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Abstract

Pretrained foundation models (FMs) have exhibited extraor-
dinary in-context learning performance, allowing zero-shot
(or few-shot) generalization to new environments/tasks not
encountered during the pretraining. In the case of rein-
forcement learning (RL), in-context RL (ICRL) emerges
when pretraining FMs on decision-making problems in an
autoregressive-supervised manner. Nevertheless, the current
state-of-the-art ICRL algorithms, such as Algorithm Distilla-
tion, Decision Pretrained Transformer and Decision Impor-
tance Transformer, impose stringent requirements on the pre-
training dataset concerning the behavior (source) policies,
context information, and action labels, etc. Notably, these
algorithms either demand optimal policies or require vary-
ing degrees of well-trained behavior policies for all pretrain-
ing environments. This significantly hinders the application
of ICRL to real-world scenarios, where acquiring optimal or
well-trained policies for a substantial volume of real-world
training environments can be prohibitively expensive or even
intractable. To overcome this challenge, we introduce a novel
approach, termed State-Action Distillation (SAD), that al-
lows to generate an effective pretraining dataset guided solely
by random policies. In particular, SAD selects query states
and corresponding action labels by distilling the outstanding
state-action pairs from the entire state and action spaces by
using random policies within a trust horizon, and then inherits
the classical autoregressive-supervised mechanism during the
pretraining. To the best of our knowledge, this is the first work
that enables effective ICRL under (e.g., uniform) random
policies and random contexts. We also establish the quantita-
tive analysis of the trustworthiness as well as the performance
guarantees of our SAD approach. Moreover, our empirical re-
sults across multiple popular ICRL benchmark environments
demonstrate that, on average, SAD outperforms the best base-
line by 236.3% in the offline evaluation and by 135.2% in the
online evaluation.

Introduction
Pretrained foundation models (FMs) have demonstrated
promising performance across a wide variety of domains
in artificial intelligence including natural language process-
ing (NLP) (Devlin 2018; Radford 2018; Radford et al. 2019;
Brown 2020), computer vision (CV) (Yuan et al. 2021; Sam-
mani, Mukherjee, and Deligiannis 2022; Ma et al. 2023;
Chen et al. 2024), and sequential decision-making (Chen
et al. 2021; Janner, Li, and Levine 2021; Xu et al. 2022b;

Yang et al. 2023; Light et al. 2024a,b). This success is at-
tributed to FMs’ impressive capability of in-context learn-
ing (Dong et al. 2022; Li et al. 2023; Wei et al. 2023;
Wies, Levine, and Shashua 2024) which refers to the abil-
ity to infer and understand the new tasks provided with the
context information (or prompt) and without model param-
eters updates. Recently, in-context reinforcement learning
(ICRL) (Laskin et al. 2022; Grigsby, Fan, and Zhu 2023;
Lin, Bai, and Mei 2023; Sinii et al. 2023; Zisman et al. 2023;
Lee et al. 2024; Lu et al. 2024; Wang et al. 2024; Dong et al.
2024) has emerged when FMs are pretrained on sequential
decision-making problems. Whereas FMs use texts as the
context/prompt in NLP, ICRL treats the state-action-reward
tuples as the contextual information for decision-making.

However, the current state-of-the-art (SOTA) ICRL
algorithms impose strict requirements on the pretrain-
ing datasets. More specifically, Algorithm Distillation
(AD) (Laskin et al. 2022) requires the context to contain the
complete learning history (from the initial policy to the final-
trained policy) of the source (or behavior) RL algorithm
for all pretraining environments. In addition, AD requires
environments to have short episodes, allowing the context
to capture cross-episodic information. This enables AD to
learn the improvement operator of the source RL algorithm.
Conversely, Decision Pretrained Transformer (DPT) (Lee
et al. 2024) partially relaxes the requirement on the con-
text, permitting it to be gathered by random policies and
without needing to adhere to the transition dynamics. Nev-
ertheless, DPT necessitates the optimal policy to label an
optimal action for any randomly sampled query state across
all pretraining environments. To explore the feasibility of
ICRL in the absence of optimal policies, Decision Impor-
tance Transformer (DIT) (Dong et al. 2024) proposes to
leverage the observed state-action pairs in the context data
as query states and corresponding action labels. Each state-
action pair within the context is assigned a weight in the
training process. This weight is proportional to the pseudo-
return of the pair. Thus, DIT prioritizes the training on high-
pseudo-return pairs. Despite not demanding optimal poli-
cies, DIT still requires a substantial context dataset to com-
prehensively cover all state-action pairs from the state and
action spaces. Furthermore, DIT mandates that more than
30% of the transition data in the context be well-trained, and
the context should originate from a complete episode.



Notably, acquiring either optimal policies or well-trained
policies across a multitude of pretraining environments in
real-world scenarios can be prohibitively expensive or even
intractable. On the other hand, the transition data available
in real-world problems like healthcare (Fatemi et al. 2022;
Tang and Wiens 2021)—collected as the context—may not
originate from a complete episode. These stringent require-
ments on the pretraining dataset of the SOTA ICRL algo-
rithms severely limit their practical applications to the real
world, especially for those where the transition data exhibits
high variance to train an effective policy, and a naive ran-
dom policy such as the uniform policy becomes a reasonable
choice at hand. Consequently, this paper centers on the ICRL
that operates without the need for optimal (or any degree of
well-trained) policies or episodic context, placing its empha-
sis on the scenarios under (e.g., uniform) random policies
and random contexts only. More background knowledge can
be found in the Related Work section (see Appendix A).

Main Contributions
The main contributions of this work are summarized as fol-
lows.

• We propose a novel approach termed State-Action Distil-
lation (SAD) to generate the pretraining dataset of ICRL
under random policies. Notably, SAD distills the out-
standing state-action pairs over the entire state and action
spaces for the query states and corresponding action la-
bels (refer to Figure 1), by executing all possible actions
under the random policies within a trust horizon.

• To the best of our knowledge, SAD stands as the first
method that enables effective ICRL under (e.g., uniform)
random policies and random contexts.

• We establish the quantitative analysis of the trustworthi-
ness as well as the performance guarantees of our SAD
approach. We substantiate the efficacy of SAD by em-
pirical results on several popular ICRL benchmark envi-
ronments. On average, SAD significantly outperforms all
existing SOTA ICRL algorithms. More concretely, SAD
surpasses the best baseline by 236.3% in the offline eval-
uation and by 135.2% in the online evaluation.

In-Context Reinforcement Learning
This section introduces the background of ICRL mecha-
nisms and three SOTA ICRL algorithms. We start by pre-
senting the preliminaries of ICRL.

Preliminaries
RL problems are generally formulated as Markov Decision
Processes (MDPs) (Sutton 2018). An MDP can be repre-
sented by a tuple τ = (S,A,R, P, ρ), where S and A de-
note finite state and action spaces, R : S × A → R denotes
the reward function that evaluates the quality of the decision
(action), P : S × A × S → [0, 1] denotes the transition
probability that describes the dynamics of the system, and
ρ : S → [0, 1] denotes the initial state distribution.

A policy π defines a mapping from states to probability
distributions over actions, providing a strategy that guides

the agent in the decision making. The agent interacts with
the environment following the policy π and the transition
dynamics of the system, and then generates an episode of
the transition data (s0, a0, r0, · · · ). The performance mea-
sure J(π) is defined by the expected discounted cumulative
reward under the policy π

J(π) = Es0∼ρ,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtrt

]
. (1)

The goal of RL is to find an optimal policy π∗ that max-
imizes J(π). It is crucial to recognize that π∗ often varies
across different MDPs (environments). Thus, the optimal
policy for standard RL must be re-learned each time a new
environment is encountered. Under this circumstance, ICRL
proposes to pretrain a FM on a wide variety of pretraining
environments, and then deploy it in the unseen test environ-
ments without updating parameters in the pretrained model,
i.e., zero-shot generalization (Sohn, Oh, and Lee 2018; Ma-
zoure et al. 2022; Zisselman et al. 2023; Kirk et al. 2023).

Supervised Pretraining Mechanism
In this subsection, we introduce the methodology behind
ICRL–a supervised pretraining mechanism. Consider two
distributions over environments Ttrain and Ttest for pretrain-
ing and test (evaluation), respectively. Each environment,
along with its corresponding MDP τ , can be regarded as an
instance drawn from the environment distributions, where
each environment may exhibit distinct reward functions and
transition dynamics. Given an environment τ , a contex-
t/prompt C = {si, ai, ri, s′i}i∈[n] refers to a collection of
interactions between the agent and the environment τ , sam-
pled from a pretraining context distribution Dtrain(· | τ), i.e.,
C ∼ Dtrain(· | τ). Notably, Dtrain(· | τ) contains the con-
textual information regarding the environment τ . We next
consider a query state distribution Dτ

q and a label policy that
maps the query state to the action label, i.e., πl : S → ∆(al).
Then, the joint distribution over the environment τ , context
C, query state sq , and action label al is given by

Ptrain(τ, C, sq, al) = Ttrain(τ) ·Dtrain(C|τ) ·Dτ
q · πl(al|sq).

