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Abstract

This work presents a logic-driven framework to evaluate the
performance of reinforcement learning (RL) algorithms in
terms of their ability to generalize to unseen tasks. Our frame-
work defines a family of inductive reachability tasks, charac-
terized by structural similarities in task dynamics, enabling
evaluation of generalization capabilities. We introduce a neu-
ral certificate function that validates trajectories generated
by RL algorithms by enforcing key conditions, thereby serv-
ing as a litmus test for RL generalization. We empirically
demonstrate our method’s capability in certifying generaliza-
tion for both generalizable RL algorithms, such as GenRL,
VariBAD, PSMP and C-Learning and standard RL baselines,
such as PPO and ARS across diverse benchmarks, including
Car-Parking, Reacher, and Fetch Reach environments. Results
show that a lower percentage of certificate function viola-
tions correlates with a higher number of test tasks successfully
solved, highlighting the effectiveness of our framework in
evaluating and distinguishing generalization capabilities of
RL algorithms. This work provides a principled approach for
benchmarking RL generalization.

1 Introduction
The utilization of neural network function approximation
has significantly boosted the performance of reinforcement
learning (RL) algorithms. Deep RL has achieved impres-
sive results on large or continuous state-space tasks, such as
playing games (Silver et al. 2017), autonomous system con-
trol (Levine et al. 2016), or robotics tasks (Mnih et al. 2015).
However, the utilization of deep neural networks also intro-
duces its own challenges, such as sensitivity to adversarial
perturbations in the environment or state observations (Huang
et al. 2017; Lechner et al. 2023), or estimation bias due to lim-
ited exploration (van Hasselt, Guez, and Silver 2016). These
factors negatively impact the ability of deep RL policies to
generalize to unseen environments and tasks. Generalization
is a highly desirable property of RL agents, allowing them to
adapt to and perform well in environments and tasks that are
semantically similar yet not identical to those seen during the
training phase (Malik, Li, and Ravikumar 2021).

Challenge – Evaluation of RL Generalization. The im-
portance of learning RL policies with good generalization
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properties is widely recognized within the RL commu-
nity (Malik, Li, and Ravikumar 2021; Kirk et al. 2023a;
Korkmaz 2024). The problem of training RL agents with
good generalization properties, which we refer to as gener-
alizable RL agents, has been studied under several settings,
such as meta RL (Beck et al. 2023) or zero-shot generaliza-
tion (Kirk et al. 2023b). While these works present significant
advances in training generalizable RL agents, the problem of
evaluating the ability of RL agents to generalize to unseen
environments and tasks has received little attention. To the
best of our knowledge, no principled approach to the prob-
lem of evaluating and comparing generalization properties
of different RL agents has been proposed. Currently, the best
that one can do is to simply test different RL agents on a
large number of unseen environments, and to check which
RL agent exhibits the best generalization properties on the
tested environments. However, the lack of a more principled
comparison leads to two significant challenges. First, we need
to perform testing on a large number of new environments in
order to be able to make an informed decision on which RL
agent is best at generalizing to unseen environments and tasks.
Second, for RL agents that do not exhibit good generalization
properties, current methods provide no means of identifying
behaviours that lead to bad generalization. Ideally, we would
like to be able to flag state-action pairs that lead to incorrect
generalization. This information can then be used to relearn
and ultimately repair an RL agent. Our goal is to address
these challenges and to propose a principled framework for
comparing generalization properties of different RL agents.

Our Contributions. In this work, we propose a novel
framework for evaluating and comparing generalization prop-
erties of RL agents with respect to inductive reachability
tasks. Inductive reachability tasks are a family of tasks de-
fined over the same Markov decision process (MDP), where
each task is specified by an initial state distribution and a
sequence of goal regions that need to be reached in the given
order. These tasks represent a natural target for studying RL
generalizability due to the fact that, intuitively, optimal poli-
cies for inductive reachability tasks with similar initial state
distributions and goal regions should also be similar.

We consider the setting in which we are given a finite
set of RL agents π1, . . . , πn and a family Φ of inductive
reachability tasks over an MDP. Each RL agent πi is regarded



as a global policy, meaning that it produces a control policy
πϕ
i for each task ϕ ∈ Φ. The RL agents may be trained via

any generalizable RL algorithm. Then, our goal is to evaluate
and compare the performance of each RL agent on unseen
tasks from the family Φ, i.e. tasks that were not utilized in
the training procedures of any of the RL agents.

