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Abstract
Recent advances in imitation learning have enabled robotic
policies with impressive performance. However, achieving
general multi-task capabilities often requires models with
large numbers of parameters and extensive datasets, resulting
in computational inefficiency. This challenge is particularly
pronounced in bimanual manipulation, where existing ap-
proaches are typically limited to single-task policies, necessi-
tating separate models for each task and lacking generaliza-
tion to multi-task scenarios. To address these challenges, we
propose the Mixture of Action Expert Embeddings (MAE), a
novel approach that facilitates a unified policy for multi-task
bimanual manipulation without the need for large parame-
ter models or additional task-specific datasets. By integrat-
ing MAE with the Action Chunking Transformer (ACT), our
model achieves state-of-the-art performance on the ALOHA
simulation benchmark, surpassing task-specific baselines on
each task. Moreover, compared to the original ACT trained
on multiple tasks, our MAE-ACT achieves a 67% success
rate on challenging insertion tasks, whereas the original ACT
achieves only a 17% success rate. We demonstrate that MAE-
ACT effectively enables efficient multi-task learning and en-
hances the generalization capabilities of bimanual manipula-
tion policies.

Introduction
The advancements in deep learning have extended beyond
vision and natural language processing, showcasing signif-
icant potential in various domains such as reinforcement
learning and robotics (LeCun, Bengio, and Hinton 2015;
Silver et al. 2016; Zhao et al. 2023). Recently, imitation
learning-based robotics has achieved substantial progress,
demonstrating the feasibility of robotic systems learning
complex tasks through human demonstrations (Brohan et al.
2022; Zitkovich et al. 2023; Zeng et al. 2023; Zhao et al.
2023; Collaboration et al. 2024). These approaches often
rely on teleoperation to collect large datasets of demonstra-
tions, enabling policies to imitate human actions effectively.
However, achieving a generalizable robotic policy remains
a formidable challenge. Previous works have demonstrated
that unimanual manipulators are capable of executing a va-
riety of tasks (Finn et al. 2017). Building upon this foun-
dation, models with large parameters have been utilized to
further enhance performance (Brohan et al. 2022; Zitkovich
et al. 2023), trained on extensive datasets (Collaboration
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Figure 1: Comparison of ACT and MAE-ACT. ACT relies
on separate policies for disjoint tasks, while MAE-ACT uses
a unified policy that leverages both shared and task-specific
representations through a mixture of action expert embed-
dings based on the task prototype.

et al. 2024). Additionally, there have been efforts to create
more general policies by integrating large language mod-
els (LLMs) (Kim et al. 2024; Ghosh et al. 2024). Despite
these advancements, large foundational models exhibit sig-
nificant variations in task success rates when tasks change
slightly or when environmental conditions vary (Xie et al.
2024; Zhao et al. 2023). Moreover, they require enormous
computational resources and massive datasets for training,
making them impractical for widespread deployment.

Bimanual manipulation has emerged as a powerful ap-
proach in robotic systems, enabling tasks that go beyond
the capabilities of unimanual setups (Zhao et al. 2023; Fu,
Zhao, and Finn 2024; Fu et al. 2024; Shi et al. 2024; Team
et al. 2024; Zhao et al. 2024). Notably, the Action Chunk-
ing Transformer (ACT) has demonstrated the feasibility of
fine-grained, dexterous manipulation with bimanual robots,
showcasing its potential for advancing complex robotic tasks
(Zhao et al. 2023). ACT-based policies have been applied in



diverse scenarios, such as tasks requiring additional mobility
(Fu, Zhao, and Finn 2024), integration with humanoid hard-
ware for human-like manipulation (Fu et al. 2024), execut-
ing natural language commands (Shi et al. 2024), and lever-
aging diffusion models for enhanced tabletop bimanual ma-
nipulation (Zhao et al. 2024). However, these approaches fo-
cus primarily on improving imitation of specific tasks rather
than on generalization. As noted in (Zhao et al. 2024), cur-
rent methods do not support multi-task learning within a sin-
gle policy; instead, they require training separate policies for
each task. This limitation arises because bimanual manipu-
lation involves a larger action space and necessitates learn-
ing cooperative and more dexterous policies between two
arms, making multi-task learning more challenging than in
unimanual systems.