(2)

ICRL follows a supervised pretraining mechanism. More
concretely, a FM with parameter θ (denoted by Fθ : C ×
S → ∆(al)) is pretrained to predict the action label al given
the context C and query state sq . To do so, the current liter-
ature (Laskin et al. 2022; Lee et al. 2024; Dong et al. 2024)
often considers the following objective function

θ∗ = argmin
θ

EPtrain [l (Fθ(· | C, sq), al)] , (3)

where l(·, ·) represents the loss function, for instance, neg-
ative log-likelihood (NLL) for discrete-action problems and
mean square error (MSE) for continuous-action scenarios.
We note that while the current SOTA ICRL algorithms (AD,
DPT, and DIT) adhere to a common objective function (3),
they differ significantly in constructing the context, query
state, and action label.



Figure 1: Schematic of the State-Action Distillation (SAD) approach. SAD first collects the context and query state using a
random policy, then distills the action label by exploring the action space using the random policy and query state within a trust
horizon. The collected contexts, query states, and action labels form the pretraining dataset, which can be employed to pretrain
a foundation model for in-context reinforcement learning in a supervised pretraining mechanism.

Algorithm Distillation. Instead of learning an optimal
policy for a specific environment, AD proposes to learn a
RL algorithm itself across a wide range of environments.
This is, the FM in AD is pretrained to imitate the source (or
behavior) algorithm over the pretraining environment distri-
bution Ttrain. In general, AD demands a well-trained source
algorithm with its complete learning history (from the ini-
tial policy to the final-trained policy). Additionally, AD is
restricted to the environments with short episode length by
which the context must capture cross-episode information
of the source algorithm. In terms of the objective function
(3), AD takes the state at the time step t as the query state,
at from the source algorithm as the action label, and the
episodic history data (s0, a0, r0, · · · , st−1, at−1, rt−1) to be
the context.

Decision Pretrained Transformer. Instead of being strin-
gent on the pretraining context dataset and the environment
itself, DPT handles the context and query state in a more
general manner. Specifically, DPT considers an entirely ran-
dom collection of transitions as the context, a random query
state sq drawn from Dq , and an optimal action label cor-
responding to sq . Despite less requirements on the context,
DPT necessitates access to optimal policies for the optimal
action labels in all pretraining environments, which may not
be available in real-world applications.

Decision Importance Transformer. DIT proposes to
learn ICRL without optimal action labels, following the
same supervised pretraining mechanism as DPT. To that end,
DIT leverages every possible state and action in the context
as the query state and corresponding action label. It is im-
portant to point out that DIT requires a (partially) complete
episode to form the context, enabling the computation of
a pseudo-return for each state-action pair. By mapping the
pseudo-return to a weight that reflects the quality of each
state-action pair, DIT can pretrain the FM using the DPT
structure, augmented by the weight assigned to each query
state and action label. In other words, DIT prioritizes the

training on high-pseudo-return pairs. Last but not least, DIT
still mandates that more than 30% of the context data comes
from well-trained policies.

To summarize, it is worth highlighting that all these
SOTA ICRL algorithms necessitate varying degrees of well-
trained, or even optimal policies during the pretraining
phase. However, obtaining optimal or well-trained policies
for real-world applications is often prohibitive, as it demands
extensive training across a vast number of real-world envi-
ronments. This challenge becomes even more pronounced
in the domains like healthcare (Fatemi et al. 2022), where
the transition data exhibits high variance to train an effective
policy, and the random policy becomes a reasonable choice
at hand. Therefore, executing ICRL under (e.g., uniform)
random policies and random contexts is crucial for enabling
the practical application of ICRL in the real-world.

State-Action Distillation
In this section, we propose the State-Action Distillation
(SAD), an approach for generating the pretraining dataset
for ICRL under random policies and random contexts (see
Figure 1). We summarize the implementation details of SAD
in Algorithms 1-6.

As indicated in (2), the pretraining data consists of the
context, the query state and the action label. We start by in-
troducing the generation of the context under random poli-
cies in SAD (refer to Algorithm 1). It is important to high-
light that the context is derived through interactions with
the environment under any given random policy (e.g., uni-
form random policy), and notably, the context not necessar-
ily originates from a complete episode. These benefits make
SAD potentially well-suited for ICRL’s real-world applica-
tions with random transition data only.

Having collected the random context, we are now in the
stage of collecting query states and corresponding action la-
bels for the pretraining of FM under the random policy.



Algorithm 1: Collecting Contexts under Random Policy

1: Require: Random policy π, context horizon length T ,
state space S, environment τ , empty context C = ∅

2: for t in [T ] do
3: Sample a state s ∼ S and an action a ∼ π(·|s)
4: Collect (r, s′) by executing action a in the environ-

ment τ
5: Add (s, a, r, s′) to C
6: end for
7: Return C

We proceed by recalling that DIT prioritizes the training
on high-pseudo-return pairs from the context data collected.
To that end, DIT assigns a weight w to the loss function dur-
ing the pretraining phase that is proportional to the pseudo-
return, i.e., w(st, at) ∝

∑T
t′=t γ

t′−trt′ . Nonetheless, we ac-
knowledge that DIT may not explore to train on good state-
action pairs under the random policy for two reasons: (i)
DIT solely considers to train on the state-action pairs that
are observed in the context, which contains limited transi-
tion data and is derived by the random policy. (ii) Even for
the state-action pairs in the collected context, the pseudo-
return does not necessarily prioritize the optimal pair but
rather promotes the pair with high immediate reward, as the
discount factor applies starting from the current time step
with a horizon of (T − t+ 1) only, instead of T .

Under this circumstance, our SAD approach advocates for
distilling the outstanding query states and action labels by
searching across the entire state and action spaces under the
random policy. Before proceeding, we first recall the defi-
nition of the optimal action in the problems of multi-armed
bandit (MAB) and MDP. For any query state sq , the optimal
action in the action space A for sq corresponds to the action
that maximizes the optimal Q-function, i.e.,

a∗MAB(sq)
∆
= argmax

a∈A
E [r(sq, a)]︸ ︷︷ ︸
Q∗

MAB(sq,a)

, (4)

a∗MDP(sq)
∆
= argmax

a∈A
Eπ∗

[ ∞∑
t=0

γtrt|s0 = sq, a0 = a

]
︸ ︷︷ ︸

Q∗
MDP(sq,a)

, (5)

where sq in (4) refers to the singleton state in the MAB prob-
lem, and π∗ in (5) denotes the optimal policy in the MDP.

However, both a∗MAB and a∗MDP are intractable to obtain
in our problem of interest for two reasons: (i) computing
the expectation in the Q-function demands to sample infinite
episodes; (ii) one can only have access to the random policy,
instead of π∗. Therefore, we instead consider (i) stochastic
approximation that uses the average as the unbiased estimate
of the expectation due to the law of large numbers; (ii) max-
imizing the return under the random policy.

Trustworthiness of the Random Policy
Subsequently, the crucial question arises: when can we
trust the random policy? We claim: The random policy is

probabilistically trustworthy for the MAB and MDP prob-
lems within a trust horizon. We formalize this claim for the
MAB and MDP respectively in this subsection, which relies
on the following assumption.
Assumption 1. The absolute value of the reward r(s, a) is
bounded by a positive constant B for all state-action pairs
in the MAB and MDP, i.e., |r(s, a)| ≤ B, ∀(s, a) ∈ S ×A.

Note that Assumption 1 is common in the literature (Azar,
Osband, and Munos 2017; Wei et al. 2020; Zhang, Du, and Ji
2021). In particular, in the case of finite state-action spaces,
it is always possible to design the reward to avoid the possi-
bility of being unbounded. With Assumption 1 established,
we first formalize the trustworthiness of the random policy
for the MAB problem in the following theorem.
Theorem 1 (MAB). Let Assumption 1 hold. Denote by sq
and a∗ the singleton state and optimal arm in the MAB prob-
lem. Consider a random policy π. Suppose that each arm
has been selected N times (N ∈ N+, trust horizon) under
π. With probability at least 1− δ, it holds that

1

N

N∑
i=1

r(sq, a
∗ | π) ≥ max

a∈A\{a∗}

1

N

N∑
i=1

r(sq, a | π), (6)

when the trust horizon N is greater than

8B2(
E[r(sq, a∗)]− max

a∈A\{a∗}
E[r(sq, a)]

)2 log

(
1 +

√
1− δ

δ

)
.

(7)

Proof. See Appendix B. □
Theorem 1 implies that the trust horizon N quantifies the

trustworthiness of the decision making under the random
policy π for MAB problems. Indeed, a larger N implies a
higher probability (smaller δ) that the average reward of the
optimal arm under π exceeds that of the next-best arm, there-
fore, making a more reliable decision. We substantiate this
claim by empirical evidence (depicted in Figure 5).

In the practical implementation, we simply execute the
MAB under the random policy π until every action in the
action space A selected exactly N times, discarding any ac-
tions that exceed the trust horizon N . Subsequently, we se-
lect the action with the maximal average reward as the action
label for the singleton state. The detailed procedure for col-
lecting such action labels in MAB is outlined in Algorithm 2.

