
CASH: Cache Alignment with Specified Horizons

Anonymous submission

Abstract

In this work, we offer a new reinforcement learning algo-
rithm: CASH (Cache Alignment with Specified Horizons)
to effectively leverage prior knowledge. In this framework,
previously computed policies are stored in a cache and com-
pared against rollouts to determine similarity based on a novel
metric derived from the Kendall tau distance. We prove er-
ror bounds on the estimated value function which allows
for an optimizable rollout length connected to classical cost-
accuracy tradeoff. We then introduce a second horizon to
specify execution time of the best cached policy. We show
that even in the case of adversarial caches, the algorithm per-
forms no worse than standard Q-learning. This preliminary
work is provides a new perspective at the intersection of trans-
fer learning and model-based reinforcement learning, open-
ing avenues for further investigations.

Introduction
The application of reinforcement learning (RL) to sequential
decision-making tasks has seen significant growth in recent
years, showcasing its capacity to uncover innovative solu-
tions in complex and unfamiliar environments (Schrittwieser
et al. 2020). In RL, model-based methods – which focus on
learning or utilizing a model of the environment’s dynamics
– have consistently demonstrated greater sample efficiency
compared to model-free approaches, especially in scenarios
with constrained interaction budgets. This efficiency arises
from the ability of model-based methods to perform plan-
ning over imagined trajectories, employing techniques like
Monte Carlo tree search to evaluate and refine policies. Un-
fortunately, these methods incur higher computational cost
and depend heavily on the precision of the learned dynam-
ics model.

In the traditional reinforcement learning (RL) paradigm,
solutions to previously learned tasks are often ignored or
discarded when tackling a new task. However, new tasks
are frequently related to or share features with earlier ones.
Consequently, in many cases a significant amount of use-
ful information is thrown away and relearned, causing inef-
ficiencies in training. This has motivated previous work to
incorporate learned solutions into training. However, these
techniques usually require some understanding of how the
current task is related to prior tasks (e.g. in terms of their re-
ward functions, which limits the utility of these approaches.

Furthermore, if past tasks do not contain useful information
to solve the new task, their incorporation can potentially dis-
tract the agent and impede performance instead of improv-
ing it. As a result, it remains an open question of how to best
incorporate previously learned policies into the training for
new tasks.

To remedy this inefficiency, we propose a modified train-
ing approach which leverages previously learned policies for
general tasks to guide training for the new task. In this ap-
proach, short parallelized rollouts are performed for each
possible action. The optimal trajectory is then selected based
off of the accumulated reward, and then compared with the
stored policy cache to identify the most similar correspond-
ing stored policy. We propose a new method to measure the
distance betweeen value functions, allowing solutions in the
cache to be aligned with the recently experienced online
data. Additionally, we propose to include the current solu-
tion estimate in the cache itself. Critically, if the cached tasks
do not aid in performance, they are ignored, allowing this
algorithm to succeed even in the presence of an adversarial
cache.

In the following sections, we review related prior work,
give background material on the RL problem, then state our
results and conclusions.

Prior Work
In previous work, a set of solutions has been used to trans-
fer knowledge to the agent (cf. the review (Taylor and Stone
2009)). Closely related to our approach is the notion of the
policy cache with explicit choices for transfer. With the suc-
cessor feature (Barreto et al. 2017) structure, a policy cache
was used to generate bounds and determine additions to the
cache (Nemecek and Parr 2021). Other work has focused
on combining multiple “subtasks” when a direction relation-
ship over reward functions is known (e.g. linear or logical
compositions) (Haarnoja et al. 2018; Adamczyk et al. 2023;
Tasse, James, and Rosman 2020; Peng et al. 2019). Com-
pared to such work, we do not assume any functional re-
lationship between the reward functions, and instead use a
new metric to define similarity between tasks. The notion
of “similarity” is quite broad, and has been discussed e.g.
in the context of reward spaces (Wulfe et al. 2022; Skalse
et al. 2023), whereas we consider similarity between value
functions.



