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Abstract

Applying guidance to Reinforcement Learning (RL) algo-
rithms to improve learning sample efficiencies using tech-
niques such as reward-shaping and action heuristics have
been explored since the inception of the field. With the ad-
vent of Large Language Models (LLMs), a new and po-
tentially powerful source of heuristics with broad contex-
tual understanding is being explored. However, LLMs are
prone to hallucination and are likely to provide inconsistent
heuristic values. This paper explores how tolerant Tabular Q-
Learning, Deep Q Networks (DQN), Proximal Policy Optimi-
sation (PPO) and Soft Actor-Critic (SAC) are to misleading
heuristics and how this affects training. The contribution of
this study is to show the extent to which RL algorithms can
learn good policies despite misleading guidance. These find-
ings will assist researchers to understand the effects of mis-
leading heuristics on RL algorithms’ ability to reliably learn
good policies, as well as the effect of heuristics on final poli-
cies, informing use of error-prone heuristics such as LLMs.

Introduction

Recent advances in Deep Reinforcement Learning (DRL)
have seen automated agents beat human world champions at
Chess and Go (Schrittwieser et al. 2020), Diplomacy (Meta
Fundamental AI Research Diplomacy Team (FAIR)T et al.
2022), Poker (Brown et al. 2020) and even drone racing
(Hanover et al. 2023). However, the challenges of credit as-
signment and exploration (Sutton and Barto 2018) persist,
with agents struggling to associate specific actions with de-
layed rewards and failing to sufficiently explore the action
space, a problem made more acute in environments with
sparse rewards.

Researchers have tried various methods of enriching the
reward landscape to address these issues. For instance, the
Intrinsic Curiosity Module (ICM) (Pathak et al. 2017) and
Hindsight Experience Replay (HER) (Andrychowicz et al.
2017) add rewards based on past experiences, encourag-
ing the agent to explore further afield. Hierarchical Rein-
forcement Learning (HRL) methods such as HIRO (Nachum
et al. 2018) and the Options Framework (Sutton, Precup,
and Singh 1999) learn subgoals, dividing tasks into chunks
with their own additional rewards. Alternatively, heuristics
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Figure 1: Maps from Point Maze (left) and Frozen Lake
(right). Red diagonal arrows denote the natural route, green
arrows along the edges denote the heuristic-directed route.

can provide domain specific knowledge about the environ-
ment and available actions through hand-crafted functions
(Ng, Harada, and Russell 1999; Sutton and Barto 2018).
More recently, researchers have used Large Language Mod-
els (LLMs) to dynamically provide context-aware rewards
during training (Hu and Sadigh 2023). Such heuristics can
be instrumental in improving generalisation and learning
sample efficiencies by conferring domain-specific knowl-
edge on agents and enabling them to make better decisions
earlier in training.

Heuristics such as Manhattan Distance are, by their na-
ture, useful but incomplete proxies for desired action se-
quences and may be noisy or even misleading. In particu-
lar, estimation by LLMs is subject to their training data, the
trained task, and to hallucinations (Qiao et al. 2024; Huang
et al. 2024), again leading to questions of heuristic quality.
Further, domain-specific knowledge provided to agents, or
guidance given during human-agent teaming, may not trans-
late to analytically optimal solutions with the best solution
instead being one which is interpretable. Examining the sub-
ject in the context of RL, this work investigates the effect of
misleading heuristics on the training of common algorithms
in a simple navigation task, answering the questions:

1. To what extent can common RL algorithms tolerate mis-
leading heuristics?

2. How do misleading heuristics affect learning?

To ensure heuristic error remains the key factor in train-



ing, the well known and simple Frozen Lake! (Towers et al.
2024) and Point Maze? (Fu et al. 2020) environments are se-
lected. The Tabular Q-Learning (Watkins 1989) and Deep
Q Network (DON) (Mnih et al. 2015) algorithms are used
within the discrete Frozen Lake environment and provide a
useful baseline for comparison. The Soft Actor Critic (SAC)
(Haarnoja et al. 2018) and Proximal Policy Optimization
(PPO) (Schulman et al. 2017) algorithms are used with the
continuous Point Maze.

Heuristics are applied using Potential-Based Reward
Shaping (Ng, Harada, and Russell 1999), a common and
well understood method within RL. Heuristic errors are in-
troduced as misleading rewards, making actions in a given
state appear good or bad when reality is the opposite. As
shown in Figure 1, the heuristic asks the agent to learn a
longer “inefficient” route around the environment’s edge to
prove the agent is learning from the heuristic and not from
unguided exploration which prefers the shorter red route. It
is important to note that the misleading heuristic does not
simply consist of random noise applied to reward values,
rather it consists of values designed to make desirable ac-
tions appear undesirable and vice versa.