While the trustworthiness of the random policy in the
MAB problem has been established and discussed, the sce-
nario of the MDP presents a distinct challenge. To proceed,
we rely on the following assumption.
Assumption 2. Given a random policy π, assume that

argmax
a∈A

Qπ
MDP(sq, a) = argmax

a∈A
Q∗

MDP(sq, a), ∀sq ∈ S.

(8)

It is worth noting that Assumption 2 holds in the MDP
problems like grid world navigation (Laskin et al. 2022),
which we consider for empirical evaluation in the Experi-
ments section of this paper. Specifically, the action derived



Algorithm 2: Collecting Query States and Action Labels un-
der Random Policy (MAB)

1: Require: Random policy π, singleton query state sq , ac-
tion space A, environment τ , empty average reward list
Lr, trust horizon N

2: Execute the MAB in τ under the random policy π until
every action in A selected exactly N times, discarding
any actions that exceed the trust horizon N .

3: for a in [A] do
4: Record the average reward associated with the action

a in the history, and add it to Lr

5: end for
6: Obtain al = A(argmax(Lr))
7: Return (sq, al)

from maximizing the return under the random policy be-
comes (nearly) equivalent to that guided by maximizing the
return under the optimal policy, as the maximal return in-
duced by both policies corresponds to navigating to the goal
as quickly as possible. We formalize this in Proposition 1
and provide a theoretical proof and empirical validation (re-
fer to Appendix B). Besides, we also acknowledge that As-
sumption 2 may not hold universally for all MDP problems,
and we leave its exploration for future research.

Having introduced Assumption 2, we are in conditions
of establishing the trustworthiness of the random policy for
MDP, which we formally state in the next theorem. To pro-
ceed, let us define

Qπ,N
MDP(sq, a) = Eπ

[
N∑
t=0

γtr(st, at)|s0 = sq, a0 = a

]
, (9)

Q̂π,N
MDP(sq, a)=

1

Nep

Nep∑
i=1

N∑
t=0

(
γtr(st, at)|s0 = sq, a0 = a, π

)
.

(10)

where Q̂π,N
MDP(sq, a) is an unbiased estimate of Qπ,N

MDP(sq, a)
and Nep denotes the number of episodes.
Theorem 2 (MDP). Let Assumptions 1 and 2 hold. De-
note by a∗ the optimal action given sq . Consider a ran-
dom policy π as well as its Q-function Qπ

MDP. Consider
the trust horizon N > logγ (κ(1− γ)/(2B)) − 1. Define

κ = min
sq∈S

(
Qπ

MDP(sq, a
∗)− max

a∈A\{a∗}
Qπ

MDP(sq, a)

)
. With

probability at least 1− δ, it holds that

Q̂π,N
MDP(sq, a

∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a), ∀sq ∈ S, (11)

when the number of episodes Nep satisfies

Nep ≥
2
(
1− γN+1

)2
(κ (1− γ) /(2B)− γN+1)

2︸ ︷︷ ︸
G1

log

(
1 +

√
1− δ

δ

)
.

(12)

Proof. See Appendix B. □

Theorem 2 implies that the trust horizon N quantifies
the trustworthiness of the decision making under the ran-
dom policy π for MDP problems. Notice that G1 in (12) is
monotonically decreasing with respect to the trust horizon N
when N > logγ (κ(1− γ)/(2B))− 1 (see Lemma 2 in Ap-
pendix B). Thus, with a fixed number of episodes, a larger
N corresponds to a higher probability (smaller δ) that the
average reward of the optimal action under π exceeds that
of the next-best action, indicating a more reliable decision.
This aligns with the intuition that a larger N corresponds to
a closer approximation of the infinite-horizon MDP, where
the optimal action emerges under the random policy π (by
Assumption 2).

Algorithm 3: Collecting Query States and Action Labels un-
der Random Policy (Sparse-Reward MDP)

1: Require: Random policy π, state space S, action space
A, environment τ , trust horizon N

2: Set min step = N + 1
3: while min step > N do
4: Sample a query state sq ∼ S
5: Empty a step list Ls

6: for a in [A] do
7: Initialize the state and action as s0 = sq, a0 = a
8: Run an episode of N steps in τ under the random

policy π, and terminate the episode early upon re-
ceiving a reward

9: Add consumed steps to Ls (add “N + 1” if no re-
ward is received)

10: end for
11: min step = min(Ls)
12: end while
13: Obtain al = A(argmin(Ls))
14: Return (sq, al)

In the practical implementation, we present two versions
of pseudo-codes for the MDP with dense and sparse re-
wards. In the case of dense rewards, we randomly select
a query state from the state space and execute an episode
of N steps. Subsequently, we choose the action that max-
imizes Q̂π,N

MDP(sq, a) across the entire action space A. The
implementation details are summarized in Algorithm 5 (see
Appendix C). Furthermore, the MDP with sparse rewards
are generally more challenging to solve, as the agent does
not receive feedback from the environment at each step. For
any query state sq , our goal remains to select the action that
maximizes Q̂π,N

MDP(sq, a). However, this approach may prove
ineffective if N is too small, as the agent may never reach
the goal, resulting in a return of 0 for all actions. To en-
hance the practicality in the implementation of the sparse-
reward MDP, we adopt a different strategy. Specifically, for
any query state sq , we prioritize actions that can achieve the
goal within N steps, with the actions consuming fewer steps
being preferred. If no action can accomplish the goal within
N steps, we sample another query state until a qualified ac-
tion is identified. This action is then designated as the action
label associated with the query state sq . Details of this im-
plementation is outlined in Algorithm 3.



Having introduced the processes for collecting the con-
text, query state, and action label under the random policy,
we can now generate the pretraining dataset by integrating
the aforementioned procedures (refer to Algorithm 4). Given
the pretraining dataset, the model pretraining procedure as
well as the offline and online deployment for SAD are sum-
marized in Algorithm 6 (see Appendix C).

Algorithm 4: State-Action Distillation (SAD) under Ran-
dom Policy

1: Require: Empty pretraining dataset D with size |D|,
pretraining environment distribution Ttrain, random pol-
icy π, context horizon length T , state space S, action
space A, trust horizon N

2: for i in [|D|] do
3: Sample an environment τ ∼ Ttrain
4: Collect the context C under the environment τ and the

random policy π through Algorithm 1
5: Collect the query state sq and the action label al under

the environment τ and the random policy π through
Algorithm 2 for MAB (Algorithm 3 for sparse-reward
MDP, Algorithm 5 for dense-reward MDP)

6: Add (C, sq, al) to the pretraining dataset D
7: end for
8: Return D

Performance Guarantees
In this subsection, we provide theoretical guarantees of our
SAD approach. Theorems 1 and 2 imply the probability
of SAD selecting the optimal action within a trust hori-
zon. Then inspired by DPT, the trajectories generated by
SAD take the same distribution as those produced by a well-
specified posterior sampling (Osband, Russo, and Van Roy
2013) with a high probability. We formalize this claim in the
following corollary.
Corollary 1. Let hypotheses of Theorems 1 and 2 hold. De-
note by l the length of the trajectory. For any environment
τ and history data H , SAD and the well-specified posterior
sampling follow the same trajectory distribution with prob-
ability (1− δ)l

PFθ
(trajectory|τ,H) = Pps(trajectory|τ,H),∀trajectory.

(13)
Proof. See Appendix B. □

Having established the corollary above, we next inves-
tigate the regret bound of SAD in the finite MDP setting
(see details in Appendix B). Consider the online cumula-
tive regret of SAD over K episodes in the environment τ as
Regretτ (Fθ) =

∑K
k=0 Vτ (π

∗
τ )−Vτ (πk), where πk(· | st) =

Fθ(· | Ck−1, st). Then, the regret bound of SAD is formally
stated as follows.
Corollary 2. Let hypotheses of Theorems 1 and 2 hold.
Given the environment τ and a constant B′ > 0, suppose
that supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP with
horizon T , it holds with probability (1− δ)KT that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√
K|A|). (14)

Proof. See Appendix B. □

Experiments
In this section, our empirical results on five ICRL bench-
mark environments (Gaussian Bandits, Bernoulli Bandits,
Darkroom, Darkroom-Large, Miniworld) substantiate the
efficacy of our proposed SAD method. The setup of these
environments are deferred to Appendix D.

We compare our proposed SAD approach with three
SOTA ICRL algorithms: AD, DPT, and DIT in the afore-
mentioned benchmark environments (see details in Ap-
pendix D), and consider the DPT with optimal action labels
(DPT∗) as the oracle upper bound of SAD. Since all these
methods are FM-based, we employ the same transformer ar-
chitecture (causal GPT2 model (Radford et al. 2019)) and
hyperparameters (number of attention layers, number of at-
tention heads, embedding dimensions, etc) across all exper-
iments to ensure a fair comparison. The main hyperparam-
eters employed in this work are summarized in Tables 1-2
(refer to Appendix D).

In all experiments, we employ a uniform random policy to
collect context, query states, and action labels, as indicated
in Algorithms 1-5. Then, we pretrain and (offline/online) de-
ploy the FM as presented in Algorithm 6 (see Appendix C).
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Figure 2: Offline and online evaluations of ICRL algorithms
trained under a uniform random policy: AD, DPT, DIT,
DPT∗, and SAD (ours). Each algorithm contains four in-
dependent runs with mean and std. Environment: Gaussian
Bandits (top row), Bernoulli Bandits (bottom row).