In order to evaluate and compare generalization properties
of different RL agents, we introduce certificates of correct
generalization. Our certificate is defined with respect to a
finite set of training tasks, where each training task is a pair
consisting of an inductive reachability task in Φ and a tra-
jectory that solves the task. Then, the certificate of correct
generalization with respect to this set of training tasks is a
function C that assigns a real value to each MDP state and
which is required to be (1) non-negative at every MDP state,
and (2) for every training task trajectory, the value of the
certificate C strictly decreases along the trajectory at all states
that do not belong to the goal regions of reachability tasks
(Definition 3.2). Intuitively, due to the non-negativity and
the strict decrease conditions, the existence of such a certifi-
cate guarantees that all goal regions must be reached within
finitely many time steps. We prove that a policy solves an
inductive reachability task if and only if it admits a certificate
of correct generalization for that task (Theorem 3.3).

We utilize our notion of certificates to compare generaliza-
tion properties of RL agents as follows. First, a certificate is
trained on a finite number of training tasks, by designing a
loss function that enforces the defining certificate conditions
at states along the training task trajectories. Second, the RL
agents π1, . . . , πn are evaluated and compared by running
them on a number of test tasks, which are unseen tasks that
were not utilized in the certificate training process. For each
RL agent, we count the number of violations of the defining
certificate conditions along trajectories produced by the agent
for each test task. Finally, we conclude that agents leading
to a smaller number of violations of the defining certificate
conditions have better generalization properties.

We implemented and experimentally evaluated our method
across a diverse set of RL environments. For each environ-
ment, we first trained a certificate by collecting a number of
training task trajectories. Then, we used our trained certificate
to evaluate the generalizability properties of different RL al-
gorithms collected from the generalizable RL literature. Our
results consistently show that a smaller number of certificate
condition violations correlates with better generalizability
properties of RL agents.

Our contributions can be summarized as follows:

1. We introduce the notion of certificates of correct gener-
alization for inductive reachability tasks. We prove that
a policy solves an inductive reachability task if and only
if it admits a certificate of correct generalization for that
task. Our certificates of correct generalization allow us to
compare generalization properties of different RL agents.

2. We propose a training procedure for learning neural net-
work certificates of correct generalization from a finite set
of training tasks and their corresponding trajectories.

3. Our experimental evaluation demonstrates that a low num-
ber of certificate condition violations by an RL agent con-

sistently correlates with the good generalization abilities
on a wide range of inductive reachability tasks.

Related Work. The field of generalizable RL aims to de-
velop agents capable of adapting to unseen tasks with mini-
mal retraining. A key approach in this area is meta-learning,
where the agent learns to generalize across a distribution of
tasks by acquiring task-specific policies or representations.
Works such as MAML (Finn, Abbeel, and Levine 2017)
and its variant (Nagabandi, Finn, and Levine 2019) focus
on gradient-based meta-learning for rapid adaptation to new
tasks. These methods have inspired zero-shot RL approaches,
where agents generalize to unseen tasks without additional
training. For example, VariBAD (Zintgraf et al. 2021) lever-
ages variational inference for task embeddings to achieve
zero-shot generalization. Methods like PSMP (Inala et al.
2020) and GenRL (Subramanian et al. 2024) propose in-
ductive structure for task families to enhance knowledge
transferability.

Certificates (or certificate functions) provide a tool for
reasoning about the correctness of control policies that has
recently gained prominence within the AI and control the-
ory communities (Dawson, Gao, and Fan 2023). In order
to show that an agent satisfies some specification, existing
methods compute a certificate function for that specification,
which acts as a proof of satisfaction of the property of inter-
est. The problem of learning neural network certificates for
proving properties of neural controllers has been studied in
the context of reachability, safety and stability tasks in de-
terministic (Chang, Roohi, and Gao 2019; Abate et al. 2021;
Edwards, Peruffo, and Abate 2024; Zhang et al. 2023) and
stochastic (Lechner et al. 2022; Zikelic et al. 2023; Mathiesen,
Calvert, and Laurenti 2023; Chatterjee et al. 2023) environ-
ments. However, all these methods consider the problem of
ensuring property satisfaction with respect to a single control
policy and a single task. To the best of our knowledge, no
prior work has considered the use of certificates for reasoning
about and evaluating RL generalizability.