𝑛∗

𝑠"

𝑚

𝑠"#$

Q%∗ = argmin
&"

𝐾'(𝑄(, 𝑄))

𝜋)∗

𝜋%∗ = argmax
*
𝑄)∗(𝑠, 𝑎)

𝑎!

𝑎"

𝑎# 𝑎$

Figure 1: Illustration of the proposed algorithm. As the agent
is trained, a trajectory (of length n∗) beginning with each
possible action is rolled out, using the online estimate of π∗.
The initial actions are then ranked based on the correspond-
ing trajectory returns. Then, the Kendell Tau distance is used
to measure the discrepancy between this ranking, and those
induced by the cached policies at the same state. The closest
policy is used for the next m steps in online environment in-
teraction.

Preliminaries/Background
Reinforcement Learning
In this section we briefly introduce the reinforcement learn-
ing framework. The reader is directed to standard texts for
more information (Sutton and Barto 2018). We consider the
RL problem for discrete state-action spaces. The RL prob-
lem can then be modeled by a Markov Decision Process
(MDP), represented by the information (S,A, p, r, γ) with
state space S; action space A; potentially stochastic tran-
sition function (dynamics) p : S ×A → S; bounded, real
reward function r : S ×A → R; and the discount factor
γ ∈ [0, 1).

The primary objective of RL is to maximize the total dis-
counted reward received under the control policy π. Specifi-
cally, we wish to find π∗ which maximizes the following ex-
pectation, where trajectories τ are sampled from the Markov
chain induced by the fixed dynamics and optimized policy:

π∗ = argmax
π

E
τ∼p,π

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In the present work, we consider value-based RL meth-
ods, where the solution to the RL problem is equivalently
defined by its optimal action-value function (Q∗(s, a)). Note

that we will need the Q function to fully calculate the rela-
tive ordering of actions, defining a distance metric between
Q functions. The aforementioned optimal policy π∗(a|s) is
derived from Q∗ through a greedy maximization over ac-
tions. The optimal value function can be obtained by iterat-
ing the following recursive Bellman equation until conver-
gence:

Q∗(s, a) = r(s, a) + γEs′∼p(·|s,a) max
a′

(Q∗(s′, a′)) . (2)

In the tabular setting, the exact Bellman equation can be ap-
plied until convergence. In the function approximator set-
ting, the Q table is replaced by a parameterized function
approximator, Qθ and the temporal difference (TD) loss is
minimized instead. To simplify the discussion, we will ne-
glect the details of precisely how the Q function is derived,
and we focus on general value functions alongside their ap-
proximations. We note that although this initial investigation
is presented in the “standard” Q-learning setting, extensions
to maximum entropy setting may also be possible.

Now, we introduce a new metric to relate two tasks. As
solutions Q values encode a ranking between any two ac-
tions. If two solutions agree, their relative rankings should
also be in agreement. This intuition is encapsulated by the
following definition. We draw on a well-established defini-
tion, stemming from the bioinformatics literature (Kendall
1938):
Definition 1 (Kendall Tau Distance Between Value Func-
tions). The (un-normalized) Kendall tau distance between
two policies is defined as

Kd(Q1, Q2; s) =
∑

{i,j}∈P,i<j

K̄ij(Q1(s, ·), Q2(s, ·)), (3)

where P is the set of all (unordered) pairs of actions;
K̄ij = 0 if the rankings Q1(s, i) > Q1(s, j) and Q2(s, i) >
Q2(s, j) agree, and otherwise takes on the value 1.

Here we make the state explicit, but we will drop this in-
dexing when it is clear. In the following, we propose an al-
gorithm that aligns task solutions in the cash to the observed
data stream, based on this new notion of distance.