Bandits. We adhere to offline and online evaluation met-
rics for Bandits established in (Lee et al. 2024). In the of-
fline evaluation, we utilize the suboptimality over different
context horizon, defined by µa∗ − µa, where µa∗ and µa

represent the mean rewards over 200 test environments of
the optimal arm and the selected arm, respectively. In on-
line evaluation, we employ cumulative regret, defined by∑T

t=0(µa∗ −µat
), where at denotes the selected arm at time

t. The top row of Figure 2 demonstrates that our SAD ap-
proach significantly outperforms three SOTA baselines un-
der uniform random policy, by achieving much lower sub-
optimality and cumulative regret. More specifically, let us



define the performance improvement of SAD over base-
lines in the offline evaluation by (suboptimalitybaseline −
suboptimalitySAD)/suboptimalitySAD. Likewise, the per-
formance improvement in the online evaluation is to sim-
ply replace the suboptimality by cumulative regret. Then,
SAD surpasses the best baseline, DIT, by achieving 354.0%
performance improvements in the offline evaluation and
273.9% in the online evaluation (refer to the first row of
Tables 3 and 4 in Appendix D). To evaluate the out-of-
distribution performance of SAD compared to other base-
lines, we test the models pretrained by all methods on
the Gaussian Bandits and assess their performance on the
Bernoulli Bandits with no further fine-tuning. The bottom
row of Figure 2 illustrates that SAD still achieves lower
suboptimality and cumulative regret than all other baselines,
demonstrating a more robust performance in handling out-
of-distribution scenarios. More specifically, SAD surpasses
the best baseline, DIT, by 289.5% in the offline evaluation
and 313.9% in the online evaluation (refer to the second row
of Tables 3 and 4 in Appendix D).

In the environments of Darkroom and Miniworld, we use
return as the evaluation metric. Moreover, we define the per-
formance improvement of SAD over the baseline method
in both offline and online evaluations by (ReturnSAD −
Returnbaseline)/Returnbaseline.
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Figure 3: Offline and online evaluations of ICRL algorithms
trained under a uniform random policy: AD, DPT, DIT,
DPT∗, and SAD (ours). Each algorithm contains four inde-
pendent runs with mean and std. Environment: DarkRoom
(top row), DarkRoom-Large (bottom row).

Darkrooms. Figure 3 demonstrates that our SAD ap-
proach significantly outperforms three SOTA baselines in
the Darkroom and Darkroom-Large under uniform random
policy, by achieving much higher return. In the Darkroom,
SAD surpasses the best baseline, DIT, by 149.3% in the of-
fline evaluation and 41.7% in the online evaluation (refer to
the third row of Tables 3 and 4). Likewise, in the Darkroom-
Large, SAD outperforms the best baseline, DIT, by 266.8%
in the offline evaluation and 24.7% in the online evaluation

(refer to the fourth row of Tables 3 and 4 in Appendix D).
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Figure 4: Offline and online evaluations of ICRL algorithms
trained under a uniform random policy: AD, DPT, DIT,
DPT∗, and SAD (ours). Each algorithm contains four inde-
pendent runs with mean and std. Environment: Miniworld.

Miniworld. Figure 4 demonstrates that our SAD approach
outperforms the three SOTA baselines in the Miniworld un-
der uniform random policy, by achieving a higher return.
More specifically, SAD surpasses the best baseline, DIT, by
122.1% in the offline evaluation and 21.7% in the online
evaluation (refer to the fifth row of Tables 3 and 4 in Ap-
pendix D).

Tables 3 and 4 also imply that SAD significantly outper-
forms all baselines on average across the five ICRL bench-
mark environments. In the offline evaluation, SAD exceeds
the best baseline DIT by 236.3% on average, the second-
best DPT by 2015.9%, and the third-best AD by 2075.2%.
In the online evaluation, SAD surpasses DIT by 135.2%,
DPT by 3093.8%, and AD by 3208.8% on average. In ad-
dition to comparing SAD with the three SOTA ICRL algo-
rithms under the uniform random policy, we also include the
empirical performance of the DPT with optimal action la-
bels (DPT∗) as the oracle upper bound of SAD. We observe
that SAD demonstrates performance comparable to DPT∗ in
tasks such as Gaussian Bandits, Bernoulli Bandits, Dark-
Room, and DarkRoom-Large. Although Miniworld intro-
duces challenges due to its pixel-based inputs and complex
environments, SAD under the random policy still achieves
approximately 50% of the performance of DPT∗. Overall,
SAD is within 18.6% of the performance of DPT∗ in the of-
fline evaluation across the five ICRL tasks, and within 12.3%
in the online evaluation (see details in Tables 3 and 4).

Ablation Studies
Trust Horizon. Theorems 1 implies that the uniform ran-
dom policy is probabilistically trustworthy within a hori-
zon N , with monotonically increasing probability of select-
ing the optimal action with N in the MAB problem. We
substantiate this observation from the theorem by empiri-
cal evidence, as presented in Figure 5 (left). Furthermore,
we conduct empirical investigations into the influence of the
trust horizon N on the performance of the MAB problem,
which considers the environments of Gaussian Bandits. As
expected, a larger N in the MAB problem leads to a better
performance (see top row of Figure 6).

We then shift to the MDP problem with the environment
of Darkroom. Notice that in our practical algorithm for the
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Figure 5: The accuracy (probability) of selecting the optimal
action in the MAB and MDP with varying trust horizon N .
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Figure 6: Offline and online evaluation of SAD with varying
trust horizon N for MAB (top row) and MDP (bottom row).
Each N contains four independent runs with mean and std.

sparse-reward MDP like Darkroom (Algorithm 3), we only
utilize the state-action pairs that can reach the goal within
a trust horizon. Therefore, we solely record the probabili-
ty/accuracy of selecting the optimal actions on those states,
as presented in Figure 5 (right). It shows that the accu-
racy monotonically decreases with respect to N , which ide-
ally should lead to monotonically decreasing performance
as well. However, we note that this is not the case. In partic-
ular, large trust horizon N in the MDP leads to the low accu-
racy of selecting the optimal action, whereas small N may
induce the partially short-sighted training of FM, as Algo-
rithm 3 solely trains on the states at most N steps from the
goal, instead of all states (refer to Figure 7). Our numerical
results in the bottom row of Figure 6 validate this with the
fact N = 7 performing best, and provide the empirical evi-
dence that either an excessively large or small trust horizon
can lead to suboptimality.

Transformer Hyperparameters. We aim to validate the
robustness of our proposed SAD approach with respect to
the hyperparameters in the transformer block. Concretely,
we focus on the number of attention heads and attention
layers, as they have large impacts on the model size of the
transformer. As depicted in Figure 8, our empirical results in
Darkroom demonstrate a robust performance across varying
numbers of attention heads and attention layers.

6 5 4 3 2 1

7 6 5 4 3 2 1

8 7 6 5 4 3 2

9 8 7 6 5 4 3

10 9 8 7 6 5 4

11 10 9 8 7 6 5

12 11 10 9 8 7 6

6 5 4 3 4 5 6

5 4 3 2 3 4 5

4 3 2 1 2 3 4

3 2 1 1 2 3

4 3 2 1 2 3 4

5 4 3 2 3 4 5

6 5 4 3 4 5 6

Figure 7: The minimal number of steps required for a query
state to reach the goal (the golden star). Left: goal in the
upper-right corner. Right: goal in the middle.
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Figure 8: Offline and online evaluations of SAD with dif-
ferent transformer hyperparameters: the number of atten-
tion heads (top row), the number of attention layers (bottom
row). Each hyperparameter contains four independent runs
with mean and std.

Conclusion
In this work, we propose State-Action Distillation (SAD),
a novel approach for generating the pretraining dataset for
ICRL, which is designed to overcome the limitations im-
posed by the existing ICRL algorithms like AD, DPT, and
DIT in terms of relying on well-trained or even optimal poli-
cies to collect the pretraining dataset. SAD leverages solely
random policies to construct the pretraining data, signifi-
cantly promoting the practical application of ICRL in real-
world scenarios. We also provide the quantitative analysis of
the trustworthiness as well as the performance guarantees of
SAD. Moreover, our empirical results on multiple popular
ICRL benchmark environments demonstrate significant im-
provements over the existing baselines in terms of both per-
formance and robustness. Nevertheless, we note that SAD
is currently limited to the discrete action space. Extending
SAD to handle the continuous action space as well as more
complex environments presents a promising direction for the
future research.
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Appendix A: Related Work
Offline Reinforcement Learning
In contrast to the unlimited interactions with the environment in online RL, offline RL seeks to learn optimal policies from a
pre-collected and static dataset (Fujimoto et al. 2019; Levine et al. 2020; Kumar et al. 2020; Kostrikov, Nair, and Levine 2021;
Chen, Mishra, and Paternain 2024). One of the critical challenges in offline RL is with bootstrapping from out-of-distribution
(OOD) actions (Levine et al. 2020; Kumar et al. 2020; Xu et al. 2022a; Liu et al. 2024) due to the mismatch between the
behavior policies and the learned policies. To address this issue, the current SOTA offline RL algorithms propose to update
pessimistically by either adding a regularization or underestimating the Q-value of OOD actions.