2 Preliminaries
Markov Decision Process (MDP). RL environments are
formally modeled via Markov decision processes. A Markov
decision process M is a tuple (S,A, P ), where S is a set of
states, A is a set of actions, and P : S×A×S → R≥0 is the
probabilistic transition function. We use P (· | s, a) to denote
the probability distribution of the successor state after taking
action a in state s. In this work, we restrict our attention to
deterministic MDPs, meaning that each P (· | s, a) is a Dirac
distribution assigning probability mass 1 to a single state s′

and probability mass 0 to every other state. By a slight abuse
of notation, we write s′ = P (s, a).

A trajectory ζ in an MDP is either an infinite sequence
(st, at)

∞
t=0 or a finite sequence (st, at)

T
t=0 of state-action

pairs. A (pure positional) policy in an MDP is a map π :
S → A, which to each state assigns an action to be taken.
For simplicity, we denote the trajectory obtained by a pure
positional policy π by (st)

∞
t=0 where sj+1 = P (sj , π(sj)).

Reachability Tasks. This work focuses on reachability
tasks. Given an MDP with states S, a reachability task is



given by the tuple (G, η) comprising of goal states G ⊆ S
and initial state distribution η over states S. The objective
of the reachability task is to reach a state in the goal set
G by starting from a state sampled from the initial state
distribution η. Formally, a trajectory ζ = (st, at)

∞
t=0 satisfies

a reachability task (G, η), denoted ζ |= (G, η), if s0 ∼ η and
there exists t ∈ N such that st ∈ G.

3 Certifying Inductive Tasks
This section develops a litmus test for generalizable rein-
forcement learning. Our notion of generalization is based on
similarities between tasks. For this, we utilize the notion of
inductive tasks (Subramanian et al. 2024), which are a family
of tasks that are structurally similar but differ inductively
in the low-level details. Specifically, we consider inductive
reachability tasks, where each task is specified by an initial
state distribution and a sequence of goal regions that need to
be reached in the given order. We are guided by the intuition
that these tasks are so similar that their policies should also
be similar. These similarities in tasks and their policies lend
inductive reachability tasks to be a good fit to evaluate the
generalizability of RL algorithms.

3.1 Inductive Reachability Tasks
Inductive reachability tasks are a family of tasks over the
same MDP, where each task is a sequence of reachability
tasks such that the subsequent reachability task builds upon
the previous one by progressively updating either the goal
conditions or the initial state distribution or both. For a set S,
denote by P(S) the set of all subsets of S and by D(S) the
set of all probability distributions over S.

Definition 3.1 (Inductive Reachability Task). Consider an
MDP with a set of states S. An inductive reachability task
is given by a tuple T = (T0, update goal, update init),
where (1) T0 = (G0, η0) is the base task with initial
goal states G0 ⊆ S and initial state distribution η0,
(2) update goal : P(S) 7→ P(S) is the goal update func-
tion, and (3) update init : D(S) 7→ D(S) is the initial
distribution update function. Then, the inductive task T de-
notes the sequence of reachability tasks T0 = (G0, η0), Ti =
(G1, η1), · · · where T0 is defined as above and Ti+1 =
(update goal(Gi), update init(ηi)) for i > 0.

Thus, the (i + 1)-st reachability task in the sequence is
obtained inductively from the i-th task instance, by applying
the update functions to the goal states and the initial state
distribution.

Example. We present an example situation (Figure 1) to
demonstrate that inductive reachability tasks naturally arise
in real life scenarios. Consider a two-arm robot with the
objective to displace a tower of boxes from one location to
another. This task can be viewed as a sequence of reachability
tasks, where the objective of the i-th task Ti is to displace
the i-th box from the top of the source tower to the top
of the target tower. Formally, the i-th task instance Ti is a
reachability task with the initial state distribution referring
to the configurations in which the top i boxes have been
displaced from the source tower to the target tower and the

goal states referring to the configuration where the top i+ 1
boxes have been displaced from the source tower to the target
tower. In other words, the initial state distribution and the
goal states refer to the configurations immediately before and
after the i-th box from the top of the source tower is displaced
to the target tower.

Then, this sequence of reachability tasks can be encoded
as an inductive reachability task. The base task refers to the
displacement of the top most box from the source tower. The
initial state distribution update function formally encodes
that the source tower is decreasing in height, whereas the
update goal function formally encodes that the target tower
is increasing in height.

