to
another when the vehicles are at adjacent locations. Details
of these collaborative operators can be found in the code-
base. Following this template, users can explore more inter-
esting interactions and modify the Transport domain to study
heterogeneous multi-agent problems.

Above is an example of how to modify an existing IPC-
HTN domain to study with HDDLGym and explore more
interesting features for multi-agent hierarchical planning. A
similar process can be applied to other domains such as
Rover, Satellite, and Barman-BDI, to plan with HDDLGym
in single or multi-agent contexts. In our codebase, we in-
clude the modified HDDL domain files of Transport, Rover,
Satellite, and Barman-BDI to run with HDDLGym. Other
domains from IPC-HTN can also be modified as instructed
to use with HDDLGym.

6.2 OpenAI Gym-based Domains
Writing HDDL domains and problems for an environment
is not trivial, especially domains with complicated interac-
tion rules. While there are many ways to do so, we would
suggest starting with the goal task, then design methods to
achieve the goal task, then come up with other intermediate
tasks and methods for them, and gradually work to the prim-
itive action. Here is an example of how HDDLgym is ap-
plied in support planning in the OpenAI Gym’s Overcooked
environment (Carroll et al. 2019).

Overcooked Overcooked (Carroll et al. 2019) is a popular
Gym-based environment for studying reinforcement learn-
ing (RL), modeled after the cooperative and fast-paced me-
chanics of the original game. In Overcooked, players work
together to complete cooking tasks under time constraints.
In this scenario, two chefs must collaborate to prepare an
onion soup. To do so, they need to place an onion in a pot,
interact with the pot to start cooking, pour the cooked soup
into a bowl, and deliver the bowl to the serving station (see
Figure 1b).

In typical Overcooked scenarios, each agent can perform
six primitive actions: moving in a 2D gridworld (up, down,
left, right), interacting with objects, and doing nothing. Al-
though the entire Overcooked scenario could be fully de-
fined using HDDL, we found it more efficient to utilize HD-
DLGym for high-level planning and then apply A∗ (Duchoň
et al. 2014) for motion planning to find the primitive actions
as listed above. The core HTN for Overcooked domain is
entailed in Figure 3. In the HDDL domain, we define the
following tasks: make-soup, add-ingredient, cook, deliver,
wait, and task-interact. Each of them has one or more meth-
ods to complete the tasks. Figure 3 only lists several key
HTNs of the domain, though all HDDL domain and prob-
lem files of Overcooked environment can be found from the
codebase. Additionally, Figure 1b demonstrates an exam-
ple of a hierarchy of an agent and its belief about the other
agent’s hierarchy.

The following videos help visualize the result of combin-
ing HDDLgym for task planning and using A∗ for motion
planning in various Overcooked layouts.

Bottleneck — https://tinyurl.com/hddlBottleNeckRoom
Coord. ring — https://tinyurl.com/hddlCoordinationRing
Left isle — https://tinyurl.com/hddlLeftIsle
Counter circuit — https://tinyurl.com/hddlCounterCircuit
Cramped room — https://tinyurl.com/hddlCrampedRoom



make-soup (?dish, ?serving)

Add-ingredient 
(?onion, ?pot)

deliver 
(?dish, ?serving)

cook (?pot)

task-interact 
(?chef, ?onion-pile)

task-interact 
(?chef, ?pot)

task-interact 
(?chef, ?pot)

task-interact 
(?chef, ?bowl-pile)

task-interact 
(?chef, ?pot)

wait (?pot)

task-interact 
(?chef, ?serving)

Figure 3: HTNs of the Overcooked scenario.

7 Discussion and Future Work

7.1 Discussion

In this work, we introduced HDDLGym, which has the ca-
pability to transform HDDL-defined hierarchical problems
into Gym environments, enabling the application of rein-
forcement learning (RL) policies within hierarchical plan-
ning systems. By designing observation and action spaces
that prioritize scalability, HDDLGym makes trade-offs that
may slightly reduce RL model accuracy in exchange for the
ability to tackle more complex hierarchical problems. This
flexibility is particularly valuable when working with intri-
cate task structures that require scalable solutions. Addition-
ally, HDDLGym supports multi-agent environments, allow-
ing for dynamic interactions between agents. This multi-
agent functionality enriches the framework, facilitating the
study of collaborative dynamic in hierarchical planning,
thereby creating more engaging scenarios for RL research.