Comparing the action rankings rather than direct Q value
magnitudes has an important implication for measuring sim-
ilarity: this distance is invariant to any potential-based re-
ward shaping (Ng, Harada, and Russell 1999) or positive
scaling in the reward function. Instead, it directly encodes
preferences at the individual action, or policy, level. This
definition also allows comparisons in the discrete action
case, where typical notions of policy distance would be ill-
defined.

CASH Algorithm Description
Next, we describe the CASH algorithm. Starting from state
st with initialized online Q-function Q0, compute |A| paral-
lelized rollouts for n∗ steps. To gather the Q function over
action space (as dictated to compare against the cache), each
one of the a ∈ |A| possible actions, and subsequent actions
are dictated by the online Q-function (argmaxa Q0(s, a)).
Of the |A| resulting trajectories, the optimal trajectory is



Figure 2: Tradeoff between larger n-step returns for reduc-
ing error geometrically, and linearly increasing the cost of
compute for rollout length n. The combined cost and error
rate yield an optimal choice for trajectory length, denoted
n∗.

then identified by selecting the one which maximizes the
accumulated return

∑n∗

i=0 γ
trt+i. An estimate of the Q-

function Q̂(st, a) at state st is then given by the n∗-step re-
turn and bootstrapped next value. This estimate allows the
quality of each action at time t (at) to be ranked.

The most similar cached policy, as measured by the min-
imum Kendall tau distance between the ranked list of ac-
tions given by the n∗-step return and each cached policy, is
then identified and used to determine action selection for the
next m steps. Critically, the online policy given by Q0 is
also in the cache, so the algorithm is guaranteed to not per-
form worse than naive Q-learning. This procedure is then
repeated, starting at state st+m.

Theory
We first motivate the proposed algorithm by providing an
intuition for an improved sample complexity: In the initial
lookahead steps, |A| trajectories each of length N , (where N
denotes the maximum episode length before guaranteed ter-
mination) are rolled out, giving a complexity of |A|N . Then,
the trajectory length is optimized against the cost-accuracy
tradeoff (cf. Fig 2), leading to a complexity of |A|n∗. Finally,
we further reduce the total lookahead (“planning”) steps by
a factor of m, since the cached policy is trusted for m steps,
giving a complexity of |A|n∗m−1. Note that in principle m
grows with the size of the cache because there are a finite
number of policies, and thus a larger unique cache must lead
to distinct policies. This ultimately leads to an algorithm
with a well-reduced scaling in environment steps.

Next, we derive an error bound on the difference between
the online task’s action-value function and those from the
cache.
Theorem 1. Suppose the online policy π (greedy with re-
spect to Q0 is used to collect trajectories of length n for
estimating the return beginning from state s and action a.

Let the cached value functions with Kendall tau distance be
denoted by εc. Then the error in the value function can be
bounded as∣∣Qπ

0 (s, a)−Qc(s, a)
∣∣ ≤ γn Rmax

1− γ
+ εc

(The proof is given in the Appendix.) Note that running
the trajectories used for this estimation yield a cost linear in
the number of timesteps, cn. Similar to classical literature
(cf. discussion in (Dutta et al. 2018)), a cost-accuracy trade-
off is now presented, which can be used to determine the
optimal trajectory length, n∗, defined below:

Proposition 1. The cost of computing the proposed rollouts
is proportional to the number of timesteps: cn.

Here, we essentially assume the |A| trajectories can be
performed in parallel, in simulation. Then, with this cost ad-
dition, the previous bound can be optimized as a function of
n:

Lemma 1. Let B = 2(1 − γ)−1Rmax, g = log γ−1 and
c denote the per-step cost of the trajectory. For conditions
satisfying Theorem 1, the trajectory length that minimizes
the cost-accuracy tradeoff is:

n∗ =

⌊
g−1 log

Bg

c

⌉
, (4)

where ⌊·⌉ denotes the nearest integer. this result follows
immediately from Theorem 1 by adding the rollout cost cn
and differentiating with respect to n. So long as n ≥ 1, there
is a possible advantage in using this approach. This can be
ensured by satisfying the following condition: B ≤ γ−1Cg.