3.2 Certificates for Inductive Reachability Tasks
We now define our certificates for inductive reachability
tasks based on a set of task-trajectory pairs. Let us set up
some notation. Let T0, T1, . . . denote an inductive reacha-
bility task with Ti = (Gi, ηi) for all i ≥ 0. Let ξ =
{(T0, ζ0), (T1, ζ1), . . .} be the set of task-trajectory pairs,
where ζi = (si,0, si,1, . . . , si,li) is a trajectory satisfying
the task Ti, i.e., si,li ∈ Gi.

Definition 3.2 (Certificates for Inductive Reachability Tasks).
A certificate for an inductive reachability task is a function
C : S × N → R such that the following conditions hold for
every (Ti, ζi) ∈ ξ:

1. (Non-Negativity Condition) For all states s ∈ S and task
indices i ∈ N0, the certificate satisfies: C(s, i) > 0.

2. (Strict Decrease Within a Task Instance) For each i ∈ N0,
there exists εi > 0 such that for all si,j , si,j+1 ∈ S \Gi:
C(si,j , i) > C(si,j+1, i) + εi.

3. (Decrease Across Task Instances) For each i ∈ N0, the
certificate satisfies: C(si,li , i) > C(si+1,0, i+ 1).

Intuitively, conditions (1) and (2) let the certificate be to
indicate an overapproximation of the distance of a state in the
MDP from the goal state of the i-th reachability task. Observe
that condition (2) requires that the distance be reduced as the
policy executes from any state. Condition (3) simply requires
that the values of the certificate function decrease across task
instances.

Next, we associate certificates of inductive reachability
tasks with the satisfaction of the reachability task by the
policies. We can prove that the existence of a certificate is
a necessary and sufficient for all the policies to satisfy their
respective tasks with probability 1. I.e.

Theorem 3.3. Let T be an inductive reachability task with
task sequence T0, T1, · · · . Then a certificate for inductive
reachability task exists iff

Pr[ζi |= Ti] = 1 for all i ∈ N

where ζi = si,0, si,1, · · · is the trajectory obtained by exe-
cuting the policy πi from an initial state sampled from ηi i.e.
si,0 ∼ ηi.

Proof Sketch. Suppose first that a certificate for an induc-
tive reachability task exists. Then, the non-negativity and
decrease conditions of certificates together imply that each



(a) Agent dynamics (b) Inductive Task (c) Certificate function values generated by
Varibad algorithm on Reacher environment

Figure 1. Tower Destacking: The task is to pick boxes from Source and stack it on Target.

goal region must be reached in finitely many steps. Hence, the
inductive reachability task is satisfied. Conversely, suppose
that an inductive reachability task is satisfied by a trajectory.
Consider any strictly monotonically decreasing sequence
(xi)

∞
i=1 of positive real numbers. Then, using the notation

from Definition 3.2, a certificate C can be defined by let-
ting C(si,j , i) = xi+1 + (xi − xi+1) · (li − j)/li along the
trajectory states and letting C(s, i) = 0 otherwise.

3.3 Evaluation of RL Generalizability via
Certificates

We now present our framework for evaluating and comparing
generalizability of different RL agents by utilizing certificates
of correct generalization introduced in the previous section.
Our framework consists of two phases: (1) Certificate Train-
ing, in which a neural network certificate is trained based on a
finite number of given training task, and (2) Generalizability
Evaluation, in which the previously trained certificate is used
to evaluate generalizability properties of RL agents.

Certificate Training. We first train a neural network cer-
tificate C : S×N → R. Our training procedure takes as input
a finite number of training task, where each training task is
a pair consisting of an inductive reachability task and a tra-
jectory that solves the task. These training tasks are utilized
to design a loss function for training our neural certificate.
Intuitively, the loss function encodes the defining certificate
conditions in Definition 3.2 by enforcing (strict) decrease
of C for each pair of successor states along the trajectories.
Minimizing the loss function then corresponds to minimizing
the number of violations of these defining conditions across
training task trajectories. The details of the training procedure
are provided to Section 3.4. In practice, the trajectories for
training tasks are generated either by an RL algorithm or by
an oracle.

Generalizability Evaluation. Once trained, the neural cer-
tificate is utilized to evaluate the generalizability properties
of given RL agents π1, . . . , πn as follows.

First, a finite number of test inductive reachability tasks
Φtest are chosen to assess generalizability of given RL agents.