While the navigation tasks in this paper are simple, the
purpose of this work is to understand the algorithms’ under-
lying capacity to learn despite directly misleading heuristics
rather than prove anything about their capabilities in solving
some arbitrary class of tasks. Also, by forcing the agent to
learn an “inefficient” route, it will be clear whether an agent
is still following the heuristic to the goal, or has become con-
fused by the misleading heuristic and, nonetheless, found the
goal through standard RL exploration mechanisms.

The following sections discuss background and related
work, describe the heuristics in detail, and show how they
are used with each RL algorithm. Results are then discussed,
showing that RL algorithms are generally robust to quite
high rates of misleading heuristics with some cost to train-
ing stability and sample efficiencies. It is also shown that the
effect of heuristics on policy is not uniform across different
algorithm types. As such, it is possible, with appropriate al-
gorithm selection and implementation, to use heuristics and
reward shaping to transfer domain knowledge to general RL
algorithms, directing policy learning in a desired direction
and improving sample efficiencies.

Background and Related Work
Reinforcement Learning

Reinforcement Learning (RL) algorithms are those which
learn a mapping from situations to actions through experi-
ence. This mapping can be achieved in various ways, but
they all seek to learn a sequence of actions which achieve
a defined goal through reward maximisation (Sutton and
Barto 2018). Formally, this type of learning can be de-
scribed as a Markov Decision Process (MDP) with the tuple
M = (S, A, P,R,~), where S is the set of states, A the set
of available actions, P the transition function P(s’|s,a), R

'https://gymnasium.farama.org/environments/toy_text/frozen_lake/

Zhttps://robotics.farama.org/envs/maze/point_maze/

the reward function R(s,a, s’) and v € [0, 1] is a discount
factor (Sutton and Barto 2018). That is, from a state s € S,
undertaking an action a € A has a probability p € [0, 1] of
transitioning to state s’ € S and receiving a reward r € R
with v € [0,1]. RL therefore learns an optimal policy of
sequential actions (Sutton and Barto 2018) where

qx(s,a) = E[Ry11 + 0. (Se41) ]S = 5, Ay = a,
which maximises the discounted sum of rewards:

inf

Gy = Z YRkt
k=0

Several approaches to RL have been tried for various con-
texts. This paper’s focus is online model-free algorithms op-
erating in discrete and continual action spaces. Tabular Q-
Learning (Watkins 1989) is used as a baseline since con-
vergence properties are well studied and understood (Sutton
and Barto 2018; Albrecht, Christianos, and Schifer 2024).
Policies are learned through repeated application of the Bell-
man update (Sutton and Barto 2018):

Q(5,4) «— Q(S, A) +a[R+ymax Q(Y', a) = Q(S, A)],

where S is the current state, S the state at the next timestep,
A the action taken in S, and a an available action in S’.
There are different exploration schemes, but in this work ac-
tions are selected using e— greedy, with actions taken greed-
ily from the policy or chosen randomly with probability e.

DQN (Mnih et al. 2015) is the first Deep Reinforcement
Learning (DRL) model examined, providing an initial com-
parison with the tabular version before moving to the contin-
uous environment. Since DQN uses a replay buffer to store
experience tuples e = (s, a,r, s’) and DNNs to approximate
target and current action values, updates use the loss func-
tion (Mnih et al. 2015):

Li(0;) = Eev () (r+ymaza Q(s', a0, ) —Q(s, a; 6;)?]

Integrating dual Q-networks with an additional actor net-
work to cope with continuous environments, Twin Delayed
DDPG (TD3) (Fujimoto, van Hoof, and Meger 2018) pro-
vides a deterministic policy actor-critic method for continu-
ous action spaces, bringing with it many of the advantages
of DQL (Mnih et al. 2015), while solving some of the short-
comings of Deep Deterministic Policy Gradient (DDPG
(Lillicrap et al. 2016) such as overestimation bias.

Taking a different approach to the off-policy actor-critic
architecture, Soft Actor Critic (SAC) (Haarnoja et al. 2018)
uses a stochastic policy and an entropy term in the loss
function, aiming to maximise random behaviour while still
achieving the desired goal. Here, Q-network optimisation is

Jo(0) = E(s,a)~p
1
= [5(Qo(s,0) = (r(s,0) + 1Bornp[V5(s)]))?];
where V(s) = Eqour[Q(s,a) — alog m(als)],
and the policy is optimised with

Jx(9) = Esnp[Eanr,[alog(mg(als)) — Qols, a)]]



Alternatively, the popular Proximal Policy Optimization
(PPO) (Schulman et al. 2017) is an evolution of Policy Gra-
dient algorithms and is designed to minimise variance in up-
dates through trust regions. Requiring only two networks,
compared to the six of TD3 and SAC, it is additionally the
more computationally efficient option.

