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Abstract

Exploration in vast domains is a core challenge in reinforce-
ment learning (RL). Existing methods commonly explore by
adding noise to the learning process, but they do not scale
to complex, long-horizon problems. Goal-based exploration
is a promising alternative, but it requires useful goals. We
propose an approach that structures an agent’s exploration by
constraining the goal space to tasks that can be expressed us-
ing a particular formal language: linear temporal logic (LTL).
Our agent proposes LTL expressions that it conjectures to be
achievable and desirable for maximizing its learning progress
in the environment. Upon proposing an LTL expression, the
agent uses a combination of planning and goal-conditioned
RL to solve the task described by that LTL. The result is a
structured exploration process that learns about the environ-
ment by hypothesizing various logical and sequential compo-
sitions of atomic goals. We demonstrate the performance of
our algorithm outperforms in two challenging sparse-reward
problems.

1 Introduction
Training reinforcement learning (RL) agents to effectively
explore and solve long-horizon tasks with sparse rewards is
challenging. Currently, exploration in RL is often guided by
action noise, which is ineffective and leads to sample inef-
ficient learning. At the same time, the world is vast, and it
is often infeasible for agents to achieve exhaustive coverage
(Javed and Sutton 2024). Recent work like proto-goal RL
(Bagaria and Schaul 2023) demonstrates exploration in ab-
stract goal spaces, but rely on myopic, step-by-step sampling
of subgoals, which fails to account for temporal structure
present in the goal-space.

Formal languages like linear temporal logic (LTL) (Pnueli
1977) have proven to be a powerful abstraction for tem-
poral structure in RL because it is compositional and has
unambiguous semantics (Littman et al. 2017; Toro Icarte
et al. 2022). By considering each abstract goal as an atomic
proposition, we can define a rich and expressive LTL task
space. However, the resulting space of all LTL formulas is
huge: they can be constructed by sequencing a combination
of atomic propositions, logical operators, and temporal op-
erators. This results in an exponentially large space of pos-
sible formulas, rendering exhaustive search computationally
intractable.

How do we perform efficient exploration in this in-
tractably huge space of LTL expressions? Many previous
works rely on manually constructed LTL expressions to
guide RL agents (Toro Icarte et al. 2022; Shukla et al. 2024),
this approach requires substantial domain expertise. More-
over, even when such expert-crafted expressions are avail-
able, they often prove too challenging to achieve due to in-
sufficient exploration. Others assume access to a set of pre-
trained policies that can be used to compose to solve LTL
tasks (Qiu, Mao, and Zhu 2024; Tasse et al. 2022). But,
in reality, all policies must be learned, and the agent must
carefully manage its exploration budget to focus on learning
policies for LTL expressions that likely to lead to learning
progress (Kaplan and Oudeyer 2003).

We propose a method that efficiently explores the space
of LTL expressions while managing the vastness of the
LTL space. Our approach involves training a high-level pol-
icy that learns to map the agent’s current state to an LTL
expression that is plausible (as measured by controllabil-
ity and reachability) and desirable (as measured by nov-
elty and reward-relevance) for maximizing learning progress
(Bagaria and Schaul 2023). The LTL formula generated by
the higher-level policy is then converted into a determinis-
tic finite automaton (DFA). Then, via planning on the DFA,
the agent outputs a sequence of goals for a lower-level goal-
conditioned policy (Schaul et al. 2015) to achieve.

We evaluate our method via two tests. The first test eval-
uates the agent’s ability to solve a set of predefined tasks
(encoded as LTL formulas) in a continuous control prob-
lem; we find that our method significantly outperforms ex-
isting LTL-conditioned RL approaches in terms of sample
efficiency and reward. In the second test, we evaluate our
method in a larger, hard-to-explore domain against existing
hierarchical RL methods, achieving similar performance to
vanilla proto-goal RL.

2 Background and Related Work
We consider problems modeled as Markov Decision
Processes (MDP). They can be formulated as a tuple
⟨S,A,R, T , γ⟩, where S is the state space, A is the action
space,R is the reward function, T is the transition function,
and γ is the discount factor. As is common in RL, we do
not assume access to T and R, and wish to learn a policy
π : S → A that maximizes the sum of discounted rewards



(Sutton and Barto 2018).