We require that these test tasks are not part of the training
set used to learn the certificate. Second, for each RL agent
πi and for each test task ϕ ∈ Φtest, we use πϕ

i to generate a
trajectory ξϕπi

. We then count the number of violations of the
certificate decrease conditions of C along ξϕπi

(conditions 2
and 3 in Definition 3.2), and define Nϕ

πi
to be the total number

of violations. Finally, for each RL agent πi, we define

Nπi =
∑

ϕ∈Φtest

Nϕ
πi

We then conclude that RL agents πi with the lower number
of violations Ni have better generalizability properties.

This evaluation framework provides a principled method
to assess the performance of RL agents on unseen tasks, us-
ing the neural certificate as a validation tool. By comparing
the percentage of certificate condition violations across dif-
ferent RL algorithms, we gain insights into their ability to
generalize to new tasks and adhere to the structural patterns
of the inductive task family.

3.4 Learning Neural Network Certificates
Training Data. The objective is to learn a certificate func-
tion C(s, i) that can validate trajectories generated by RL
algorithms within an inductive task family. The training tasks
for the certificate are a subset of the inductive task family,
denoted as T0, T1, . . . , Tn−1, where each task Ti involves a
specific goal set Gi and an initial state distribution ηi. The
training trajectories ζi = (si,0, si,1, si,2, . . . , si,li) are gen-
erated by executing an RL policy πi trained to solve the
corresponding tasks, and these trajectories satisfy the reacha-
bility conditions for their respective goals. Once trained on
these trajectories, the certificate function C(s, i) is used to
validate unseen test trajectories generated by RL algorithms
for tasks Tn, Tn+1, . . . from the same inductive task family.

Training Procedure. We learn the certificate function
C(s, i), which minimizes a loss function designed to enforce
a monotonically decreasing property across trajectories and
within trajectories. Specifically, the certificate C(s, i) should
produce a sequence of values that decreases as it progresses



along a trajectory, satisfying the decreasing condition both
within individual trajectories and across tasks. The loss func-
tion for this objective is defined as:

L =

n∑
i=0


li∑

j=0

max{0, C(si,j+1, i) + εi − C(si,j , i)}︸ ︷︷ ︸
Penalizes to Enforce (2)

+
∑
s∈Gi
t∼ηi+1

max{0, C(t, i+ 1)− C(s, i)}

︸ ︷︷ ︸
Penalizes to Enforce (3)


.

Here, n is the total number of tasks in the inductive task
family, li is the length of the trajectory ζi for the task Ti,
and C(s, i) is the certificate value for state s in the context
of the i-th task. The first summation enforces the decrease
condition (2) within each task instance by penalizing any
increases in C along trajectories. The second summation en-
forces the across-task decrease condition (3) by ensuring
the values assigned to goal states of Ti exceed those of the
next task’s start distribution. Minimizing this loss guides the
model toward a function C(s, i) that satisfies both the within-
task and across-task monotonicity conditions described in the
certificate definition.

To achieve this, the certificate C(s, i) is modeled using a
Long Short-Term Memory (Hochreiter 1997) (LSTM) net-
work, which is well-suited for processing sequential data
like trajectories. The LSTM acts as the function C(s, i),
taking as input the state s and the task index i, and out-
putting a real number representing the certificate value. The
LSTM is trained on a concatenated sequence of trajectories
(ζ0, ζ1, . . . , ζn), where ζi = (si,0, si,1, . . . , si,li) represents
the trajectory for task Ti generated by the policy πi. Each
state sij is concatenated with the corresponding task index i
and passed as input to the LSTM, which outputs C(si,j , i), the
certificate value for that state. The concatenated trajectories
ensure that the LSTM is trained on the inductive task family,
enabling it to model the dynamics of trajectories across tasks.

The intuition behind using the LSTM architecture to model
certificates C(s, i) is motivated by its ability to capture se-
quential dependencies in data. Trajectories represent ordered
sequences of states, where the progression along the trajec-
tory encodes information about task dynamics and the prox-
imity to the target state. LSTMs are well-suited to learn these
patterns due to their inherent design, which maintains mem-
ory of previous states and captures long-term dependencies.
During training, the LSTM learns to output monotonically
decreasing certificate values along each trajectory, ensuring
the decreasing condition is satisfied. Once trained, the LSTM
is applied to unseen test trajectories from tasks TN and be-
yond, which were not included in the training set. On these
unseen test trajectories, the LSTM evaluates whether the de-
creasing condition holds. If the certificate values decrease

consistently along the unseen test trajectory, it confirms the
trajectory’s validity with respect to reachability. Conversely,
violations of the decreasing condition indicate deviations or
poor-quality trajectories, thus failing the reachability criteria.
By leveraging the LSTM’s sequential modeling capabilities,
this approach ensures that the certificate C(s, i) generalizes
effectively to unseen tasks, providing a principled mechanism
for validating trajectories across the task family.