A natural question then follows: For how long can the pol-
icy πc∗ be “trusted” to yield similarly optimal trajectories?
Note that when the error in using some “best” cached pol-
icy exceeds the next-best cached policy’s error, the bound
becomes void. This allows us to determine the number of
steps for which the cached policy can be safely deployed,
which we denote m. With some additional assumptions on
the structure of the MDP, we can provide the following
lemma, giving insight into this secondary rollout horizon.

Assumption 1 (Dynamical Locality). There exists a con-
stant d > 0 such that

|s− s′| < d (5)

for all s′ satisfying p(s′|s, a) > 0.

Lemma 2. Let Q(s, a) be Lipschitz continuous with con-
stant LQ. For all trajectories τ = (s0, a0, . . . sn, an), the
difference in initial and terminal Q values is bounded by:∣∣Q(s0, a0)−Q(sn, an)

∣∣ ≤ LQ · d · n. (6)

The Lipschitz property of value functions is discussed in
detail by (Rachelson and Lagoudakis 2010). The proof of
this follows simply from the definitions, but is given in the
Appendix for completeness.

Lemma 3. If the Q functions each have Lipschitz constant
upper bounded by LQ, and Assumption 1 is satisfied, then



the optimized cache policy c∗ remains optimal for at least m
steps, with

m =
LQd

2 (εc∗ − εc̄)
(7)

where c̄ denotes the cached value function with next-smallest
distance.

Proof. The optimized policy is only guaranteed to be opti-
mal when its error does not exceed that of the second-best.
Since (at worst) the best Q values can diverge at a rate LQd,
and the second-best Q values can converge at a rate LQd,
the gap in question εc∗ − εc̄ can be closed in no fewer than
m steps.

Conclusions
In this work, we introduced CASH, a new algorithm for
reusing old solutions in an online model-based setting. We
offer a new similarity metric which is used to compare rank-
ings of simulated rollouts to action-rankings dictated by the
cached policies. This notion of similarity is inspired by a rel-
ative ranking between actions, instead of focusing only on
the greedy maximizing actions. We have established a rela-
tionship between cached solutions, value error bounds and
compute cost, leading to an optimizable trajectory length.
This method of generalization for planning appears novel,
and has already led to theoretical statements revealing con-
nections between core ideas across RL.

Recognizing the preliminary nature of this work, we are
interested in continuing in several promising directions. For
example, we aim to provide a practical implementation of
the CASH algorithm to study it empirically, comparing its
performance to the suggested theoretical results. We also in-
tend to further extend the theoretical results by providing
formal sample complexity analysis and relating to model-
based techniques. We believe that this algorithm at the in-
tersection of model-based RL and transfer learning can en-
hance training efficiency in complex problem settings.

References
Adamczyk, J.; Makarenko, V.; Arriojas, A.; Tiomkin, S.; and
Kulkarni, R. V. 2023. Bounding the optimal value function
in compositional reinforcement learning. In Evans, R. J.; and
Shpitser, I., eds., Proceedings of the Thirty-Ninth Confer-
ence on Uncertainty in Artificial Intelligence, volume 216 of
Proceedings of Machine Learning Research, 22–32. PMLR.
Barreto, A.; Dabney, W.; Munos, R.; Hunt, J. J.; Schaul, T.;
van Hasselt, H. P.; and Silver, D. 2017. Successor features
for transfer in reinforcement learning. Advances in Neural
Information Processing Systems, 30.
Dutta, S.; Joshi, G.; Ghosh, S.; Dube, P.; and Nagpurkar,
P. 2018. Slow and stale gradients can win the race: Error-
runtime trade-offs in distributed SGD. In International
conference on artificial intelligence and statistics, 803–812.
PMLR.
Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; and
Levine, S. 2018. Composable deep reinforcement learn-
ing for robotic manipulation. In 2018 IEEE international