Autoregressive-Supervised Decision Making
In addition to the traditional offline RL methods, autoregressive-supervised mechanisms based on the transformer architec-
ture (Vaswani 2017) have been successfully applied to offline decision making domains by their powerful capability in sequen-
tial modeling. The pioneering work in the autoregressive-supervised decision making is the Decision Transformer (DT) (Chen
et al. 2021). DT autoregressively models the sequence of actions from the historical offline data conditioned on the sequence
of returns in the history. During the inference, the trained model can be queried based on pre-defined target returns, allow-
ing it to generate actions aligned with the target returns. The subsequent works such as Multi-Game Decision Transformer
(MGDT) (Lee et al. 2022) and Gato (Reed et al. 2022) have exhibited the success of the autoregressive-supervised mechanisms
in learning multi-task policies by fine-tuning or leveraging expert demonstrations in the downstream tasks.

In-Context Reinforcement Learning
However, both traditional offline RL and autoregressive-supervised decision making mechanisms suffer from the poor zero-
shot generalization and in-context learning capabilities to new environments, as neither can improve the policy, with a fixed
trained model, in context by trial and error. In-context reinforcement learning (ICRL) aims to pretrain a transformer-based FM,
such as GPT2 (Radford et al. 2019), across a wide range of pretraining environments. During the evaluation (or inference),
the pretrained model can directly infer the unseen environment and learn in-context without the need for updating model
parameters. The SOTA ICRL algorithms including AD (Laskin et al. 2022), DPT (Lee et al. 2024) and DIT (Dong et al.
2024) have demonstrated the potential of the ICRL framework. Nevertheless, each of these methods imposes distinct yet strict
requirements on the pretraining dataset e.g., requiring well-trained (or even optimal) behavior policies, the context to be episodic
and/or substantial, which significantly restrict their practicality in real-world applications. Accordingly, mastering and executing
ICRL under (e.g., uniform) random policies and random contexts remains a crucial direction and a critical challenge.



Appendix B: Omitted Proofs
Proof of Theorem 1
Theorem 1 (MAB). Let Assumption 1 hold. Denote by sq and a∗ the singleton state and optimal arm in the MAB problem.
Consider a random policy π. Suppose that each arm has been selected N times (N ∈ N+, trust horizon) under π. With
probability at least 1− δ, it holds that

1

N

N∑
i=1

r(sq, a
∗ | π) ≥ max

a∈A\{a∗}

1

N

N∑
i=1

r(sq, a | π), (15)

when the trust horizon N satisfies

N ≥ 8B2(
E[r(sq, a∗)]− max

a∈A\{a∗}
E[r(sq, a)]

)2 log

(
1 +

√
1− δ

δ

)
. (16)

Proof. For any action a ∈ A \ {a∗}, consider two positive constants

ϵ1 = α (E[r(sq, a∗)]− E[r(sq, a)]) , (17)
ϵ2 = (1− α) (E[r(sq, a∗)]− E[r(sq, a)]) , (18)

where α ∈ [0, 1].
Consider the following two inequalities

1

N

N∑
i=1

r(sq, a
∗ | π) ≥ E[r(sq, a∗)]− ϵ1, (19)

1

N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2. (20)

We note that the two inequalities above are the sufficient but not necessary conditions for 1
N

∑N
i=1 r(sq, a

∗ | π) ≥
1
N

∑N
i=1 r(sq, a | π) to hold.

Therefore, we simply obtain that
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i=1

r(sq, a | π)

)
(21)

≥ P

(
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N∑
i=1

r(sq, a
∗ | π) ≥ E[r(sq, a∗)]− ϵ1,

1

N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2

)
(22)

= P

(
1

N

N∑
i=1

r(sq, a
∗ | π) ≥ E[r(sq, a∗)]− ϵ1

)
· P

(
1

N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2

)
, (23)

where the last equation follows from the fact that each arm is independent to other arms. We then lower bound the two proba-
bilities in the previous expression using Hoeffding’s inequality (Hoeffding 1994).

Since Assumption 1 implies that r(·, ·) ∈ [−B,B], Hoeffding’s inequality yields

P

(
1

N

N∑
i=1

r(sq, a | π)− E[r(sq, a)] ≤ ϵ2

)
≥ 1− exp

(
− 2Nϵ22
(B − (−B))2

)
, (24)

i.e.,

P

(
1

N

N∑
i=1

r(sq, a | π)− E[r(sq, a)] ≤ ϵ2

)
≥ 1− exp

(
−Nϵ22
2B2

)
. (25)

Likewise, we have

P

(
1

N

N∑
i=1

r(sq, a
∗ | π)− E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1− exp

(
− 2Nϵ21
(B − (−B))2

)
, (26)



i.e.,

P

(
1

N

N∑
i=1

r(sq, a
∗ | π)− E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1− exp

(
−Nϵ21
2B2

)
. (27)

Therefore, it holds for any α ∈ [0, 1] that

P

(
1

N

N∑
i=1

r(sq, a
∗ | π) ≥ 1

N

N∑
i=1

r(sq, a | π)

)
(28)

≥
(
1− exp

(
−Nϵ21
2B2

))
·
(
1− exp

(
−Nϵ22
2B2

))
(29)

=

(
1− exp

(
−Nα2 (E[r(sq, a∗)]− E[r(sq, a)])2

2B2

))
·

(
1− exp

(
−N(1− α)2 (E[r(sq, a∗)]− E[r(sq, a)])2

2B2

))
. (30)

Notice that the maximal value of the previous equation with respect to α reaches at α = 0.5. Then it holds that

P

(
1

N

N∑
i=1

r(sq, a
∗ | π) ≥ 1

N

N∑
i=1

r(sq, a | π)

)
≥

(
1− exp

(
−N (E[r(sq, a∗)]− E[r(sq, a)])2

8B2

))2

,∀a ∈ A \ {a∗}.

(31)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

ā = argmax
a∈A\{a∗}

1

N

N∑
i=1

r(sq, a | π). (32)

Then it also holds that

P

(
1

N

N∑
i=1

r(sq, a
∗ | π) ≥ max

a∈A\{a∗}

1

N

N∑
i=1

r(sq, a | π)

)
≥

(
1− exp

(
−N (E[r(sq, a∗)]− E[r(sq, ā)])2

8B2

))2

(33)

≥

(
1− exp

(
−
N
(
E[r(sq, a∗)]−maxa∈A\{a∗} E[r(sq, a)]

)2
8B2

))2

.

(34)

where the last inequality follows from the monotonicity.
To make the previous probability greater than 1− δ, we require(

1− exp

(
−
N
(
E[r(sq, a∗)]−maxa∈A\{a∗} E[r(sq, a)]

)2
8B2

))2

≥ 1− δ. (35)

Hence, we require the trust horizon N to satisfy

N ≥ 8B2(
E[r(sq, a∗)]−maxa∈A\{a∗} E[r(sq, a)]

)2 log

(
1 +

√
1− δ

δ

)
. (36)

This completes the proof.
□



Validation of Assumption 2 in the grid world MDP
For the sake of simplicity and without loss of generality, we consider a single-dimensional grid world MDP with the under-
standing that Assumption 2 holds for the two-dimensional grid world MDP as well, which is considered in our numerical
experiments. The environmental details of the single-dimensional grid world MDP can be found in Figure 9. To proceed, we
rely on the lemma below, and Assumption 2 is then validated by Proposition 1 that follows.

s s s s s

a a
Figure 9: A single-dimensional grid world MDP comprising five states {s0, s1, s2, s3, s4}, where s0 represents the goal state
(golden star). The environment offers two possible actions: a0 that corresponds to moving left, and a1 that corresponds to
moving right. Crossing the boundaries is strictly prohibited. Any transitions that would result in boundary crossing will be
confined to the current position. The reward structure is sparse, with a value of 1 received solely upon reaching the goal state
s0 and a value of 0 otherwise (see Figure 10 (left)). We consider an infinite time horizon with a discounter factor γ.

Lemma 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and A = {a0, a1}, as depicted
in Figure 9. Consider the random policy π in Assumption 2. It holds that

V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2) ≥ V π

MDP(s3) ≥ V π
MDP(s4). (37)

Proof. For simplicity, we consider π to be a uniform random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S. Recall the
Bellman expectation equation

V π
MDP(s) =

∑
a∈A

π(a | s) (r(s, a) + γEs′V
π

MDP(s
′)) . (38)

By combining the previous Bellman expectation equation with Figure 9 yields

V π
MDP(s0) =

1
2 (r(s0, a0) + γV π

MDP(s0) + r(s0, a1) + γV π
MDP(s1)) ,

V π
MDP(s1) =

1
2 (r(s1, a0) + γV π

MDP(s0) + r(s1, a1) + γV π
MDP(s2)) ,

V π
MDP(s2) =

1
2 (r(s2, a0) + γV π

MDP(s1) + r(s2, a1) + γV π
MDP(s3)) ,

V π
MDP(s3) =

1
2 (r(s3, a0) + γV π

MDP(s2) + r(s3, a1) + γV π
MDP(s4)) ,

V π
MDP(s4) =

1
2 (r(s4, a0) + γV π

MDP(s3) + r(s4, a1) + γV π
MDP(s4)) .