In this paper, we introduce the Mixture of Action Expert
Embedding Action Chunking Transformer (MAE-ACT), a
novel framework designed to enable bimanual manipulation
systems to efficiently perform multiple tasks without requir-
ing extensive parameters or reliance on large-scale external
datasets. By incorporating a mixture of expert embeddings,
our approach effectively generalizes across diverse tasks, ad-
dressing key scalability limitations of previous models. We
demonstrate that MAE-ACT achieves state-of-the-art per-
formance on a widely recognized benchmark for multi-task
bimanual manipulation, representing a significant advance-
ment toward practical and generalizable policies.

In summary, we make the following contributions:

• We propose a novel approach, the Mixture of Action Ex-
pert Embeddings (MAE), that enables multi-task capabil-
ities without requiring additional expert networks, large
policy models, or external datasets.

• By adapting task prototypes and action expert embed-
dings, we demonstrate that the policy effectively achieves
task-specific objectives while leveraging shared repre-
sentations, reaching state-of-the-art performance in the
ALOHA simulation environment and proving its effec-
tiveness in multi-task learning.

• Unlike large foundational models that lack explicit task
identification and face challenges with task success, our
approach uses a lightweight model that identifies tasks
explicitly and dynamically mixes action expert embed-
dings, ensuring robust and efficient task execution while
maintaining a compact model design.

Related Work
Multi-Task Models for Robotic Manipulation. Multi-
tasking in robotic manipulation has emerged as a critical
goal, enabling robots to perform diverse tasks under a uni-
fied framework (Rahmatizadeh et al. 2018; Gupta et al.
2021; Kalashnikov et al. 2021). Recent works in uniman-
ual manipulation have introduced various multi-task policy
learning approaches, including simple transformer architec-
tures (Haldar, Peng, and Pinto 2024; Shridhar, Manuelli,
and Fox 2022), semantic augmentation (Bharadhwaj et al.
2024), and diffusion-based techniques (Yan, Wu, and Wang
2024). Meanwhile, foundation models have redefined multi-
task learning with transformer-based architectures (Brohan

et al. 2022; Ghosh et al. 2024; Driess et al. 2023), large-
scale multi-task robot datasets (Collaboration et al. 2024;
Fang et al. 2023), and vision-language-action frameworks
(Zitkovich et al. 2023; Kim et al. 2024). However, their suc-
cess comes at the cost of extensive computational resources
and a reliance on large, labeled datasets. Moreover, achiev-
ing remarkable results in unimanual manipulation, their ex-
tension to bimanual scenarios remains largely unexplored.

Models for Bimanual Robotic Manipulation. Biman-
ual manipulation offers enhanced dexterity and versatil-
ity by utilizing the broader action space enabled by two
arms. The introduction of the Action Chunking Transformer
(ACT) marked a pivotal advancement in bimanual manip-
ulation (Zhao et al. 2023), predicting actions as chunk se-
quences through a noise-robust temporal ensemble. Sub-
sequent works have extended this approach by integrating
mobility capabilities (Fu, Zhao, and Finn 2024), enabling
language-conditioned policy execution (Shi et al. 2024),
adapting to humanoid hardware (Fu et al. 2024), and incor-
porating diffusion strategies (Zhao et al. 2024). Other ef-
forts have explored extensions such as causal transformers
(Zhang et al. 2024) and hierarchical attention mechanisms
(Lee et al. 2024). Despite these advancements, most exist-
ing models for bimanual manipulation remain focused on
single-task policies designed for specific manipulation sce-
narios. This approach requires separate policies for each
task, which limits both generalization and scalability. In
contrast, our model, MAE-ACT, seamlessly extends action
chunking to enable multi-tasking without requiring addi-
tional external datasets or large parameter models.

Method
In this section, we present the Action Chunking Transformer
(ACT) with Mixture of Action Expert Embeddings (MAE)
and explain how it addresses multi-task challenges by lever-
aging task-specific and shared knowledge. A detailed ar-
chitecture is summarized in Figure 2. We also provide an
overview of the baseline model, ACT, describing its CVAE-
based design and how it is extended with MAE to enable
multi-tasking.