conference on robotics and automation (ICRA), 6244–6251.
IEEE.
Kendall, M. G. 1938. A New Measure of Rank Correlation.
Biometrika, 30(1/2): 81–93.
Nemecek, M.; and Parr, R. 2021. Policy caches with suc-
cessor features. In International Conference on Machine
Learning, 8025–8033. PMLR.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In Proceedings of the 16th International
Conference on Machine Learning, volume 99, 278–287.
Peng, X. B.; Chang, M.; Zhang, G.; Abbeel, P.; and Levine,
S. 2019. Mcp: Learning composable hierarchical control
with multiplicative compositional policies. Advances in
Neural Information Processing Systems, 32.
Rachelson, E.; and Lagoudakis, M. G. 2010. On the Locality
of Action Domination in Sequential Decision Making. In
11th International Symposium on Artificial Intelligence and
Mathematics (ISIAM 2010), 1–8. Fort Lauderdale, US.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Skalse, J.; Farnik, L.; Motwani, S. R.; Jenner, E.; Gleave,
A.; and Abate, A. 2023. STARC: A General Framework For
Quantifying Differences Between Reward Functions. arXiv
preprint arXiv:2309.15257.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tasse, G. N.; James, S.; and Rosman, B. 2020. A Boolean
task algebra for reinforcement learning. Advances in Neural
Information Processing Systems, 33: 9497–9507.
Taylor, M. E.; and Stone, P. 2009. Transfer Learning for Re-
inforcement Learning Domains: A Survey. Journal of Ma-
chine Learning Research, 10(56): 1633–1685.
Wulfe, B.; Balakrishna, A.; Ellis, L.; Mercat, J.; McAllister,
R.; and Gaidon, A. 2022. Dynamics-aware comparison of
learned reward functions. arXiv preprint arXiv:2201.10081.



Proofs
Proof of Lemma 3

Proof. In the discrete action case, we ignore the action distances for simplicity.∣∣Q(s0, a0)−Q(sn, an)
∣∣ = ∣∣Q(s0, a0)−Q(s1, a1) +Q(s1, a1) + · · ·+Q(sn−1, an−1)−Q(sn−1, an−1) +Q(sn, an)

∣∣
=

∣∣ n−1∑
t=0

Q(st, at)−Q(st+1, at+1)
∣∣

≤
n−1∑
t=0

∣∣Q(st, at)−Q(st+1, at+1)
∣∣

≤ LQ

n−1∑
t=0

∣∣d(st, st+1)
∣∣

≤ LQdt

We have used the triangle inequality, followed by the Lipschitz condition and locality assumption at each timestep.

For convenience we restate the result of Theorem 1 before its proof:

Theorem. ∣∣Q∗
0(s, a)−Q∗

1(s, a)
∣∣ ≤ 2γn Rmax

1− γ
+ n(L1 + L2)c+ ε1

Proof. First, we describe the separate error terms being incorporated in our bound. In estimating the return for a rollout of
length n, this induces an error in the corresponding Q function of

|Qπ(s, a)−R1:N | ≤ γn Rmax

1− γ
(8)

∣∣Q∗
0(s, a)−Q∗

1(s, a)
∣∣ ≤ ∣∣Q∗

0(s, a)− Q̂π
0 (s, a) + Q̂π

0 (s, a)−Q∗
1(s, a)

∣∣
≤

∣∣Q∗
0(s, a)− Q̂π

0 (s, a)
∣∣+ ∣∣Q̂π

0 (s, a)−Q∗
1(s, a)

∣∣
≤ γn Rmax

1− γ
+ η +

∣∣Q̂π
0 (s, a)−Q∗

1(s, a)
∣∣

≤ γn Rmax

1− γ
+ η + ε1.

Since η is a global error in the current estimate of the Q function based on the number of optimization steps, rather than
trajectory length or cache index, it can be ignored.