HDDLGym currently operates under certain limitations
that we aim to address in future developments. First, it can
only handle discrete state and action spaces, which restricts
its application to scenarios that require continuous or hybrid
spaces. Additionally, HDDLGym’s multi-agent structure is
symmetric, meaning all agents have equal roles and no agent
has priority over another in task selection. This is a simpli-
fication that does not always align with real-world collab-
orative multi-agent systems, where some agents may have
dominant roles or specific priorities. Furthermore, HDDL-
Gym assumes a deterministic transition function, meaning
that action effects are predictable and do not account for
probabilistic outcomes. This limits its applicability to en-
vironments where uncertainty and stochastic outcomes are
common. Lastly, similar to standard RL setups, the RL pol-
icy trained for HDDLGym problems is specific to a partic-
ular problem file within a domain and may not generalize
effectively to other problem files. Changes such as a vary-
ing number of agents, different objects, or altered initial
state conditions require retraining the policy, which hinders
scalability and adaptability across diverse scenarios within
the same domain. Addressing these limitations will broaden
HDDLGym’s usability in complex, real-world settings.

7.2 Future Work
While converting existing HDDL domains for use with
HDDLGym is relatively straightforward, translating native
Gym environments into HDDL domain and problem files is
significantly more complex. Current efforts focus on con-
verting more agent-centric environments, such as Over-
cooked, to the HDDL format to leverage HDDLGym’s ad-
vantages. This ongoing work aims to expand the compati-
bility of agent-based Gym environments with HDDLGym,
enabling more complex multi-agent hierarchical planning
applications. In the future, HDDL domains can also be
learned autonomously leveraging the recent advances in the
field of learning HDDL domains from observations (Max-
ence Grand 2022).

As discussed, HDDLGym has limitations that could be
addressed to better support complex multi-agent hierarchi-
cal problems. One improvement is enabling HDDLGym to
handle multiple pairs of HDDL domain and problem files
for different agents within a single Gym environment. In-
spired by how multi-agent features are added to PDDL and
HTNs through MA-PDDL (Kovacs 2012) and MA-HTN
(Cardoso, Bordini et al. 2017), respectively, this approach
would allow each heterogeneous agent to operate with its
own unique pair of HDDL domain and problem files. This
capability would enhance HDDLGym’s ability to manage
complex multi-agent dynamics beyond simple collabora-
tion, supporting scenarios with competition, agent privacy,
and distributed context information.

8 Conclusion
In this work, we introduced HDDLGym, which is a valu-
able tool for applying reinforcement learning to hierarchi-
cal planning by transforming HDDL-defined problems into
Gym environments. We hope its flexible structure, enabling
users to design their RL policy flexibly, can support address-
ing challenges in scalability and functionality when studying
RL in complex, real-world, multi-agent scenarios.

Acknowledgments
We gratefully acknowledge the financial support of the
Office of Naval Research under the ONR award grant
#6000014476. Additionally, we extend our sincere gratitude
to Pulkit Verma for his valuable insights and constructive
feedback on the project.



References
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym.
Cardoso, R. C.; Bordini, R. H.; et al. 2017. A multi-agent
extension of a hierarchical task network planning formal-
ism. Advances in Distributed Computing and Artificial In-
telligence Journal.
Carroll, M.; Shah, R.; Ho, M. K.; Griffiths, T.; Seshia, S.;
Abbeel, P.; and Dragan, A. 2019. On the utility of learn-
ing about humans for human-ai coordination. Advances in
neural information processing systems, 32.
Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.;
Fico, T.; and Jurišica, L. 2014. Path planning with modified
a star algorithm for a mobile robot. Procedia engineering,
96: 59–69.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP:
A Sound and Complete Procedure for Hierarchical Task-
network Planning. In Aips, volume 94, 249–254.
Goel, S.; Wei, Y.; Lymperopoulos, P.; Churá, K.; Scheutz,
M.; and Sinapov, J. 2024. NovelGym: A Flexible Ecosys-
tem for Hybrid Planning and Learning Agents Designed for
Open Worlds. arXiv preprint arXiv:2401.03546.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino,
H.; Pellier, D.; and Alford, R. 2020. HDDL: An exten-
sion to PDDL for expressing hierarchical planning prob-
lems. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, 9883–9891.
IPC 2023 HTN Tracks. 2023. International Planning Com-
petition 2023 HTN Tracks. Available at https://ipc2023-
htn.github.io/.
Kovacs, D. L. 2012. A multi-agent extension of PDDL3.1.
In ICAPS 2012 Proceedings of the 3rd Workshop on the In-
ternational Planning Competition.
Liu, M.; Sivakumar, K.; Omidshafiei, S.; Amato, C.; and
How, J. P. 2017. Learning for multi-robot cooperation in
partially observable stochastic environments with macro-
actions. In 2017 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 1853–1860. IEEE.
Maxence Grand, H. F., Damien Pellier. 2022. An Accurate
HDDL Domain Learning Algorithm from Partial and Noisy
Observations. In ICAPS 2022 Workshop on Knowledge En-
gineering for Planning and Scheduling.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D. S.; and Wilkins, D. 1998. PDDL –
The Planning Domain Definition Language. Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Comp.
Vision and Control.
Sanner, S.; et al. 2010. Relational dynamic influence dia-
gram language (rddl): Language description. Unpublished
ms. Australian National University, 32: 27.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. arXiv:2002.06432 [cs].