Action Chunking Transformer (ACT)
The Action Chunking Transformer (ACT) (Zhao et al. 2023)
leverages a Conditional Variational Autoencoder (CVAE)
(Sohn, Lee, and Yan 2015) architecture, consisting of a
CVAE encoder and a CVAE decoder. The encoder generates
a latent variable z, which the decoder uses to reconstruct an
action sequence ât:t+c, where c is the chunk size of the ac-
tion sequence and t is the timestep of the input. The model is
trained using the following reconstruction loss, where at:t+c
represents the ground truth action sequence and ât:t+c de-
notes the predicted actions over the same sequence:

Lreconstruct = ∥at:t+c − ât:t+c∥1 . (1)

During training, the encoder qϕ processes the input action
sequence at:t+c along with its condition, the current joint
states jt, to produce the latent variable z. This latent variable
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Figure 2: Overview of MAE-ACT. Our model utilizes the latent variable z to enforce disentanglement between tasks, and the
mixture of action expert embeddings strengthen the joint task-specific representations by integrating task prototypes.

is optimized using the KL divergence regularization term:

Lreg = DKL(qϕ(z|at:t+c, jt) ∥ N (0, I)). (2)

The decoder takes the latent variable z along with its con-
dition, the current observation ot, which consists of multi-
view camera images and joint states at timestep t. The latent
variable z acts as a style variable, which ACT identifies as
essential for capturing variations in human demonstrations
in real-world scenarios. Using these inputs, the decoder re-
constructs the action sequence ât:t+c. Consequently, the ob-
jective of ACT is to map the current observation ot to the
corresponding action ât:t+c. The overall training objective
is defined as:

θ∗ = argmax
θ

∑
(ot,at:t+c)∈D

log πθ (ât:t+c | ot, z) , (3)

where πθ represents the policy (decoder). During inference,
the model relies solely on the decoder, with the latent vari-
able initialized as z = 0.

Task Disentanglement in Latent Spaces
Learning effective multi-task representations requires bal-
ancing the sharing of common representations with the pro-
motion of task-specific ones. However, sharing joint repre-
sentations in latent spaces, particularly in Variational Au-
toencoders (VAEs), often leads to task interference, where
overlapping latent representations hinder the performance of
individual tasks (Ding et al. 2023; Lee and Pavlovic 2021;
Xu et al. 2021). To address this challenge, we propose task
disentanglement in the latent space of CVAE using a sym-
metric Kullback-Leibler (KL) divergence. This method en-
courages task-specific latent spaces to remain disentangled
by maximizing the KL divergence between task-specific la-
tent distributions during training. Since the KL divergence
DKL(p ∥ q) is non-symmetric, we adopt a symmetric KL
divergence, which computes the divergence in both direc-
tions for two distributions p and q and averages the results.
Here, p(Z) denotes the latent variable distribution produced
by the encoder, equivalent to qϕ(z|at:t+c, jt), the posterior

distribution conditioned on the input action sequence and
joint states. Formally, to maximize the symmetric KL di-
vergence for all pairs of task-specific latent distributions
ZT1

,ZT2
, . . . ,ZTk

, where Ti represents the i-th task and k
is the number of tasks, the loss function is defined as:

LsymKL = − 1

k(k − 1)

∑
i ̸=j

1

2

(
DKL

(
p(ZTi

) ∥ p(ZTj
)
)

+DKL
(
p(ZTj ) ∥ p(ZTi)

))
,

(4)

where the sum is computed over all possible pairs of task-
specific latent distributions, promoting comprehensive dis-
entanglement across tasks. Simultaneously, the task-specific
latent representations are regularized to align closely with
a Gaussian prior N (0, I), following the standard VAE ob-
jective and consistent with the KL regularization defined in
Equation 2. This regularization is expressed as:

LKL-Gaussian =

k∑
i=1

DKL

(
p(ZTi

) ∥ N (0, I)
)
. (5)

By minimizing LKL-Gaussian, we encourage the latent distri-
butions of each task to remain bounded to Gaussian behav-
ior. At the same time, minimizing LsymKL promotes separa-
tion and disentanglement of task-specific latent spaces. The
interaction between these two forces introduces additional
structure into the latent representations, reducing task inter-
ference and enhancing task-specific performance. While we
hypothesize that this results in each task’s latent distribution
being bounded and well-structured, a formal proof of this
property is left as future work. Instead, we focus on empiri-
cal evaluation to validate the proposed approach.