Goal-Conditioned RL. In goal-conditioned RL, the
agent’s policy also conditions its outputs on goals: π :
S × G → A, where G is a goal-space. A goal g ∈ G is for-
mally described using a cumulant cg : S×A×S → R and a
continuation function γg : S ×A×S → [0, 1] (Schaul et al.
2015). We consider the subclass of endgoals, which imply
a binary reward that is paired with termination, i.e, either
(cg = 0, γg > 0) or (cg = 1, γg = 0). Goal-conditioned
policies can be learned using all the usual tools from RL
(e.g, Q-learning), but certain algorithms boost the sample
efficiency of learning (Kaelbling 1993); notably, Hindsight
Experience Replay (HER) (Andrychowicz et al. 2017) re-
labels past experience with actually reached goals to deal
with the sparse nature of binary end goal reward functions.

Goal-based exploration. Goals provide a convenient way
to achieve temporal abstraction (Sutton, Precup, and Singh
1999; Dayan and Hinton 1992) in RL: a higher-level pol-
icy Π : S → G outputs goals for a lower-level policy
π : S × G → A to achieve; the higher-level policy typically
makes decisions at a coarser timescale than the lower-level
policy, which outputs primitive actions at every timestep.
This hierarchical approach has been used for exploration
(Jinnai et al. 2020; Pong et al. 2019; Ecoffet et al. 2019;
Pitis et al. 2020): the higher-level policy outputs goals that
lead to “jumpier” forms of exploration than single timestep
methods such as ϵ-greedy.

Goal discovery and Proto-goal RL. A key open ques-
tion for effective goal-based exploration is that of discovery:
what is the space of goals G and specific useful subgoals
g ∈ G that the agent should use to shape its behavior? Most
methods either assume that useful goals are already given
(but this requires domain knowledge; for example, Option
Keyboard (Barreto et al. 2019)) or they assume that the goal
space is the same as the state space (but the benefits of
abstraction begin to vanish as the environment gets larger;
for example, HER (Andrychowicz et al. 2017)). Proto-goal
RL (Bagaria and Schaul 2023) strikes a balance between
these two approaches: it assumes a large space of potential
goals (or proto-goals) B, but learns a function that outputs
a smaller, more useful space of goals for goal-conditioned
RL. Each goal is represented as a one-hot binary vector, and
goals can be combined to form more complex, multi-hot
goals via simple logical operations. To map the proto-goal
space into a useful goal space, Bagaria and Schaul (2023)
provide sample-based methods for measuring the control-
lability, reachability, novelty, and reward-relevance of each
goal g ∈ B. Since our work builds on the work of Bagaria
and Schaul (2023), we also assume access to a proto-goal
space B. In their work, the higher-level policy is a multi-
armed bandit that outputs a single goal for the lower-level
policy to achieve; instead, we leverage the temporal struc-
ture of LTLs to develop a high-level policy that outputs se-
quences of goals that can be used to solve more complex
long-horizon tasks.

Propositions and Symbols. A proposition α defines a
boolean classifier fα : S → [True,False] and the cor-

responding set of states, Sα = {s|fα(s) = True}. Con-
junction, disjunction, and negations of propositions can pro-
duce boolean expressions. The corresponding states of each
boolean expression can be constructed from the union, inter-
section, and complement of propositions:
• Sϕ1∧ϕ2

= Sϕ1
∩ Sϕ2

• Sϕ1∨ϕ2
= Sϕ1

∪ Sϕ2

• S¬ϕ = S∁
ϕ

Linear Temporal Logic and Buchi Automaton. Linear
Temporal Logic (Pnueli 1977) is a formal logic defined over
sequences of states. It is commonly used for task specifica-
tion because it can express complex temporal relations and
non-Markovian reward functions (Littman et al. 2017). In
this work, we consider a subset of LTLs defined over a fi-
nite time horizon called co-safe LTL. Following (Lacerda,
Parker, and Hawes 2015), we define the grammar of co-safe
LTL formulas as:

ϕ := α | ¬ϕ | ϕ1 ∧ ϕ2 | X(ϕ) | ϕ1 U ϕ2.

where α is an atomic proposition that maps a state to a
boolean value. X(ϕ) (“next”) indicates ϕ will happen in the
next time step. ϕ1Uϕ2 (“until”) indicates that ϕ2 will even-
tually become true, and we should maintain ϕ1 until ϕ2 be-
comes true.