4 Experiments
4.1 Experimental Setup
The goal of our experiments is to address the following two
research questions:
• RQ1: Does minimizing the number of certificate viola-

tions correspond to better generalization properties of RL
agents? In other words, can our certificate-based method
serve as an effective litmus test for evaluating the general-
izability of RL algorithms?

• RQ2: Is the training procedure described in Section 3.4
able to learn effective certificates in practice, capable of
validating trajectories with minimal violations?

To investigate these questions, we focus on learning a
certificate function C(s, i) that validates the correctness of
trajectories generated by RL algorithms within inductive
reachability task families. Specifically, the experiments as-
sess the generalization of RL agents to unseen test tasks by
evaluating the number of violations of the certificate’s de-
creasing condition across trajectories. A lower number of
violations indicates better alignment with the reachability
criteria, suggesting stronger generalization capabilities of the
RL policies.

To evaluate this, we divide the tasks into two distinct sets:
training tasks and unseen test tasks. The training tasks,
denoted as T0, T1, . . . , Tn−1, are a subset of the inductive
reachability task family and are used to generate trajectories
that the certificate is trained on. The certificate is modeled
using a LSTM network, which processes sequential data
from these training trajectories and learns patterns that satisfy
the reachability criteria. The unseen test tasks, denoted as
Tn, Tn+1, . . ., belong to the same inductive reachability task
family but are not part of the training set. The LSTM-trained
certificate is then applied to validate the correctness of un-
seen test trajectories by checking whether they satisfy the
decreasing condition.

We consider two options for generating training trajecto-
ries to learn the certificate: (1) RL-generated trajectories,
where the trajectories are obtained from policies traiend us-
ing an RL algorithm or (2) oracle-generated trajectories,
which are trajectories obtained from a planning algorithm
(i.e. the dynamics of the environment is known). Oracle-
generated trajectories serve as ideal ground-truth solutions
that perfectly satisfy reachability criteria. The choice between
RL-generated and oracle-generated trajectories is exclusive,
meaning only one type is used for training in a given setup.
While RL-generated trajectories align the certificate with the
behavior of specific RL algorithms, oracle trajectories pro-
vide a strict baseline to compare RL generalization against
ideal behavior.



(a) Car-Parking Moving Initial Point (b) Reacher Two Arm Robot

Figure 2

Figure 3. Fetch Reach

Evaluation Environments. We evaluate our approach
across diverse environments: Car-Parking, Reacher Two-
Arm Robot, and Fetch Reach. Each environment features a
unique set of dynamics and state spaces:

• Car-Parking (Inala et al. 2020): A 2D navigation and
parking task where a car, modeled as a rectangular entity
with orientation, is moved from an initial position to a
goal position.

• Reacher Two-Arm Robot (Fig. 1): A planar robot with
two arms tasked with transferring boxes from a source
stack to a target stack. The tasks vary by adjusting the
initial and target positions, challenging the robot to adapt
its movements to new configurations.

• Fetch Reach (Brockman et al. 2016): A 7-DOF robotic
arm tasked with moving its end effector from an initial
position to a goal position in a continuous 3D space.

Further details about the environments are provided in Ap-
pendix 1.

RL Algorithms. We evaluate several RL algorithms to as-
sess the effectiveness of the certificate function C(s, i) in
validating trajectories across both training and unseen test
tasks. These include generalizable RL algorithms such as
GenRL (Subramanian et al. 2024) (inductive generalization),
Varibad (Zintgraf et al. 2021) (meta-learning), PSMP (Inala
et al. 2020) (inductive generalization), and C-Learning (Nade-
rian et al. 2021) (goal-conditioned generalization). These al-
gorithms are designed to adapt to new tasks with minimal
retraining, making them particularly relevant for evaluating

generalization in inductive task families. In addition to gener-
alizable algorithms, we evaluate standard RL algorithms
such as Augmented Random Search (ARS) (as well as its
variants: ARS + Reward Aggregations, ARS + Goal Condi-
tioning) and Proximal Policy Optimization (PPO) (Schulman
et al. 2017). ARS and PPO are widely used baselines in RL,
known for their strong performance on a variety of tasks
but without explicit mechanisms for generalization. By in-
cluding these algorithms, we aim to contrast the behavior
of generalizable RL methods with standard RL techniques,
particularly in their ability to generate trajectories that adhere
to the reachability criteria as validated by the certificate.