Mixture of Action Expert Embedding
We extend the ACT framework (Zhao et al. 2023) by intro-
ducing a novel mechanism that integrates task-specific and
generalized representations into a unified framework. This
section outlines the progression from the original ACT ap-
proach to the MAE-ACT framework, striking a balance be-
tween specialized and shared representations. The original



ACT policy is modeled using a CVAE architecture, where
the decoder serves as the policy. It can be expressed as:

πTi

θ (ât:t+c | oit, zi), (6)

where Ti denotes the i-th disjoint task, which also serves as
its task ID when referencing task-specific representations,
implying that ACT requires a separate policy for each task,
which becomes inefficient in multi-task scenarios. To ad-
dress this limitation, we propose a unified policy that incor-
porates task-specific representations given a task ID. This
policy can be written as:

πθ(ât:t+c | oit, zi, Ti), (7)

However, in practical scenarios, the policy may not have ac-
cess to the task ID and must instead infer the task. To enable
this, we introduce a task identifier ψ, which maps the en-
coded feature to task probabilities. Using the task identifier,
the task ID can be retrieved by taking the argmax of the pre-
dicted probabilities:

Ti = argmaxψ(oit, z
i). (8)

The task identifier ψ, referred to as the task prototype, out-
puts a probability distribution over possible tasks based on
the observation oit and latent variable zi. The task prototype
is implemented as a linear layer followed by a softmax func-
tion, trained to classify the task. The CVAE decoder consists
of a transformer encoder-decoder structure. The transformer
encoder encodes features from oit and zi, while the trans-
former decoder utilizes these encoded features to generate
actions. The task prototype takes the encoded features from
the transformer encoder and predicts task probabilities. De-
noting the encoder as fenc and the decoder as fdec, the policy
becomes:

πθ(ât:t+c | oit, zi) = fdec(fenc(o
i
t, z

i), ψ(oit, z
i)). (9)

We enhance the policy’s representational capabilities by
introducing action expert embeddings, based on the task pro-
totype. The transformer decoder takes as input an initialized
output embedding of shape RC×D, where C represents the
number of queries (equivalent to the predicted action chunk
size in ACT), and D is the hidden dimension. This output
embedding is combined with a corresponding positional em-
bedding of the same shape, RC×D. To enhance task-specific
adaptability, we replace traditional positional embeddings
with task-specific embeddings, referred to as action expert
embeddings. These action expert embeddings are element-
wise added to the output embeddings. This allows the trans-
former decoder to effectively utilize task-specific represen-
tations. Let ϕi ∈ RC×2D denote the action expert embed-
ding for task i, where the collection of all N task-specific
embeddings is represented as ϕ ∈ RN×C×2D. Each task-
specific embedding ϕi is transformed through a task-specific
linear projection Wi ∈ RD×2D, mapping it into the decoder
embedding space of shape RC×D. The policy incorporating
action expert embeddings with the inherited task prototype
can be expressed as:

πθ(ât:t+c | oit, zi) = fdec(fenc(o
i
t, z

i), ϕi), (10)
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Figure 3: MAE-ACT policy with a transformer encoder and
decoder. Task probabilities from the task prototype weight
action expert embeddings, forming the Mixture of Action
Expert Embeddings (MAE).

where:
ϕi = ϕargmaxψ(oit,z

i). (11)

While the above formulation uses a single task-specific em-
bedding, we extend the framework to incorporate a combi-
nation of action embeddings, referred to as the mixture of
action expert embeddings. This approach enables the pol-
icy to leverage both task-specific representations and shared
knowledge across tasks. To compute the mixture, we use
the task probabilities ψi, which represent the probability of
task i as predicted by the task prototype. These probabilities
serve as weighting factors, determining the contribution of
each task-specific embedding ϕi to the final mixed embed-
ding. The resulting mixed action expert embedding is de-
fined as:

ϕmae =
∑
i

ψiϕi. (12)

The resulting policy using the mixed action expert embed-
ding is expressed as:

πθ(ât:t+c | oit, zi) = fdec(fenc(o
i
t, z

i), ϕmae). (13)

By integrating task prototypes and action expert embed-
dings, the MAE-ACT framework enables efficient and gen-
eralizable multi-task learning, balancing task-specific and
shared representations.



Task-Aware Action Head
While integrating ACT with the proposed MAE provides
a sufficient level of generalization across tasks, we find
that replacing the shared action head with task-specific lin-
ear heads further enhances performance. The selection of
the task-specific linear head is retrieved directly without
any heuristic by utilizing the task prototype as described
in Equation 8, where the argmax of the task probabilities
determines the corresponding task. Denoting f ′dec as the de-
coder excluding the action head, the integration of the task-
aware action head with the decoder can be expressed as:

ât:t+c = LinearTi
(f ′dec) (14)

By leveraging the unified representation of the decoder with
MAE, the addition of task-specific linear heads enables the
seamless integration of task-specific adaptations with shared
knowledge, thereby enhancing the framework’s representa-
tional capacity and generalization capabilities. The final pre-
dicted action follows the static ACT setup (Zhao et al. 2023)
and is expressed as a 14-degree-of-freedom vector, corre-
sponding to the joint angles of the target positions.