We can convert the co-safe LTL into a deterministic finite
automaton (DFA), which is described using the following
quintuple:

(Q,Σ, δ, q0,Qaccept)

where Q is the set of DFA states, Σ = 2AP is the alpha-
bet of the atomic propositions, δ is the transition function
Q × Σ → Q, q0 is the initial state, and Qaccept is the set
of final (accepting) states. The automaton enables us to de-
compose the task down into a sequence of smaller and more
manageable subgoals to reach.

Temporal Logic guided RL. LTL structure has been used
as an alternative to scalar rewards for specifying tasks
(Littman et al. 2017). Numerous frameworks like Reward
Machines (Toro Icarte et al. 2018, 2022) and SPECTRL
(Jothimurugan, Alur, and Bastani 2019) use temporal logic
to guide RL by generating a product MDP of the state
space and the automaton constructed from LTL specifica-
tions. They usually assume that LTL tasks to solve are given.
However, hand-specifying LTL tasks is tricky for large do-
mains (Greenman et al. 2024), and requires domain knowl-
edge. On the other hand, works like Logic Options Frame-
work (Araki et al. 2021), LTL-Transfer (Liu et al. 2024),
GCRL-LTL (Qiu, Mao, and Zhu 2024) and Skill Machine
(Tasse et al. 2022) focus on zero-shot generalization to new
LTL tasks through the composition of pre-trained policies
(skills), which are assumed to be given. However, they do
not consider the cost of pre-training the skills in the first
place—the space of possible policies is large, and an RL
agent must balance its exploration budget so that it prefer-
entially collects data that could improve the quality of skills
that are more likely to result in learning progress (Kaplan
and Oudeyer 2003; Stout and Barto 2010; Quartey, Shah,
and Konidaris 2023).
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(a) Sample LTL Formula

 maintain(!a) & reach(b) → maintain(a)

(d) Create Plan

a b c
reach 0 1 0
avoid 1 0 0
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avoid 0 0 0

(e) Translate to Protogoal
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Figure 1: Overview of our approach. First, a coarse policy outputs an LTL formula, which is then converted into a deterministic
finite automaton (DFA), and then into a task graph. Planning on the task graph results in a sequence of goals, which are pursued
one at a time by a low-level goal-conditioned policy.

3 LTL Guided Exploration
We introduce our approach for exploiting the LTL structure
to aid RL exploration. The agent has access to a rich set
of propositions, each having a labeling function. We further
augment the MDP with an LTL task space, Φ, constructed
using the atomic propositions and the LTL grammar. The
goal is to learn to utilize the structure of these LTL tasks to
help us reach more useful states and solve complex tasks.

In this section, we first describe our approach to repre-
senting LTL tasks (Section 3.1) and how to solve LTL tasks
using a combination of goal-conditioned RL and planning
(Section 3.2). Then, we describe ways to manage the vast
LTL task space to find plausible and desirable tasks to pur-
sue given the agent’s history of experiences and its current
state in the environment (Section 3.2).

3.1 Representing the LTL task
The first step of representing the LTL formula is to con-
vert it into a deterministic finite automaton (DFA); this can
be done easily using off-the-shelf software such as Spot
(Duret-Lutz et al. 2022).

Each edge in the DFA represents a boolean formula. On a
high level, the task structure is represented through the DFA
and the transition conditions in its edge. On the low level,
each edge can be individually treated as a subgoal, from
which we can construct a goal space for the goal-conditioned
RL policy. By carefully encoding the requirements of each
edge in the DFA as a goal input to the policy π, we can in-
struct the low-level RL policy to solve tasks while obeying
constraints.

Representing edges in binary proto-goal space We note
that given a planned path through the automaton, the pol-
icy should follow the planned path if we ensure the edge-
conditioned low-level policy only takes the self-edge or the
planned out-edge at each state. So, one simple way is to en-

code the self-, and out-edge in a Buchi Automaton in the
goal space (Liu et al. 2024).

We consider each proposition that appears in the self or
out edge. Given the self-edge of the current DFA node and
the out-edge to be traversed according to the plan, the agent
should work towards the out-edge while trying to maintain
the properties of the self-edge during the process. We regard
propositions having the same truth value on both edges and
propositions only present on the self-edge as constraints and
represent them as “maintain” goals, as they should always
be enforced throughout the entire process while attempting
to traverse the edge. For propositions that have a different
value on self-edge versus the out-edge or only present on
the out-edge, we take the truth value of the proposition in
the out-edge and call those “reach” goals. Table 1 shows the
translation of the edges for each individual proposition.