Evaluation Protocol. To evaluate the generalization capa-
bilities of RL algorithms and validate the effectiveness of
the certificate function C(s, i), we conduct experiments using
inductive reachability tasks. For the Car-Parking environ-
ment, we use 5 training tasks and 15 unseen test tasks. In the
Reacher and Fetch-Reach environments, we use 4 training
tasks and 6 unseen test tasks each. The training tasks are
sampled from the inductive reachability task family and are
used to train the certificate function C(s, i) using trajectories
generated by the RL algorithms. The unseen test tasks are
distinct from the training set and are used to evaluate the
generalization of RL agents to new tasks within the same
inductive task family.

Metrics. For each RL algorithm, we assess its performance
on unseen test tasks using two key metrics:

1. Number of Successfully Solved Test Tasks: A test task
is considered solved if the trajectory generated by the RL
algorithm reaches the goal region without violating task
constraints. This metric provides a direct measure of the
RL algorithm’s ability to adapt to unseen tasks.

2. Percentage of Certificate Violations: This metric quan-
tifies the percentage of successor state pairs along test
trajectories that violate the certificate’s decreasing condi-
tion. A lower percentage indicates better alignment with
the reachability criteria encoded in the certificate, suggest-
ing higher generalization capability.

To address RQ1, we analyze the correlation between these
two metrics. A higher count of successfully solved test tasks
accompanied by a lower percentage of violations demon-
strates the certificate’s effectiveness as a litmus test for RL



Figure 4. Car-Parking Environment: Certificate Function Values and Loss Function Values

Figure 5. Reacher Environment: Certificate Function Values and Loss Function Values

Figure 6. Fetch-Reach Environment: Certificate Function Values and Loss Function Values



generalization. To further ensure robustness, each experiment
is repeated 10 times, and the mean performance across these
runs is reported to illustrate the results.

4.2 Results
Comparison of the generalizability of the algorithms us-
ing certificates. Figures 2a, 2b, and 3 present the percent-
age of violations in the decreasing condition of the certificate
when validating test trajectories in the car parking, reacher
robot and fetch-reach environments. The bar graph shows two
categories for each algorithm: results when test trajectories
are evaluated using certificates trained on RL-generated train-
ing trajectories (orange) and certificates trained on oracle-
generated training trajectories (blue). Each bar is labeled with
two metrics: the number of test tasks that passed the valida-
tion (shown as a fraction) and the percentage of violations.
”Passed” means that the test tasks exhibited a sufficiently
low percentage of violations, indicating that the trajectories
generated by the RL algorithm aligned well with the reacha-
bility criteria enforced by the certificate. For instance, a bar
labeled 0/15 and 92.93% indicates that no test tasks passed
validation, and 92.93% of the certificate’s decreasing condi-
tion checks were violated. In cases where a star (*) appears
on the bar, it indicates that the RL algorithm did not train
successfully to solve all the training inductive tasks. As a
result, the certificate could not be effectively trained, leading
to inherent failure in validating test tasks. This reflects the
inability of the RL algorithm to generalize during training,
which directly impacts the validation results.

In turn, a bar labeled 15/15 and 4.83% shows that all the
test tasks passed validation and a lower percentage of vio-
lations indicates that the RL algorithm generalizes well to
solve more unseen tasks that were not part of the training
distribution. This shows the effectiveness of the RL policy in
adapting to new tasks within the inductive task family. As a
result, RL algorithms that produce trajectories with fewer vi-
olations demonstrate stronger generalization capabilities and
better alignment with the patterns encoded in the certificate.

When comparing oracle-trained certificates (blue bars) to
RL-trained certificates (orange bars), we observe that oracle-
trained certificates typically result in higher violations when
tested against RL-generated trajectories. This is expected,
as oracle trajectories represent ideal behavior, and devia-
tions in RL-generated trajectories from the ground truth lead
to more violations of the decreasing condition. In contrast,
RL-generated certificates demonstrate lower violations when
tested on trajectories produced by the same RL algorithm,
as the certificate is trained on data that reflects the specific
patterns of these trajectories followed by their RL algorithms.