Model Training
To train on multiple tasks, we adapt a joint training ap-
proach commonly used in multi-task learning (Caruana
1997; Navon et al. 2022; D’Eramo et al. 2024). Specif-
ically, for a mini-batch sampled from each task dataset
(ait:t+c, j

i
t , i

i
t) ∼ Di, we forward each mini-batch through

the same policy and compute the corresponding loss for each
task. After obtaining the losses from all tasks, we sum them
and perform backpropagation over the combined loss. To in-
tegrate task disentanglement in latent spaces, we use a la-
tent disentanglement loss that combines the losses defined
in Equations 4 and 5. The latent loss is formulated as:

Llatent = LsymKL + LKL-Gaussian. (15)

For the task prototype and the mixture of action expert em-
beddings, we apply a cross-entropy loss for classifying the
task ID given the encoded features from the Transformer en-
coder. The prototype loss is defined as:

Lproto = −
∑
i

pi log(ψi), (16)

where pi is the ground-truth task ID, and ψi represents the
task probabilities obtained from the task prototype. For each
task, the corresponding task-specific action expert embed-
ding is backpropagated, while other task embeddings mixed
with probabilities are detached during the gradient update.
Finally, with the decoder action reconstruction loss Equa-
tion 1, the total loss for training is expressed as:

Ltotal = Llatent + Lrecon + Lproto. (17)

Each component is uniformly weighted during training.

Experiments
We evaluate MAE-ACT using the ALOHA simulation envi-
ronment in ACT (Zhao et al. 2023), focusing on two simu-
lated fine-manipulation tasks created in MuJoCo. Each task

involves multi-stage fine manipulation, which is challenging
as noted in prior works (Lee et al. 2024; Zhang et al. 2024;
Zhao et al. 2023). We provide an overview of the tasks and
baseline models, then compare success rates and rewards,
showing that our model outperforms the baselines. Finally,
we present ablation studies on model variations.

Simulated Tasks and Demonstration Datasets
We evaluate our approach on two challenging simulated
tasks requiring fine-grained coordination and dexterous ma-
nipulation. The Transfer Cube task involves the right arm
picking up a red cube and placing it into the left arm’s grip-
per, with a narrow 1 cm clearance making the task prone to
failure from minor misalignments. The Peg Insertion task
requires the arms to pick up a socket and a peg, align them
for insertion with a tight clearance of 5 mm, posing signif-
icant precision challenges. Object placements are random-
ized, with initial configurations uniformly distributed across
2D regions. We used the same 50-demonstration datasets
from (Zhao et al. 2023), without any additional or external
data for training.

Baselines
ACT (Zhao et al. 2023) is a representative model in biman-
ual manipulation, which is used as a backbone for many bi-
manual manipulation tasks. As mentioned above, ACT is
based on a CVAE architecture, generating actions condi-
tioned on its observations.
ARP (Zhang et al. 2024) is an autoregressive policy
framework for robotic manipulation tasks. Using Chunk-
ing Causal Transformer (CCT), it predicts variable-sized ac-
tion chunks for efficient sequence generation. ARP achieves
state-of-the-art performance on RLBench (James et al.
2020) but focuses on generalizing within task variations
rather than addressing multi-task learning.
Inter-ACT (Lee et al. 2024) is a imitation learning policy
for bimanual manipulation. It employs hierarchical attention
mechanisms and synchronization blocks to coordinate dual-
arm actions, achieving state-of-the-art performance across
bimanual tasks.

Evaluation on ALOHA Simulations
Metrics. We evaluate task performance using success rate
and cumulative rewards. Each task is tested over 50 episodes
across 15 random seeds. Tasks consist of four sequential
stages, with each stage contributing 1 reward point. For
example, in the peg insertion task, rewards are earned in-
crementally as the robot progresses through the following
stages: touching the socket and peg, grasping both, align-
ing the peg with the socket, and successfully completing
the insertion. A task is considered successful only when
all stages are completed. Additionally, we compare the per-
formance with and without temporal ensemble, a strategy
adapted from the original ACT approach. Temporal ensem-
ble involves performing inference at all timesteps and av-
eraging the results to achieve a smoothing effect. In con-
trast, the non-temporal ensemble configuration performs in-
ference from one chunk to next chunk, without ensemble.