Taitler, A.; Gimelfarb, M.; Jeong, J.; Gopalakrishnan, S.;
Mladenov, M.; Liu, X.; and Sanner, S. 2022. pyrddl-
gym: From rddl to gym environments. arXiv preprint
arXiv:2211.05939.
Wu, S. A.; Wang, R. E.; Evans, J. A.; Tenenbaum, J. B.;
Parkes, D. C.; and Kleiman-Weiner, M. 2021. Too many
cooks: Bayesian inference for coordinating multi-agent col-
laboration. Topics in Cognitive Science, 13(2): 414–432.
Xiao, Y.; Hoffman, J.; and Amato, C. 2020. Macro-action-
based deep multi-agent reinforcement learning. In Confer-
ence on Robot Learning, 1146–1161. PMLR.



Appendices
A Observation and Action Spaces – Explanation and Discussion

A.1 Observation Space
Figure 2 demonstrates the roles of observation and action in the whole HDDLGym architecture. This section provides more
details on our choice of observation and action spaces in designing the RL policy. The implementation for these spaces and RL
policy is included in the file learning methods.py. Therefore, this design can be flexibly changed to adapt to any other
learning methods for solving hierarchical planning problems.

In our current design, the observations (inputs) provided to HDDLGym’s RL policy include dynamic grounded predicates,
goal tasks, and the current action hierarchies of all agents. Dynamic grounded predicates represent a subset of all possible
grounded predicates within the environment. In HDDL, and PDDL more broadly, predicates can either be static or dynamic.
Static predicates define unchanging world conditions (e.g., spatial relationships between locations), while dynamic predicates
represent changing world conditions (e.g., agent positions). Dynamic predicates can be added or removed from the world state
by actions.

Goal tasks are specified in the HDDL problem file under the :htn section. Each agent’s action hierarchy is structured as a
list, starting with a goal task and ending with a primitive action. Figure 1 illustrates examples of action hierarchies in the two
environments, Transport and Overcooked, that are further discussed in Sec. 6.

Our approach focuses on using dynamic grounded predicates rather than all possible grounded predicates to minimize the
observation space. However, this may restrict the generalization capability of the RL policy, as it is tailored to a specific HDDL
problem file and may not generalize to other problems with different agents, objects, and static world conditions.

To represent goal tasks and action hierarchies, a practical method is to one-hot encode grounded operators using a compre-
hensive list of all possible grounded operators. However, this approach results in a large observation space due to additional
operators for tasks and methods in hierarchical problems. Each grounded operator (whether a task, method, or action) can
be decomposed into a lifted version paired with relevant objects. This allows agents’ goal tasks and action hierarchies to be
combined and represented as a one-hot encoded vector based on all possible lifted operators and associated objects.

A.2 Action space
In hierarchical planning problems, the action space should include information about high-level strategies in addition to primi-
tive actions. However, as with the observation space, the list of all possible grounded operators can become exceptionally large
in complex problems, posing a scalability challenge. To address this, an agent’s action hierarchy is represented as a one-hot
encoded vector that captures all possible lifted operators and associated objects.