(39)

Substituting all rewards from Figure 10 (left) into the previous equations yields

V π
MDP(s0) =

1
2 (1 + γV π

MDP(s0) + γV π
MDP(s1)) ,

V π
MDP(s1) =

1
2 (1 + γV π

MDP(s0) + γV π
MDP(s2)) ,

V π
MDP(s2) =

1
2 (γV

π
MDP(s1) + γV π

MDP(s3)) ,

V π
MDP(s3) =

1
2 (γV

π
MDP(s2) + γV π

MDP(s4)) ,

V π
MDP(s4) =

1
2 (γV

π
MDP(s3) + γV π

MDP(s4)) .

(40)

Given γ ∈ (0, 1), the last equation of (40) implies that

V π
MDP(s3) =

2− γ

γ
V π

MDP(s4) ≥ V π
MDP(s4). (41)

Then, the fourth equation of (40) yields

V π
MDP(s2) =

2

γ
V π

MDP(s3)− V π
MDP(s4) (42)

≥ 2

γ
V π

MDP(s3)− V π
MDP(s3) (43)

≥ V π
MDP(s3). (44)



Likewise, the third equation of (40) can be rewritten as

V π
MDP(s1) =

2

γ
V π

MDP(s2)− V π
MDP(s3) (45)

≥ 2

γ
V π

MDP(s2)− V π
MDP(s2) (46)

≥ V π
MDP(s2). (47)

Combining the previous inequality with the first two equations of (40) directly yields

V π
MDP(s0) ≥ V π

MDP(s1). (48)

This completes the proof.
□

Proposition 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and A = {a0, a1}, as
depicted in Figure 9. Consider the random policy π in Assumption 2. It holds that

argmax
a∈A

Qπ
MDP(s, a) = argmax

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (49)

Proof. By the definition of Q∗
MDP and π∗ we obtain

Q∗
MDP(s, a) = Qπ∗

MDP(s, a), ∀(s, a) ∈ S ×A. (50)

Since the objective of the agent in Figure 9 is to reach the goal state as quickly as possible, and stay still, π∗(s) is given by

π∗(s) = a0, ∀s ∈ S. (51)

Moreover, we have

argmax
a∈A

Q∗
MDP(s, a) = argmax

a∈A
Qπ∗

MDP(s, a) = π∗(s) = a0, ∀s ∈ S. (52)

We then turn to consider the learning of Q-function under the random policy π. For simplicity, we consider π to be a uniform
random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S.

We next prove that Qπ
MDP(s, a0) ≥ Qπ

MDP(s, a1), ∀s ∈ S. We start with the state s0. Notice that

Qπ
MDP(s0, a0) = r(s0, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (53)

Qπ
MDP(s0, a1) = r(s0, a1) + γV π

MDP(s1) = γV π
MDP(s1). (54)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1). The previous equations then directly indicate

Qπ
MDP(s0, a0) ≥ Qπ

MDP(s0, a1). (55)

For the state s1, we have

Qπ
MDP(s1, a0) = r(s1, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (56)

Qπ
MDP(s1, a1) = r(s1, a1) + γV π

MDP(s2) = γV π
MDP(s2). (57)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2). Then it holds that

Qπ
MDP(s1, a0) ≥ Qπ

MDP(s1, a1). (58)

For the state s2, we have

Qπ
MDP(s2, a0) = r(s2, a0) + γV π

MDP(s1) = γV π
MDP(s1), (59)

Qπ
MDP(s2, a1) = r(s2, a1) + γV π

MDP(s3) = γV π
MDP(s3). (60)

Employing Lemma 1 directly yields

Qπ
MDP(s2, a0) ≥ Qπ

MDP(s2, a1). (61)

For the state s3, we have

Qπ
MDP(s3, a0) = r(s3, a0) + γV π

MDP(s2) = γV π
MDP(s2), (62)

Qπ
MDP(s3, a1) = r(s3, a1) + γV π

MDP(s4) = γV π
MDP(s4). (63)



Employing Lemma 1 directly yields

Qπ
MDP(s3, a0) ≥ Qπ

MDP(s3, a1). (64)

Last but not least, for the state s4, we have

Qπ
MDP(s4, a0) = r(s4, a0) + γV π

MDP(s3) = γV π
MDP(s3), (65)

Qπ
MDP(s4, a1) = r(s4, a1) + γV π

MDP(s4) = γV π
MDP(s4). (66)

Employing Lemma 1 directly yields

Qπ
MDP(s4, a0) ≥ Qπ

MDP(s4, a1). (67)

Hence we obtain

argmax
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (68)

and then

argmax
a∈A

Qπ
MDP(s, a) = a0 = argmax

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (69)

This completes the proof.
□

Empirical validation of Assumption 2 in the grid world MDP. In addition to the theoretical proof above, we also provide
an empirical validation of Assumption 2 in the grid world MDP in Figure 9.

We start by considering the Bellman expectation equation

Qπ
MDP(s, a) = r(s, a) + γEa′ [Qπ

MDP(s
′, a′)] , ∀(s, a) ∈ S ×A. (70)

Let us define the temporal-difference (TD) error as follows

E(s, a) = |r(s, a) + γEa′ [Qπ
MDP(s

′, a′)]−Qπ
MDP(s, a)| , ∀(s, a) ∈ S ×A. (71)

With the understanding that the TD error E(s, a) of Qπ
MDP(s, a) is zero, we iteratively learn and update Qπ

MDP(s, a) by mini-
mizing the TD error. To that end, we consider γ = 0.99 and a convergence threshold ϵQ = 10−6 (can be arbitrarily small). We
initialize Qπ

MDP(s, a) to be full of zeros as in Figure 10 (middle). Subsequently, we consistently update Qπ
MDP(s, a) under the

uniform policy π, until convergence as follows

E(s, a) ≤ ϵQ, ∀(s, a) ∈ S ×A. (72)

Empirically, we observe that the Q-table Qπ
MDP(s, a) converges after the 1216th iteration; demonstrated in Figure 11. As

depicted in Figure 10 (right), the convergent Qπ
MDP(s, a) implies that the optimal action for any state under the uniform policy

π is a0 (see the golden stars), i.e.,

argmax
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (73)

Hence we obtain

argmax
a∈A

Qπ
MDP(s, a) = a0 = argmax

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (74)

This validates Assumption 2 empirically.



Figure 10: Left: reward table. Middle: initial Q-table. Right: convergent Q-table under the uniform policy π.
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Figure 11: The learning curve of the maximal TD error of Qπ
MDP(s, a) over the entire state-action spaces:

max(s,a)∈S×A |r(s, a) + γEa′ [Qπ
MDP(s

′, a′)]−Qπ
MDP(s, a)|.



Proof of Theorem 2
Theorem 2 (MDP). Let Assumptions 1 and 2 hold. Denote by a∗ the optimal action given sq . Consider a random
policy π as well as its Q-function Qπ

MDP. Consider the trust horizon N > logγ (κ(1− γ)/(2B)) − 1. Define κ =

min
sq∈S

(
Qπ

MDP(sq, a
∗)− max

a∈A\{a∗}
Qπ

MDP(sq, a)

)
. With probability at least 1− δ, it holds that

Q̂π,N
MDP(sq, a

∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a), ∀sq ∈ S, (75)

when the number of episodes Nep satisfies

Nep ≥
2
(
1− γN+1

)2
(κ (1− γ) /(2B)− γN+1)

2 log

(
1 +

√
1− δ

δ

)
. (76)

Proof. For any action a ∈ A \ {a∗}, let us define

Qπ
MDP(sq, a) = E

[
N∑
t=0

γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

Qπ,N
MDP (sq,a)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

ξa

, (77)

Qπ
MDP(sq, a

∗) = E

[
N∑
t=0

γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

Qπ,N
MDP (sq,a∗)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

ξa∗

. (78)

Then ∀sq ∈ S,

Qπ,N
MDP(sq, a

∗)−Qπ,N
MDP(sq, a) (79)

= Qπ
MDP(sq, a

∗)− ξa∗ − (Qπ
MDP(sq, a)− ξa) (80)

= Qπ
MDP(sq, a

∗)−Qπ
MDP(sq, a) + ξa − ξa∗ (81)

= Qπ
MDP(sq, a

∗)−Qπ
MDP(sq, a) +

∞∑
t=N+1

γt (E [r(st, at) | s0 = sq, a0 = a]− E [r(st, at) | s0 = sq, a0 = a∗]) (82)

(a)

≥ Qπ
MDP(sq, a

∗)−Qπ
MDP(sq, a)− γN+1 2B

1− γ
(83)

≥ Qπ
MDP(sq, a

∗)− max
a∈A\{a∗}

Qπ
MDP(sq, a)− γN+1 2B

1− γ
(84)

≥ min
sq∈S

(
Qπ

MDP(sq, a
∗)− max

a∈A\{a∗}
Qπ

MDP(sq, a)

)
− γN+1 2B

1− γ
(85)

(b)
= κ− γN+1 2B

1− γ
, (86)

(c)
> 0. (87)

where (a) follows from Assumption 1 and the properties of geometry series, (b) follows from the definition of κ, (c) is due to
N > logγ (κ(1− γ)/(2B))− 1. Therefore, let us consider two positive constants as follows

ϵ1 = α
(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a)
)
, (88)

ϵ2 = (1− α)
(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a)
)
, (89)

where α ∈ [0, 1]. Consider the following two inequalities

Q̂π,N
MDP(sq, a

∗) ≥ Qπ,N
MDP(sq, a

∗)− ϵ1, (90)

Q̂π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2. (91)



We acknowledge that (90) and (91) are the sufficient but not necessary conditions for Q̂π,N
MDP(sq, a

∗) ≥ Q̂π,N
MDP(sq, a) to hold.