The following section discusses heuristics in general, and
how this paper applies heuristics to the algorithms used.

Heuristics for Reinforcement Learning

Heuristics are applied to RL for a myriad of reasons in-
cluding exploration (Pathak et al. 2017; Andrychowicz et al.
2017), improved sample efficiency (Schaul et al. 2016), and
policy understandability for agent-human cooperation (Hu
and Sadigh 2023). Most approaches involve reward shaping
(Ng, Harada, and Russell 1999), seeking to enrich the reward
surface and guide the policy indirectly (Pathak et al. 2017;
Radford et al. 2021; Kwon et al. 2023). Alternatively, Hu
and Sadigh (2023) apply the heuristic directly to the value
function of Tabular Q-Learning and DQN, and modify the
discrete PPO objective with a Kullback-Leibler (KL) penalty.

Applying a heuristic directly to the objective function
works well in discrete action spaces, but is not easily applied
in continuous spaces where smooth mechanical actions are
required. If the heuristic function is ‘expert’ enough to pro-
vide a suitably smooth series of actions, the learning prob-
lem changes to one of Imitation Learning (IL) (Zare et al.
2024) instead of the standard RL problem whereby high-
value actions are not discoverable before the agent acts in
the environment (Sutton and Barto 2018). Rather, through
reward shaping, the agent is given some level of domain-
specific knowledge with no prior judgment made about the
specific actions required to maximise the enriched rewards.

Potential-Based Reward Shaping (Ng, Harada, and Rus-
sell 1999), adjusts the reward with

' =r+y0(s") — D(s), (1)

where ®(s) returns the heuristic value for s,s’ € S and
~ € [0, 1] is a discount factor. This enriches the reward land-
scape and allows the agent to discover an optimal policy
within the region of the environment explored by the agent
without biasing the optimal policy (Ng, Harada, and Rus-
sell 1999). However, applying a heuristic as a reward must
also be done in a numerically stable manner, especially when
many heuristics (such as Manhattan Distance) reduce as the
agent nears the goal. Gehring et al. (2022) propose
1 — ~h(s)

ho(s) = % ©)
where h(s) is the heuristic function. This provides a dis-
counted heuristic which can be applied through Potential-
Based Reward Shaping as

r=r— (h“/(sl) - h'y(s))a 3
where the discount is applied within the heuristic function.

Applying Misleading Heuristics to RL
As previously indicated, heuristics are naturally prone to
some error rate, but it is not clear how much error can be

tolerated by RL algorithms. To examine this, it is necessary
to isolate the effect of misleading heuristics across different
algorithms, so the following criteria were designed for:

* The RL algorithm can reliably learn the chosen task.
 There is an “efficient” path, naturally preferred by an RL
agent seeking to maximise discounted rewards.
* A simple heuristic can guide the RL algorithms to reach
the goal along an “inefficient” path.
* The error rate of the heuristic can be controlled precisely.
The following design decisions satisfy these criteria.

Design Decisions

To avoid simply re-benchmarking RL algorithms’ relative
ability to complete tasks, this project uses the well known
Frozen Lake from Farama Gymnasium (Towers et al. 2024)
as a discrete environment and Point Maze from Gymnasium-
Robotics (Fu et al. 2020) as a continuous environment.
These are shown in Figure 1 with Point-Maze on the left
and Frozen-Lake on the right.

Frozen-Lake is a configurable grid-world, with each grid
square either ‘ice’ or ‘hole’. The agent must make its way
across the ice from a start location to the goal. Available ac-
tions are up, down left or right. Moving into the edge of the
map results in staying still and moving into a hole results in
the episode ending. In this work, deterministic mode rather
than stochastic mode is used.

Point-Maze is similarly configurable by a text grid which
is translated by the engine into 3D blocks of either wall or
open space. Start and goal locations are also defined. The
agent is a ball, moved by applying a vector force in [z, y] to
the ball, a physics engine calculating movement.

These are both common trial environments for RL algo-
rithms and, as such, are useful when exploring specific as-
pects of learning algorithms. The specified paths are shown
in Figure 1, providing an efficient diagonal path which max-
imises discounted episodic returns and a less efficient path
along the left-hand and bottom edges. By providing an envi-
ronment which is simple to learn, this work focuses on the
effects on learning of misleading heuristics and avoids com-
parative evaluation of base algorithm capability.

Four RL algorithms were selected for this experiment to
cover a range of algorithm types available in popular RL
libraries (Liang et al. 2018; Hoffman et al. 2020; Hill et al.
2018; Huang et al. 2022) and observe any differences.