With the four goals defined above for each proposition,
we have defined our proto-goal space. To fully represent
all possible edges in the buchi automaton generated from
LTL, the proto-goal space G will contain maintain(a),
maintain(¬a), reach(a), and reach(¬a) for all
propositions α in the atomic proposition space.

At the same time, not all of the above four types of goals
are useful for solving tasks. From these, we can pick a subset
of the four different sets of goals:

1. reach(a)

2. reach(a) + reach(¬a)
3. reach(a) + maintain(¬a)
4. reach(a) + maintain(a) + reach(¬a) +

maintain(¬a)
As we expand the set of goals to include not just reach-
ing goals but also maintaining goals or constraints, the task
space we’re exploring becomes more expressive, but the ex-
ploration and goal-tracking cost is also growing. Creating a



out edge
a ¬a ∅

a maintain(a) reach(¬a) maintain(a)
self edge ¬a reach(a) maintain(¬a) maintain(¬a)

∅ reach(a) reach(¬a) -

Table 1: Correspondance between the goal type and self/out edge types in the DFA.

balance of expressiveness and the goal space size is a trade-
off, and we leave the inclusion or exclusion of reach/main-
tain goals as a hyperparameter to be decided by the goal
space designer.

Multi-hot goals and reward assignment Multiple goals
can be active simultaneously in the binary goal space, be-
yond just individual reach and maintain goals. For a
policy to be considered successful, it must satisfy all active
goals’ requirements.

This goal space encoding naturally represents conjunc-
tions (and operations) in Boolean formulas. To handle
all boolean expressions, including disjunctions (OR opera-
tions), we first convert each formula to disjunctive normal
form—a representation using ors of ands. We then split
formulas containing ors into multiple separate formulas. Fi-
nally, we apply our transformation table to create individual
goals for each pair of split self and out edges.

Given the reach/maintain information for each atomic
proposition in the goal, We can assign rewards to each re-
quirement. We use the following reward function to give re-
wards to a goal-conditioned RL policy conditioned on multi-
hot goals, terminating when the reward is non-zero:

R(s, s′) =


1

if all reach goals satisfied and
no maintain goals violated

−1 if any maintain goals is violated
0 otherwise

Conversion of automata into task graphs An automaton
only passively verifies whether a sequence of states satis-
fies the specification. We define task graphs to enable active
planning by encoding transition conditions into the RL goal
space:

Definition 1 (Task Graph). A Task Graph for
an LTL task is a labeled directed graph G =
⟨N,E,Σ,G, ln, le, c, n0, Ngoal⟩ where N is the set of
nodes, E ∈ (N × N) is a tuple defining the edges with its
start node and end node, Σ is the set of boolean expressions
constructable by the atomic propositions, G is the goal
space of the RL policy, ln : N → Σ maps nodes to the
boolean expression at each node, le : E → G maps
each edge to RL goal needed to traverse the edge, and
c : E → R+ is the cost of traversing the edge; n0 is the
initial node, and Ngoal is the set of goal nodes.

We use Algorithm 1 to convert the DFA into a plannable
Task Graph where each edge encodes the goal needed. This
graph can then be annotated to plan a path to reach the goal
node.

0

1

reach(a)&reach(b)
w=inf

2

maintain(!a)&reach(b)
w=inf

reach(a)
w=0.92

¬a U b ∧ F(a)

Figure 2: Example converted graph with edges annotated
with weights. Dashed edges are edges deemed implausible
and pruned.

3.2 Goal management and high-level task graph
planning

The conversion of DFA into a task graph allows us to encode
the transition conditions into markovian goals. We now need
to specify how to find an optimal path through the graph.

Many key challenges emerge: We need a principled way
to select which LTLs to execute and which goals to focus on.
Second, some edges in the graph may be implausible - either
unreachable or uncontrollable. Consider Figure 2, where the
edge reach(a) & reach(b) becomes implausible if the
zones have no overlap, making simultaneous satisfaction im-
possible. Such implausible edges must be pruned from the
DFA. Lastly, finding the shortest path between starting and
accepting states requires knowing the cost of traversing each
edge. All of this requires effectively managing the set of rel-
evant edges and estimating the agent’s current capabilities
and environment rules.

Goal Pruning We start by tracking all reach and maintain
goals of the individual atomic propositions and their nega-
tions in the goal space. We estimate the plausibility of each
goal for evaluation using the data sampled from the replay
buffer B and define the following three criteria for a goal to
be plausible:

• Observed – The goal of interest has to be observed in
the agent’s experience. For example, you can’t be in two
places simultaneously. A goal is observed if the global
count of each goal N(g) > 0.