(a) Peg Insertion (b) Transfer Cube

Figure 4: ALOHA Simulation Environments. Figure 4a illustrates the Peg Insertion, where two arms align and insert a socket
and a peg with a 5 mm clearance. Figure 4b depicts the Transfer Cube, requiring the right arm to transfer a red cube to the left
arm with a 1 cm clearance. Both tasks demand precise dexterous manipulation under randomized object placements.

Peg Insertion Transfer Cube

w/ Temporal Ensemble w/o Temporal Ensemble w/ Temporal Ensemble w/o Temporal Ensemble

Model Success Rate Reward Success Rate Reward Success Rate Reward Success Rate Reward

ACT (Separate) 0.54±0.11 387.30±10.38 0.54±0.11 365.23±18.46 0.97±0.03 652.28±20.36 0.92±0.04 581.87±27.23
ACT (Unified) 0.17±0.11 379.22±19.16 0.25±0.12 354.89±30.48 0.92±0.05 602.25±33.39 0.79±0.07 439.46±68.34
MAE-ACT (Ours) 0.67±0.10 418.81±15.87 0.56±0.09 365.53±12.72 0.98±0.02 650.11±42.65 0.83±0.07 537.15±44.79

Table 1: Comparative evaluation for two simulated tasks, with and without temporal ensemble. Separate refers to task-specific
policies fully trained on single tasks, while Unified represents a single policy trained across multiple tasks. Bold values indicate
the best performance, while underlined values highlight the failure of the original ACT to generalize across multiple tasks.

Peg Insertion Transfer Cube
Model Success Rate Success Rate

ACT (Zhao et al. 2023) 0.52 0.95
Inter-ACT (Lee et al. 2024) 0.44 0.82
ARP (Zhang et al. 2024) 0.24 0.94
MAE-ACT (Ours) 0.67 0.98

Table 2: Comparative evaluation of success rates across
baselines. Bold values indicate the highest performance,
while underlined values represent the second highest. Note
that except MAE-ACT, other baselines are task-specific
models fully optimized for individual tasks.

Quantitative Analysis of ACT and MAE-ACT
Table 1 summarizes the results for the Peg Insertion and
Transfer Cube tasks, comparing the original ACT model
with the proposed MAE-ACT framework. To evaluate
MAE-ACT, which learns a unified policy across both tasks,
we compare it with two variants of the original ACT: Sepa-
rate ACT, where each task is trained independently, as in the
original ACT, and Unified ACT, where both tasks are jointly
trained using a single policy, similar to MAE-ACT.

Comparison with Unified ACT MAE-ACT demonstrates
significant improvements in both generalization and task
balance compared to Unified ACT. On Peg Insertion, MAE-
ACT achieves a substantially higher success rate, while Uni-
fied ACT performs poorly and often fails the task. On the
Transfer Cube task, MAE-ACT also outperforms Unified
ACT, achieving consistently strong performance. These re-

sults reveal that Unified ACT overfits to the simpler Transfer
Cube task, failing to generalize effectively to the more chal-
lenging Peg Insertion task. In contrast, MAE-ACT maintains
robust and balanced performance across both tasks. Further-
more, MAE-ACT achieves higher rewards, which reflect av-
erage success rates across different task stages, indicating
its superior ability to adapt and handle multi-task scenarios
effectively.

Comparison with Separate ACT When compared to Sep-
arate ACT, which optimizes each task individually, MAE-
ACT delivers competitive or superior performance on both
tasks, even though it is trained jointly. For Peg Insertion,
MAE-ACT achieves a higher success rate, while on Trans-
fer Cube, MAE-ACT achieves comparable or slightly bet-
ter performance depending on the configuration. In terms
of reward, MAE-ACT matches or exceeds Separate ACT,
demonstrating its ability to handle both tasks simultane-
ously without compromising performance. This indicates
that MAE-ACT not only learns effective task-specific rep-
resentations but also benefits from leveraging shared repre-
sentations to improve overall results.

Quantitative Analysis of Baselines and MAE-ACT
We compare MAE-ACT to specialized baselines designed
for single tasks, as shown in Table 2. While these baselines
are optimized for predetermined tasks, MAE-ACT operates
in a challenging multi-task setup, handling both Peg Inser-
tion and Transfer Cube seamlessly. Despite this complexity,
MAE-ACT consistently achieves the highest performance
across both tasks. On Peg Insertion, MAE-ACT significantly
outperforms baselines such as ARP (Zhang et al. 2024)



Peg Insertion Transfer Cube

w/ Temporal Ensemble w/o Temporal Ensemble w/ Temporal Ensemble w/o Temporal Ensemble