Thus,

P
(
Q̂π,N

MDP(sq, a
∗) ≥ Q̂π,N

MDP(sq, a)
)

(92)

≥ P
(
Q̂π,N

MDP(sq, a
∗) ≥ Qπ,N

MDP(sq, a
∗)− ϵ1, Q̂

π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2

)
(93)

= P
(
Q̂π,N

MDP(sq, a
∗) ≥ Qπ,N

MDP(sq, a
∗)− ϵ1

)
· P
(
Q̂π,N

MDP(sq, a) ≤ Qπ,N
MDP(sq, a) + ϵ2

)
(94)

where the last equation follows from the fact that each action is independent to other actions.
Assumption 1 implies that

∑N
t=0 (γ

tr(st, at) | s0 = sq, a0 = a, π) ∈ [−B 1−γN+1

1−γ , B 1−γN+1

1−γ ],∀a ∈ A. We therefore lower
bound the two probabilities in the previous expression using Hoeffding’s inequality (Hoeffding 1994)

P
(
Q̂π,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a
∗) ≥ −ϵ1

)
≥ 1− exp

−
Nepϵ

2
1

2B2
(

1−γN+1

1−γ

)2
 , (95)

P
(
Q̂π,N

MDP(sq, a)−Qπ,N
MDP(sq, a) ≤ ϵ2

)
≥ 1− exp

−
Nepϵ

2
2

2B2
(

1−γN+1

1−γ

)2
 . (96)

Then, it holds for any α ∈ [0, 1] that

P
(
Q̂π,N

MDP(sq, a
∗) ≥ Q̂π,N

MDP(sq, a)
)

(97)

≥

1− exp

−
Nepϵ

2
1

2B2
(

1−γN+1

1−γ

)2

 ·

1− exp

−
Nepϵ

2
2

2B2
(

1−γN+1

1−γ

)2

 (98)

≥

1− exp

−
Nepα

2
(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a)
)2

2B2
(

1−γN+1

1−γ

)2

 ·

1− exp

−
Nep(1− α)2

(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a)
)2

2B2
(

1−γN+1

1−γ

)2



(99)

Notice that the maximal value of the previous expression with respect to α reaches at α = 0.5. Then it holds that

P
(
Q̂π,N

MDP(sq, a
∗) ≥ Q̂π,N

MDP(sq, a)
)
≥

1− exp

−
Nep

(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, a)
)2

8B2
(

1−γN+1

1−γ

)2



2

,∀a ∈ A \ {a∗}. (100)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

â = argmax
a∈A\{a∗}

Q̂π,N
MDP(sq, a). (101)

Then it also holds that

P

(
Q̂π,N

MDP(sq, a
∗) ≥ max

a∈A\{a∗}
Q̂π,N

MDP(sq, a)

)
≥

1− exp

−
Nep

(
Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, â)
)2

8B2
(

1−γN+1

1−γ

)2



2

(102)

≥

1− exp

−
Nep

(
Qπ,N

MDP(sq, a
∗)−maxa∈A\{a∗} Q

π,N
MDP(sq, a)

)2
8B2

(
1−γN+1

1−γ

)2



2

,

(103)

where the last inequality follows from the monotonicity and the fact that Qπ,N
MDP(sq, a

∗)−Qπ,N
MDP(sq, a) ≥ 0,∀a ∈ A \ {a∗}.



Let us define

ā = argmax
a∈A\{a∗}

Qπ,N
MDP(sq, a). (104)

Then ∀sq ∈ S we obtain

Qπ,N
MDP(sq, a

∗)− max
a∈A\{a∗}

Qπ,N
MDP(sq, a) (105)

(a)
= Qπ,N

MDP(sq, a
∗)−Qπ,N

MDP(sq, ā) (106)
(b)
= Qπ

MDP(sq, a
∗)− ξa∗ − (Qπ

MDP(sq, ā)− ξā) (107)
= Qπ

MDP(sq, a
∗)−Qπ

MDP(sq, ā) + ξā − ξa∗ (108)

= Qπ
MDP(sq, a

∗)−Qπ
MDP(sq, ā) +

∞∑
t=N+1

γt (E [r(st, at) | s0 = sq, a0 = ā]− E [r(st, at) | s0 = sq, a0 = a∗]) (109)

(c)

≥ Qπ
MDP(sq, a

∗)−Qπ
MDP(sq, ā)− γN+1 2B

1− γ
(110)

(d)

≥ Qπ
MDP(sq, a

∗)− max
a∈A\{a∗}

Qπ
MDP(sq, a)− γN+1 2B

1− γ
(111)

≥ min
sq∈S

(
Qπ

MDP(sq, a
∗)− max

a∈A\{a∗}
Qπ

MDP(sq, a)

)
− γN+1 2B

1− γ
(112)

(e)
= κ− γN+1 2B

1− γ
(113)

(f)
> 0, (114)

where (a) follows from the definition of ā, (b) follows from the definition of Qπ
MDP, (c) follows from Assumption 1 and the

properties of geometry series, (d) follows from the fact that ā may not be the maximizer of Qπ
MDP(sq, ·), (e) follows from the

definition of κ, (f) is due to N > logγ (κ(1− γ)/(2B))− 1.

Consequently, (103) is monotonically increasing with Qπ,N
MDP(sq, a

∗)−maxa∈A\{a∗} Qπ,N
MDP(sq, a). Substituting the previous

inequality into (103) and by the monotonicity yields

P

(
Q̂π,N

MDP(sq, a
∗) ≥ max

a∈A\{a∗}
Q̂π,N

MDP(sq, a)

)
≥

1− exp

−
Nep

(
κ− γN+1 2B

1−γ

)2
8B2

(
1−γN+1

1−γ

)2



2

, (115)

To make the previous probability greater than 1− δ, we require1− exp

−
Nep

(
κ− γN+1 2B

1−γ

)2
8B2

(
1−γN+1

1−γ

)2



2

≥ 1− δ. (116)

Thus,

Nep ≥ log

(
1 +

√
1− δ

δ

) 8B2
(

1−γN+1

1−γ

)2
(
κ− γN+1 2B

1−γ

)2 (117)

=
2
(
1− γN+1

)2
(κ (1− γ) /(2B)− γN+1)

2 log

(
1 +

√
1− δ

δ

)
. (118)

This completes the proof.
□



Technical Lemma
Lemma 2. Given N > logγ (κ(1− γ)/(2B))− 1, G1 in (12) is monotonically decreasing with respect to the trust horizon N .

Proof. We proceed by defining Y = κ(1− γ)/(2B). Since N > logγ (κ(1− γ)/(2B))− 1, we can obtain

Y =
κ (1− γ)

2B
∈ (γN+1, 1]. (119)

Let Z = N + 1, and then we can rewrite G1 as

G1 =
2
(
1− γZ

)2
(Y − γZ)

2 , where Y ∈ (γZ , 1]. (120)

The chain rule implies that

∂G1

∂N
=

∂G1

∂Z
· ∂Z
∂N

(121)

=
∂G1

∂Z
(122)

= 4

(
1− γZ

Y − γZ

)
−γZ log γ(Y − γZ) + (1− γZ)γZ log γ

(Y − γZ)2
(123)

= 4

(
1− γZ

Y − γZ

)
γZ log γ(1− Y )

(Y − γZ)2
(124)

≤ 0, (125)

where the last inequality follows from γ ∈ (0, 1] and Y ∈ (γZ , 1].
This completes the proof.

□

Proof of Corollary 1
Corollary 1. Let hypotheses of Theorems 1 and 2 hold. Denote by l the length of the trajectory. For any environment τ and
history data H , SAD and the well-specified posterior sampling follow the same trajectory distribution with probability (1− δ)l

PFθ
(trajectory | τ,H) = Pps(trajectory | τ,H),∀trajectory. (126)

Proof. To proceed, we rely on the following assumption.

Assumption 3. Denote by Fθ the pretrained FM. ∀(C, sq), assume Ptrain(a | C, sq) = Fθ(a | C, sq) for all a ∈ A.

Note that Assumption 3 is a common assumption in the in-context learning literature (Xie et al. 2021; Lee et al. 2024),
assuming that the pretrained FM fits the pretraining distribution exactly provided with sufficient coverage and data, where the
SAD fits with a sufficiently large trust horizon N .

With Assumption 3 established, Theorem 1 of (Lee et al. 2024) implies that (126) holds when the optimal action is selected
at each step. In addition, Theorems 1 and 2 indicate that the FM trained by SAD selects the optimal action label with probability
1− δ at each step. Consequently, (126) holds for SAD with probability (1− δ)l.