• Reachable – The goal must be reachable by the agent.
Even if a goal is observed and thus possible, it might have



happened only a few times, which is extremely unlikely
to be reachable by the agent. A goal is globally reachable
if maxs∼B Vseek(s, g) > τ1.

• Controllable – The agent should be able to control
whether it reaches the goal. For example, the current
weather is outside our control, even if it’s reachable. A
goal is controllable if E[Vseek]− E[−Vavoid] < τ2.

Here, Vseek and Vavoid are general value functions (Sut-
ton et al. 2011) estimated using two iterations of LSPI
(Lagoudakis and Parr 2003) with the following cumulants
(Bagaria and Schaul 2023):

Rseek(s, g) = 1 if g is achieved in s else 0,

Ravoid(s, g) = −1 if g is achieved in s else 0.

If the goals on each edge satisfy the above properties, then
we say the edge is plausible. Otherwise, the edge is not plau-
sible and will be removed.

Goal Recombination Solely tracking the individual suc-
cess of reaching atomic propositions is not enough, as the
edges in the graph also include conjunctions of goals. In ad-
dition to the above three metrics, we maintain the active pur-
sue success rate counter.

If the agent has actively pursued a goal and the recent suc-
cess rate of such goal exceeds a threshold τ3, we deem these
goals mastered. We create combined goals from conjunc-
tions of individual mastered goals, and the newly recom-
bined goal enters the tracking cycle again and is evaluated
using the three plausibility metrics mentioned in Section 3.2.

Estimating edge weights and path-finding through the
graph After pruning the graph, we are left with a graph
where each edge is plausible on its own. To find the shortest
path to the accepting state, we must assign weight to each
edge. The proto-goal framework used the expected value of
Vseek to estimate the reachability of each goal. This is not suf-
ficient, as the feasibility of the agent in traversing each edge
depends on the state where the edge originates. For example,
you cannot wash an apple after you have already eaten it.

To access the success probability and weight of each edge,
we first need to know the value of each edge conditioned
on each DFA state q where it originates from. Here, we use
the common technique of using associated concrete states to
estimate the values of abstract states (Bagaria, Senthil, and
Konidaris 2021) to measure the value of the policy traversing
from n to n′ through edge representing goal g:

v(n, n′) = Es∼ln(n)[Vseek(s, le(en,n′)],

where ln(n) represents the boolean formula representing the
state in the starting node n, and le(n, n′) represents the RL
goal needed to traverse the edge from n to n′.

Intuitively, we first match the DFA state q with a set of
abstract states {ψin} that match the edges going into the pre-
vious DFA state q. We then find all corresponding concrete
states s where one of ψin is true, stored in memory buffer
during prior agent interaction. The value of reaching g is
then computed by the expected value of all concrete states
associated with the DFA state q.

Finally, with all the implausible edges pruned and the val-
ues assigned to each edge, we utilize the negative log of
weight − log(v(g)) as the weight on the graph (Jothimuru-
gan et al. 2021; Qiu, Mao, and Zhu 2024). Using Dijkstra’s
algorithm, we can find the shortest path between the start-
ing state and any of the accepting states. More details of
our edge labeling and path-finding algorithm are in the ap-
pendix.

Generating desirable LTL tasks to explore Similar to
the proto-goal framework, we use the same simple count-
based novelty metric for each of the goals tracked. The de-
sirability score for each goal is

u(g) = R(g) + novel(g).

where R(g) is the average reward received when attempting
to reach g, and the novelty is the inverse of the number of
times g has been achieved: novel(g) = 1/N(g).

And the probability of each goal being sampled is thus

p(g) =
u(g)∑

g′∈G u(g
′)
.

With the desirability sampling probability for each goal
defined, we take the simple approach of sampling a set of
goals up to a certain novelty threshold novelmax, and up to
a max number of goals. We fill these goals into the pre-
compiled set of LTL templates, which are listed in the ap-
pendix. We keep sampling until we land at an LTL where
we can find a path from the initial state to any of the accept-
ing states, which is added to the queue as a desired task.

Finally, at runtime, the agent takes 5 sampled LTLs from
the queue, and picks the one where the first edge in the path
is the most likely to be achieved. This allows the agent to
pick the best LTL without being distracted to solve the hard-
est LTLs sampled that the agent cannot achieve yet.