Certificate Function and the Loss Evaluation. The
graphs in Figures 4, 5, and 6 illustrate two key aspects of
our experimental evaluation: (a) the progression of certificate
function values across train and test trajectories, and (b) the
loss function trends during training, which serve as a sanity
check for the effectiveness of the certificate training. The left
subfigure shows the progression of certificate function val-
ues C(s, i) over trajectory steps for train and test tasks. The
blue dots represent the certificate values for the trajectories.

The blue background indicates the region corresponding to
training trajectories while the green background indicates the
region corresponding to unseen test trajectories. Red points
signify violations of the decreasing condition, where the
certificate function fails to decrease monotonically. Purple
dashed lines denote task transition points, where the system
transitions from one task to the next within the inductive
task family. The percentage of violations across all trajectory
steps is also reported, providing a quantitative measure of the
RL algorithm’s generalizability. The right subfigure shows
the loss function value during training, across epochs. The
shaded region indicates the range (min-max) of the loss val-
ues, and the solid line represents the mean loss. A consistent
decrease in the loss over epochs indicates successful training
of the certificate.

In Figure 4, the GenRL algorithm is evaluated on the Car-
Parking environment, where the certificate function values
decrease strictly along the trajectory with a small percentage
of violations (4.56%). The corresponding loss graph shows
a rapid decrease in the loss during the initial epochs, con-
firming successful training of the certificate function. Sim-
ilarly, in Figure 5, the Varibad algorithm is evaluated on
the Reacher environment. The certificate function values de-
crease smoothly across both training and test trajectories,
with minimal violations (3.57%), indicating strong general-
ization of the RL algorithm to unseen test tasks. The loss
function graph for the Reacher environment also shows a
rapid decrease and stabilization, further validating the certifi-
cate’s training process. In Figure 6, the certificate function
graph shows more frequent violations (26.81%), suggesting
that the RL algorithm struggled to generalize across the un-
seen test tasks. The loss function’s convergence shows that
the certificate was trained well, hence confirming the result
of the certificate function.

5 Conclusion
This work presents a novel framework for evaluating and
comparing the generalization capabilities of RL agents using
certificate functions. By leveraging these certificates, we pro-
vide a method to validate trajectories and assess RL agents’
performance on unseen tasks. Our results demonstrate that
minimizing certificate violations strongly correlates with bet-
ter generalization, making this approach a reliable litmus
test for evaluating RL generalizability. The experiments also
confirm the effectiveness of the proposed training procedure
in learning certificates that capture the underlying structure
of inductive task trajectories.
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Appendix
1 Experimental Setup

Our approach is evaluated across several environments, in-
cluding the Car-Parking, Reacher Two-Arm Robot, and Fetch
Reach settings, which feature diverse tasks and specifications.
All tasks involve moving from an initial state to a target
state where reachability is the main objective, with the en-
vironment subject to different dynamics and state spaces.
The Car-Parking environment has a 4-dimensional state
space, including x and y positions, orientation, and velocity,
with 2 actions: velocity and steering direction. The OpenAI
Fetch-Reach environment involves a robotic arm with a
8-dimensional state space, including the x, y, z positions of
the end effector, state of the left and right gripper, and the x, y
, z velocities of the end effector, with 3 actions: displacement
along the x, y, and z axes. The Reacher Two-Arm Robot
environment uses a 2-dimensional state space representing
the x and y coordinates of the end effector, with 2 actions
controlling the angles of the two joints.

The inductive tasks in these environments are systemati-
cally defined by updating the initial distributions and target
goals according to the functions update init and update goal,
respectively:

• Car-Parking Environment (Fig. 7a): In this environment,
the initial distribution is updated by shifting the initial
position along the x-axis by a fixed value C, i.e.,

ηi+1(s) = ηi(s+ (C, 0)).

Gi+1 = Gi + (0, 0).

• Reacher two arm robot environment (Fig. 1): The goal
is to move a box from height H − C in the Source stack
to height C + 1 in the Target stack where H is the initial
height of the source tower.

ηi+1(s) = ηi(s+ (0, H − C)).

Gi+1 = Gi + (0, C + 1).

• Fetch Reach Environment (Fig. 7b): In this environ-
ment, the inductive tasks are defined by moving the target
position along the y-axis by a fixed increment C, i.e.,

ηi+1(s) = ηi(s+ (0, 0, 0)).

Gi+1 = Gi + (0, C, 0),

while keeping the initial distribution ηi fixed.



(a) Illustration of the CarParking Task. (b) Illustration of the Fetch-Reach Task.

Figure 7. Illustration of the environments