Model Success Rate Reward Success Rate Reward Success Rate Reward Success Rate Reward

ACT (Separate) 0.54±0.11 387.3±10.38 0.54±0.11 365.23±18.46 0.97±0.03 652.28±20.36 0.92±0.04 581.87±27.23
ACT (Unified) 0.17±0.11 379.22±19.16 0.25±0.12 354.89±30.48 0.92±0.05 602.25±33.39 0.79±0.07 439.46±68.34
AE-ACT (Unified) 0.45±0.10 408.76±17.01 0.47±0.08 368.15±30.76 0.91±0.06 635.82±50.79 0.83±0.07 510.90±44.87
AE-ACT (U+K) 0.41±0.09 403.02±11.46 0.43±0.07 352.21±18.23 0.92±0.04 652.66±38.14 0.86±0.07 540.41±64.45
AE-ACT (U+H) 0.51±0.16 408.63±19.73 0.43±0.07 336.20±20.01 0.99±0.02 618.11±77.28 0.86±0.06 556.59±37.00
AE-ACT (U+K+H) 0.65±0.11 427.35±14.65 0.55±0.08 363.48±18.26 0.99±0.01 612.38±77.97 0.91±0.06 570.01±30.93
MAE-ACT (Unified) 0.46±0.13 411.88±9.16 0.50±0.08 369.85±18.40 0.89±0.07 626.13±60.70 0.80±0.11 533.12±59.88
MAE-ACT (U+K) 0.42±0.15 398.70±15.92 0.46±0.09 371.35±15.71 0.88±0.06 618.09±39.57 0.80±0.08 547.25±57.78
MAE-ACT (U+H) 0.66±0.11 413.88±19.29 0.51±0.10 365.17±20.51 0.97±0.03 644.47±51.50 0.81±0.08 526.96±55.94
MAE-ACT (U+K+H) 0.67±0.10 418.81±15.87 0.56±0.09 365.53±12.72 0.98±0.02 650.11±42.65 0.83±0.07 537.15±44.79

Table 3: Ablation of the components of MAE-ACT. AE refers to ACT with integrated Action Expert Embedding without
mixture, while MAE represents ACT with Mixture of Action Expert Embedding. U indicates the Unified Policy, K denotes
Latent Disentanglement with Symmetric KL Maximization, and H represents the task-aware Linear Head.

and Inter-ACT (Lee et al. 2024), achieving superior suc-
cess rates and excelling in precise manipulation. On Transfer
Cube, MAE-ACT also leads with the highest success rate,
matching or exceeding task-specific baselines. These results
demonstrate MAE-ACT’s robust generalization and efficient
balance between task-specific requirements and shared rep-
resentation learning, enabling high performance across di-
verse tasks without interference.

Model Parameters (M)
ACT 83.92
MAE-ACT 85.44

Table 4: Parameter Comparison Between ACT and MAE-
ACT. With only a 1.8% increase in parameters, MAE-ACT
demonstrated enhanced generalization across tasks.

Ablation Studies
We investigate the integration of each component within
the MAE-ACT framework and assess its impact on overall
performance. The ablation study highlights how incorporat-
ing the MAE-ACT components enhances the original ACT
framework, enabling better generalization across tasks. De-
tailed results are presented in Table 3.

Action Expert Embedding. To evaluate the impact of Ac-
tion Expert Embedding (AE), we conducted experiments by
integrating task-specific action embeddings into ACT. The
results, presented as AE in Table 3, also include configura-
tions combining AE with latent disentanglement (K) and the
task-aware linear head (H). In the absence of the mixture,
action embeddings are selected using argmax of the task
prototype rather than through a probabilistic combination of
embeddings from other tasks. Notably, simply adding task-
specific action embeddings significantly improves perfor-
mance on the Peg Insertion task compared to Unified ACT,
while maintaining comparable performance on the Transfer

Cube task. Although its performance is lower than Sepa-
rate ACT, it still demonstrates a notable level of general-
ization across both tasks. These findings show that replacing
positional embeddings with task-specific action expert em-
beddings enhances generalization and reduces overfitting to
simpler tasks. Moreover, this result underscores the inherent
representational capacity of the original ACT framework to
effectively manage multiple tasks when augmented with ap-
propriately designed embeddings.