4 Experiments
We test our method in two environments: ZoneENV
(Vaezipoor et al. 2021), and Minigrid (Chevalier-Boisvert
et al. 2023).

4.1 LTL-conditioned RL
To verify our framework’s capability of covering the task
space of LTL, we first benchmark on an LTL-conditioned
RL environment, ZoneENV (Vaezipoor et al. 2021). In this
environment, the agent controls a point mass with two de-
grees of freedom: accelerate/decelerate and turn left/right.
We provide the agent with four propositions, each represent-
ing whether the agent is in each of the zones.

The avoidance task is the hardest among the few specified
in the original ZoneENV. In this set of tasks, a sequence of
zones must be satisfied while avoiding some other zones.
An example LTL in this category is ¬zone Y U (zone W ∧
(¬zone J U zone R). To achieve this LTL task, the agent
must first visit Zone W while avoiding Zone Y and Zone J
and then visit Zone R while avoiding Zone J. Violation of
the constraint will terminate the episode.

We compare our framework against two baselines that
also do not assume access to the LTL task distribution.
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Figure 3: Performance metrics for the avoidance task in ZoneEnv. Success rate (left) and discounted return (right) averaged over
5 random seeds with 20 episodes per data point. LTL2Action and GCRL-LTL curves taken from (Qiu, Mao, and Zhu 2024).
Discounted reward computed using γ = 0.998 to maintain consistency.
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Figure 4: Rendering and success rate for the unlock door task in Minigrid.

GCRL-LTL (Qiu, Mao, and Zhu 2024) learns a goal-
conditioned policy for reaching each proposition and uses a
high-level planner to reach zones while dynamically avoid-
ing zones by enumerating the Q functions. On the other
hand, LTL2Action (Vaezipoor et al. 2021) learns a graph
neural network encoder for the LTL structure and relies on
that to generalize to new LTL tasks.

Our approach took the middle ground of learning an edge-
conditioned policy, which eliminates the need to enumerate
all Q functions for dynamic zone avoidance in GCRL-LTL
but is still able to take advantage of the automaton. This,
along with our exploration algorithm, allows our framework
to achieve a far better performance and sample efficiency
than both of the baselines on this set of unseen tasks. The
results further show that with our current framework, we can
build a good coverage of LTL tasks in our policy, even to
unseen tasks, which allows us to more effectively explore
this LTL task space.

4.2 Minigrid
Next, we move to a sparse-reward image-observation Mini-
grid environment. In this environment, there are two locked
doors and two keys, and the agent’s task is to pick up both
the red key and the green key and unlock two doors. The
agent must also learn to drop the key to pick up the sec-
ond key, as its inventory can only hold one item. The ob-
servation space is the RGB image. The action space is dis-
crete, consisting of Forward, Backward, TurnLeft,
TurnRight, PickUp, Dropoff, and Toggle. The
agent has access to the set of propositions indicating which
object it’s facing, which object it’s holding, and whether the

door is unlocked. Figure 4 shows a rendering of the environ-
ment.

In this environment, the reward is sparse, and no reward
shaping or policy sketch is provided. We compare our frame-
work to the baseline non-LTL protogoal RL (Bagaria and
Schaul 2023).

Results show that our new LTL+protogoal model is able
to roughly achieve a similar performance as protogoal RL.
We suspect the task is too easy to see the benefit of the
temporal logic exploration. If the domain included more
complex temporally extended tasks or implicit avoidance
requirements, our method might perform better than plain
goal-based Protogoal exploration.

5 Conclusion
In this paper, we introduced a novel way of RL exploration
using the LTL task space. We developed a way to encode au-
tomaton edges and train a joint goal-conditioned RL policy
to traverse the edges in the DFA. We also presented a way to
estimate the weights of the edges, allowing us to find a path
through the DFA to solve LTL tasks. Lastly, we introduced
a way to actively sample LTL formulas that is most likely to
lead to learning progress.

Our framework is able to beat all of the LTL-conditioned
RL baselines. and can match the performance of the state-of-
the-art baseline, proto-goal RL, showing the superior sample
efficiency of our method and representation of the LTL task.

Future work includes testing the algorithm on more com-
plex tasks and allowing the LTL generator to generate more
diverse LTL formulas.
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A Algorithms
A.1 DFA conversion to graph and annotation
This process converts the LTL into DFA and rewrites it into
a task graph.