This completes the proof. □

Finite MDP setting from (Osband, Russo, and Van Roy 2013)
Let us consider the finite MDP setting as in (Osband, Russo, and Van Roy 2013), where E[r(st, at)] ∈ [0, 1]. Denote by S,A, T
the state space, action space, and time horizon. Consider the uniform random policy π for sampling the context C and query
state sq . Denote by Ttest(τ) and Ttrain(τ) the test and pretraining distribution over the environment τ , respectively. Consider the
online cumulative regret of SAD over K episodes in the environment τ as

Regretτ (Fθ)
∆
=

K∑
k=0

Vτ (π
∗
τ )− Vτ (πk), (127)

where πk(· | st) = Fθ(· | Ck−1, st).



Proof of Corollary 2
Corollary 2. Let hypotheses of Theorems 1 and 2 hold. Given the environment τ and a constant B′ > 0, suppose that
supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP setting above, it holds with probability (1− δ)KT that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√
K|A|). (128)

Proof. Theorems 1 and 2 imply that the FM trained by SAD selects the optimal action label with probability 1 − δ at each
step, while the finite MDP setting above comprises K · T steps. Therefore, it holds with probability (1− δ)KT that the trained
FM Fθ is equivalent to the posterior sampling established in Corollary 1. Then, it follows directly from Corollary 6.2 of (Lee
et al. 2024) that with probability (1− δ)KT it holds that

ETtrain [Regretτ (Fθ)] ≤ Õ(|S|T 3/2
√

K|A|), (129)

where the notation Õ omits the polylogarithmic dependence. Subsequently, by using the bounded likelihood ratio between the
test and pretraining distributions yields

ETtest [Regretτ (Fθ)] =

∫
Ttest(τ)Regretτ (Fθ)d(τ) (130)

≤ B′
∫

Ttrain(τ)Regretτ (Fθ)d(τ) (131)

= B′ETtrain [Regretτ (Fθ)] (132)

≤ Õ(B′|S|T 3/2
√
K|A|). (133)

This completes the proof.
□



Appendix C: Implementation Details
Pseudo-codes
We provide below the pseudo-codes that are omitted in the main body of the paper.

Algorithm 5: Collecting Query States and Action Labels under Random Policy (Dense-Reward MDP)

1: Require: Random policy π, state space S, action space A, environment τ , trust horizon N , empty return list Lr

2: Sample a query state sq ∼ S
3: for a in [A] do
4: Initialize the state and action as s0 = sq, a0 = a
5: Run an episode of N steps in τ under the random policy π
6: Add the discounted episodic return to Lr

7: end for
8: Obtain al = A(argmax(Lr))
9: Return (sq, al)

Algorithm 6: Pretraining and Deployment of SAD (Inspired by (Lee et al. 2024))

1: Require: Pretraining dataset D, initial model parameters θ, test environment distribution Ttest, number of episodes NE

2: // Model pretraining
3: while not converged do
4: Sample (C, sq, al) from the pretraining dataset D and predict actions by the model Fθ(·|Ci, sq) for all i ∈ [|C|]
5: Compute the loss in (3) with respect to the action label al and backpropagate to update θ.
6: end while
7: // Offline deployment
8: Sample unseen environments τ ∼ Ttest
9: Sample a context C ∼ Ttest(· | τ)

10: Deploy Fθ in τ by selecting at ∈ argmaxa∈A Fθ(a | C, st) at time step t
11: // Online deployment
12: Sample unseen environments τ ∼ Ttest and initialize empty context C = {}
13: for i in [NE ] do
14: Deploy Fθ by sampling at ∼ Fθ(· | C, st) at time step t
15: Add (s0, a0, r0, . . .) to C
16: end for



Appendix D: Experimental Details
Environmental Setup
Gaussian Bandits. We investigate a five-armed bandit problem in which the state space S consists solely of a singleton
state sq . With each arm (action) pulled, the agent receives a reward feedback. The goal is to identify the optimal arm that can
maximize the cumulative reward. We consider the reward function for each arm following a Gaussian distribution with mean
µa and variance σ2, i.e., R(·|sq, a) = N (µa, σ

2). Each arm possesses means µa drawn from a uniform distribution U [0, 1] and
all arms share the same variance σ = 0.3. We consider the pretraining and test data to have distinct Gaussian distributions with
different means.

Bernoulli Bandits. We adopt the same setup as in Gaussian Bandits, with the exception that the reward function does not
follow a Gaussian distribution. Instead, we model the reward function using a Bernoulli distribution. Specifically, the mean
of each arm µa is drawn from a Beta distribution Beta(1, 1), and the reward function follows a Bernoulli distribution with
probability of success µa. To validate the capability of SAD tackling OOD scenarios, we consider the test data drawn from the
Bernoulli distribution while the pretraining data drawn from the Gaussian distribution as in the Gaussian bandits.

Darkroom. Darkroom (Laskin et al. 2022; Zintgraf et al. 2019) is a two-dimensional navigation task with discrete state and
action spaces. The room consists of 7 × 7 grids (|S| = 49), with an unknown goal randomly placed at any of these grids. The
agent can select 5 actions: go up, go down, go left, go right, or stay. The horizon length for Darkroom is 49, meaning the agent
must reach the goal within 49 moves. The challenge of this task arises from its sparse reward structure, i.e., the agent receives
a reward of 1 solely upon reaching the goal, and 0 otherwise. Given 7 × 7 = 49 available goals, we utilize 39 of these goals
(∼ 80%) for pretraining and reserve the remaining 10 (∼ 20%) (unseen during pretraining) for test.

Darkroom-Large. We adopt the same setup as in Darkroom, yet with an expanded state space of 10×10 and a longer horizon
T = 100. Consequently, the agent must explore the environment more extensively due to the sparse reward setting, making
this task more challenging than Darkroom. We still consider 80% of the 100 available goals for pretraining and the remaining
unseen 20% goals for test.

Miniworld. Miniworld is a three-dimensional pixel-based navigation task. The agent is situated in a room with four differently
colored boxes, one of which is the target (unknown to the agent). The agent must navigate to the target box using 25× 25× 3
image observations and by selecting from 4 available actions: turn left, turn right, move forward, or stay. Similar to Darkroom,
the agent receives a reward of 1 only upon approaching the target box, and 0 otherwise. The high-dimensional pixel inputs
clearly render Miniworld a much more challenging task than Darkroom and Darkroom-Large.

Hyperparameters
The main hyperparameters employed in this work are summarized in Tables 1-2.

Table 1: The main hyperparameters of each algorithm

Hyperparameters AD DPT DIT SAD
Causal transformer GPT2 GPT2 GPT2 GPT2

Number of attention heads 3 3 3 3
Number of attention layers 3 3 3 3

Embedding size 32 32 32 32
Weight λ N/A N/A 500 N/A

Learning rate 0.001 0.001 0.001 0.001
Dropout 0.1 0.1 0.1 0.1

Additional Results
We provide in this subsection additional experimental results that are omitted in the main body of paper.

Figure 12 presents the dataset generation time of our SAD approach, compared with other SOTA baselines (AD, DPT, DIT),
where the MAB and MDP problems consider the environments of Gaussian Bandits and Darkroom respectively. SAD (avg)
represents the average of consumed time over different trust horizons (consistent with those in Figure 5). On average, SAD
requires the most significant amount of time in the MDP problem. While in the MAB problem, SAD ranks as the second most
time-consuming method, with its duration surpassing all except DIT. Notice that the additional computational time of SAD
aligns with the prevailing trend of leveraging increased computation to fully harness the advanced reasoning capabilities of
FMs (Brown 2020).



Table 2: The main hyperparameters of each environment

Hyperparameters Gaussian Bandits Bernoulli Bandits Darkroom Darkroom-Large Miniworld
Action dimension 5 5 5 5 4

Pixel-based ✗ ✗ ✗ ✗ ✓

Trust Horizon 320 320 7 10 3
# of epochs 100 100 100 100 200

Context horizon 500 500 49 100 50
Pretraining/test ratio 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
# of environments 100000 100000 24010 100000 40000

Table 3: Performance improvements of SAD compared to baseline algorithms in the offline evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 647.0% 508.9% 354.0% −5.2%

Bernoulli Bandits 553.4% 426.8% 289.5% −18.7%

Darkroom 2162.2% 2069.6% 149.3% −1.3%

Darkroom-Large 6325.5% 6389.9% 266.8% −14.9%

Miniworld 687.7% 684.2% 122.1% −52.9%

Average 2075.2% 2015.9% 236.3% −18.6%

Table 4: Performance improvements of SAD compared to baseline algorithms in the online evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 933.6% 942.5% 273.9% −0.4%

Bernoulli Bandits 846.8% 830.9% 313.9% −0.2%

Darkroom 3053.9% 2893.8% 41.7% −3.4%

Darkroom-Large 10626.9% 10221.8% 24.7% −0.1%

Miniworld 582.9% 580.1% 21.7% −57.3%

Average 3208.8% 3093.8% 135.2% −12.3%
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Figure 12: The dataset generation time consumed by SAD averaged over varying trust horizons (as in Figure 5), compared with
AD, DPT, and DIT. Left: MAB, Right: MDP.