Task-Aware Head. We further analyze the impact of the
task-aware head on the overall framework. Task-specific
heads are a commonly used strategy in multi-task learning
(Crawshaw 2020). Here, we demonstrate how effectively
they can generalize when integrated with bimanual manipu-
lation policies. Specifically, we enable the task-specific head
to be applied to each corresponding task by retrieving the
task ID from the task prototype. As shown in Table 3, in-
tegrating the task-aware head consistently delivers signifi-
cant performance gains compared to configurations without
it, across all ablation combinations. By incorporating a task-
specific linear head, the model successfully leverages task-
specific representations built on shared representations. This
design enables superior performance while avoiding inter-
ference between tasks, demonstrating the utility of this ap-
proach in multi-task setups.

Latent Disentanglement. Since the latent representation
is initialized to zero during inference, latent disentanglement
supports effective task conditioning rather than directly in-
fluencing the model. As shown in Table 3, adding latent
disentanglement (U+K) to AE-ACT and MAE-ACT does
not result in significant performance improvements com-
pared to their Unified (U) counterparts. For Peg Insertion, in-
corporating disentanglement even slightly decreased perfor-
mance, while for Transfer Cube, the performance remained
largely unchanged. However, when latent disentanglement
is combined with the task-aware head (U+K+H), both AE-
ACT and MAE-ACT achieve better results on Peg Insertion
and Transfer Cube tasks. This combination appears particu-



larly beneficial, as the disentangled latent representation en-
hances the task-specific linear head’s ability to decode and
leverage task-specific features effectively. Notably, MAE-
ACT (U+K+H) achieves a success rate of 0.67 on Peg In-
sertion and 0.98 on Transfer Cube, achieving state-of-the-
art performance. Despite these promising results, the rel-
atively high standard deviation indicates variability across
trials. Further formal analysis is required to confirm these
findings and fully understand the interplay between latent
disentanglement and task-aware heads. We hypothesize that
as the number of tasks increases, the benefits of disentangle-
ment and task-specific heads will become more pronounced,
offering clearer insights and advantages in future studies.

Mixture of Action Expert Embedding. The Mixture of
Action Expert Embedding (MAE) facilitates leveraging joint
representations across tasks while preserving task-specific
representations. Although solely adapting the Action Expert
Embedding (AE-{U}, {U+K}, {U+H}) appears sufficient
for generalization, incorporating the mixture of action expert
embedding (MAE-{U}, {U+K}, {U+H}) further enhances
overall performance. When comparing AE and MAE with
the integration of all components ({U+K+H}), the perfor-
mance remains nearly identical, indicating that further in-
vestigation is required to fully understand and reveal its ef-
fects. We anticipate that including more tasks in future ex-
periments would better highlight the advantages of using the
mixture of action expert embedding.

Parameter Comparison between ACT and MAE-ACT.
Table 4 highlights the parameter comparison between ACT
and MAE-ACT. Key differences include the addition of a
distinct action expert embedding with a dedicated linear
layer for each task, the integration of task prototypes uti-
lizing a single linear layer, and task-specific linear action
heads. These architectural modifications lead to a modest
parameter increase from 83.92M to 85.44M—an increment
of only 1.8% compared to the original ACT. This demon-
strates that MAE-ACT achieves efficient, well-generalized
performance across tasks without necessitating a significant
parameter expansion.

Limitations
Despite the improved performance of our MAE-ACT in bi-
manual manipulation compared to baselines, several limita-
tions remain. First, our experiments are restricted to simu-
lation environments, leaving its real-world applicability un-
proven. While ACT has shown strong performance in real-
world settings, the potential of MAE-ACT for real-world
multi-task scenarios remains promising but requires further
validation beyond simulated conditions. Additionally, our
evaluations are limited to the two tasks defined by the orig-
inal ACT framework. This highlights the need for future re-
search to explore and extend MAE-ACT to a broader range
of tasks and applications.

Conclusion
In this paper, we introduce MAE-ACT, a novel approach that
combines the Mixture of Action Expert Embeddings (MAE)

with the Action Chunking Transformer (ACT) to address
the complexities of multi-task bimanual manipulation. Our
method enables a unified policy capable of handling mul-
tiple tasks without requiring large parameter models or ex-
tensive external datasets. Comprehensive experiments on the
ALOHA simulation benchmark show that MAE-ACT out-
performs single-task-specific models and the original ACT,
achieving higher success rates. Although our work primar-
ily focuses on simulations and a limited set of tasks, the
promising results suggest that MAE-ACT has the potential
to generalize to real-world applications. We believe that our
method can extend bimanual manipulation to a variety of
applications, such as language-conditioned tasks and mobile
manipulation, enabling the exploration of more complex and
diverse scenarios in robotic manipulation.
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