Algorithm 1: Conversion of Buchi Automaton into Task
Graph

inputs LTL ϕ
Convert ϕ into Finite Buchi Automaton B =
{Q,Σ, δ, q0,Qaccept}
Initialize the Task Graph G : {N = ∅, E =
∅,Σ, ln, le, c, n0, Ngoal}
for all states qi ∈ Q do

N = N ∪ {ni}
if qi ∈ Qaccept then

Ngoal ← Ngoal ∪ {ni}
if qi is the initial state q0 then

ln(ni)← 1
else

ln(ni)← False
for all edges (qk, ψ, qj) in B leading into qj do

ln(ni)← ln(ni) ∨ ψ
for all edges (qi, ψ, qj) in B such that i ̸= j do

Find the corresponding self-edge for the source node
(qi, ψ

′, qi).
if self-edge does not exist then

continue ▷ No self-edge exists, impossible for RL
to guarantee to solve

E ← E ∪ (vi, vj)
Convert the transition condition ψ and ψself into dis-
junctive normal form. (or of and).
Convert ψ̄ into DNF and split ”or” into individual con-
junctive clauses Ψself = {ψ̄1, ψ̄2, ...}
Convert ψ into DNF and split ”or” into individual con-
junctive clauses Ψout = {ψ1, ψ2, ...}
for each ψ̄k ∈ Ψself do

for each ψl ∈ Ψout do
g ← CONVERT REACH MAINTAIN GOAL(B, ψ̄k, ψl)
le(eij)← le(eij) ∨ g

return {N,E,Σ, ln, le, c, n0, Ngoal}.



A.2 Task graph annotation
This procedure labels the task graph with cost and samples
around 10 the highest score task graph as candidate.

Algorithm 2: Annotation of the task graphs with cost

inputs Task graph {N,E,Σ, ln, le, c, n0, Ngoal}, value
function vseek : S × G → [0, 1], mapping from abstract
boolean formula to a set of concrete states Sψ : Σ→ S

Remove edges e where g = le(e) is globally implausible
Remove all nodes n with no path from the initial state q0.
for all nodes ni in the task graph do

ψs = ln(ni)
Si ← Sψ

for all edges eij do ▷ Assign value and cost to edges
g ← le(eij)
veij ← Es∼Si

[vseek(s, g)]
ueij ← novel(g) +R(g) ▷ utility of the edge
c(eij)← − log(veij + ueij ) ▷ weight of the edge

Remove all edges with vψ unseen, uncontrollable, or
vψ′ < threshold.
return the updated graph {N,E,Σ,G, σ, n0, Ngoal}

B LTL sampling algorithm
LTLs are sampled by first sampling states to reach, then fill-
ing in the LTL template.

Algorithm 3: Sample LTL
inputs list of plausible goals g, their expected value func-
tions vseek(g), and novel(g)
hyperparameters maximum novelty noveltymax, maxi-
mum number of goals lmax
Sampled LTL ϕ← null
while not is plausible(ϕ) do

G = {} ▷ Set of goals to be used in LTL construction
glast = ∅
while

∑
gi∈G novel(gi) < novelmax and |G| < lmax

do
Sample goal g based on novelty.
G← G ∪ {gnext}

ϕ = construct LTL(G)
return ϕ

B.1 LTL Generation templates
• F(p1)
• F(p1 ∧ F(p2))
• F(p1 ∧ F(p2 ∧ F(p3)))
• F(p1 ∧ F(p2 ∧ F(p3 ∧ F(p4))))
• F(p1 ∧ F(p2 ∧ F(p3 ∧ F(p4 ∧ F(p5)))))
• F(p1 ∧ XF(p2))
• F(p1 ∧ XF(p2 ∧ F(p3)))
• F(p1 ∧ XF(p2 ∧ XF(p3 ∧ XF(p4))))
• F(p1 ∧ XF(p2 ∧ XF(p3 ∧ XF(p4 ∧ XF(p5)))))

• ¬p2 U p1 ∧ F(p2)
• ¬p2 U p1 ∧ ¬p3 U p2 ∧ F(p3)
• ¬p2 U p1 ∧ ¬p3 U p2 ∧ ¬p4 U p3 ∧ F(p4)
• ¬p2 U p1 ∧ ¬p3 U p2 ∧ ¬p4 U p3 ∧ ¬p5 U p4 ∧ F(p5)