This approach significantly reduces the size of both the observation and action spaces by omitting certain details, such as the
order of action hierarchies and the association of objects with specific operators. Nevertheless, HDDLGym compensates with
a hierarchy operator validation feature that aids in generating valid action hierarchies based on the policy’s action output.

Another approach to reduce the size of the action space is explored in PDDLGym (Silver and Chitnis 2020), where they
introduce a distinction between free and non-free parameters. Free parameters convey the essential information of an action,
while non-free parameters are included due to their presence in precondition or effect expressions. Consequently, PDDLGym’s
action space consists of combinations of lifted operators with their free parameters. Although this approach works well in
PDDLGym, it is challenging to implement within the HDDLGym framework, as identifying free parameters for tasks and
methods is not trivial.

B HDDLGym Planner – Algorithm and Explanation
Algorithm 1 outlines the approach of the HDDLGym Planner, where agents determine their action hierarchies by iteratively

updating through valid operator combinations. Particularly, HDDLGym Planner’s inputs are a list A of all agents with uncom-
pleted hierarchies, policy P, and deterministic flag d. The HDDLGym planner is a centralized planner. In case of decentralized
planning, the listA includes a real agent and that agent’s belief about other agents. The deterministic flag d determines whether
the selection process should follow a deterministic or probabilistic approach when choosing operators to form agents’ action
hierarchies. The policy P is used to guide the search for a suitable hierarchy according to the flag d. In decentralized planning
context, P is the policy of the real agent.

The planner begins by initializing an empty list, Done, to keep track of agents whose hierarchies end with an action (line
1). The while loop from lines 2 to 28 continues until all agents have completely updated their hierarchies. Within this loop,
an empty list, OA, is initialized to store the valid operators of all agents (line 3). Next, the for-loop from lines 4 to 17 iterates
to find all valid operators Oa for each agent a. To do this, the algorithm first checks if a is in Done, meaning its hierarchy is
complete (line 5). If so, then Oa is set as a list containing the agent a’s final action (line 6). Otherwise, the while loop from lines
8 to 14 runs until it finds a non-empty Oa. Initially, the list of valid operators for a is checked in line 9; if no valid operators are
found (line 10), the last operator in a’s hierarchy is removed, and the loop is rerun. However, if a’s hierarchy is already empty,
the none action is added to Oa (line 12).



Algorithm 1: HDDLGym Planner
Input: list of agents A, deterministic flag d, policy P
Output: updated list of agents A

1: Initialize an empty list Done to keep track of agents whose hierarchies reached action.
2: while not all agents in Done do
3: Initialize an empty list OA for valid operators of all agents
4: for agent a in A do
5: if a in Done then
6: Oa← [action of agent a]
7: else
8: while Oa not empty do
9: Oa← a list of valid operators for a

10: if Oa is empty then
11: Remove the last operator of agent a hierarchy from its hierarchy
12: If no more operator from a’s hierarchy to remove, add none action to Oa

13: end if
14: end while
15: end if
16: Add Oa to OA
17: end for
18: C← Generate all possible combinations of joint operators from OA
19: Remove any invalid combinations from C
20: PO ← get probability of each combination in C with policy P
21: if d is True then
22: c← argmaxc∈CPO

23: else
24: c← Randomly choose a combination from C with weights be PO

25: end if
26: Update hierarchies of all agent A with operators in c
27: Check each agent’s hierarchy and update Done if any hierarchy ends with action
28: end while
29: return A (updated)



The operator list Oa for each agent is then added to OA, the list of operators for all agents (line 16). This list, OA, is sub-
sequently used to generate all combinations of joint operators, C (line 18). Line 19 details the pruning of invalid combinations
in C. A combination is invalid if it violates either of two conditions: first, no agent should perform multiple different actions;
and second, no action in the combination should have effects that conflict with the preconditions of other actions. After this
pruning, C contains only valid operator combinations.

Lines 20 to 25 describe how the policy P is applied to select a combination c from the list of valid combinations, C. The prob-
ability list, PO, corresponding to C is generated using policy P. Depending on the deterministic flag d, the chosen combination
c is selected in either a deterministic manner (line 22) or probabilistically (line 24).

With the combination of operators determined, the next step is to use it to update each agent’s hierarchy (line 26). The list
Done is then updated if any agents have completed hierarchies (line 27). This process is repeated until all agents in A have
completed their hierarchies. At this point, the HDDLGym planner returns the list of fully updated agents, as shown in line 29.