* Tabular Q-learning is used with Frozen Lake to demon-
strate the ideas in a simple manner and demonstrate a
baseline effect on learning behaviour.

* Also with Frozen Lake, DQN is used as the initial deter-
ministic off-policy DRL comparison.

* SAC, a stochastic off-policy actor-critic algorithm for
continuous actions spaces, is used with Point Maze.

* PPO is a popular policy-gradient derived alternative and
is selected for comparison within Point Maze.

Since these algorithms are well studied, with many addi-
tions and refinements tried by researchers, the well known
CleanRL? (Huang et al. 2022) implementations, which in-

3https://github.com/vwxyzjn/cleanr]



clude the full implementation of each algorithm in a single
file, are used as a basis. This ensures a focus on the effects
of heuristics rather than the performance of chosen RL al-
gorithm features. To assist learning in the Point Maze en-
vironment, a top-down 2D ‘map’ is supplied to the agents.
The architecture for the convolutional neural network (CNN)
(LeCun et al. 1989) is taken directly from the DrQ-v2* paper
(Yarats et al. 2022) and adjusted to suit this environment.

Hyperparameter Tuning

DRL is sensitive to hyperparamer choice so, for the contin-
uous environment, automated tuning was completed using
a Genetic Algorithm (GA) (Yang and Shami 2020) run for
15 generations using a population size of 15 with 4 elites,
50% multi-point crossover, 10% mutation and complements
(Louis and Rawlins 1993). Encouraging fast learning and
high test results,

N
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where 7, is the reward for evaluation episode 7 and 7, is the
reward for test episode j. With a random seed for each run,
a policy evaluation of 15 episodes is completed every 5,000
steps. Following hyperparameter search, the program exe-
cutes 10 test runs of the fittest hyperparameters with unique
seeds, all algorithms successfully learning to reach the goal
with sparse rewards and no heuristic.

Heuristics

The choice to provide a heuristic which guides the agent
along the edges of the environment instead of the efficient
diagonal route is to ensure is to ensure clarity as to when
the agent is no longer following the heuristic. This is be-
cause it is not possible to distinguish reaching the goal due
to heuristic-following and reaching the goal through natu-
ral exploration of the environment since both solutions will
share the same route. However, in the setup as designed,
there are four options; follow the heuristic to the goal, follow
the natural diagonal to the goal, fail to reach the goal while
following the heuristic, and fail to reach the goal while fol-
lowing the natural diagonal path. This makes it easy to iden-
tify whether the agent is following the heuristic or not and
the extent to which it has failed. Additionally, there are many
reasons why it is desirable to follow an apparently inefficient
route. For instance, we may need to follow some regulations
such as traffic laws and property rights, or an area may be
known to be unsafe or difficult for a given embodiment to
traverse. Understanding an agent’s ability to follow heuris-
tics along an inefficient route and in the face of misleading
errors is therefore valuable in itself.

For Frozen Lake the heuristic is simple. Each cell in the
grid is given a value which increases from 1 in the start posi-
tion to 28 in the goal location. This represents an increase in
value of 1 for each cell advancing along a desired path down
the left-hand side and along the bottom edge. Cells not along
this path have the value 0.2. The reward is adjusted using

*https://github.com/facebookresearch/drqv2

Potential-Based Reward Shaping (Ng, Harada, and Russell
1999) defined in Equation 1. Advancing along the desired
path returns a rich reward above 0, while retreating or mov-
ing off the desired path gives a negative reward.

During the experiments, agents were trained 15 times
with each of the set of heuristic error rates E =
{0.0,0.1,0.2,0.3,0.4,0.5}. The error is introduced by the
following expression:

A H(s,s') X~U(0,1)<ecE,
N —H(s,s') otherwise,

(&)

where H (s, s’) is the heuristic function in terms of the cur-
rent and next states, e is the selected error rate and X is a
random value from a uniform distribution in the range [0, 1).

Similarly, the continuous Point Maze environment uses
distance from goal as a heuristic. Distance is not used di-
rectly since it naturally reduces as the agent approaches the
goal. To manage this, the numerically stable approach pro-
posed by Gehring et al. (2022) and set out in Equations 2
and 3 is applied as follows:

1_11’:) moving in desired region,
hy(s) =40 stationary in desired region,  (6)
—1.0 outwith desired region
=1 = (hy(s) = hy (s)), (7)

where ~ is a discount factor, s and s’ are the current state and
next states, and £ is the heuristic function based on distance.
Note, the discount is part of the heuristic function so the
additional discount of Potential-Based Reward Shaping is
not required. If naively applied the heuristic value reduces
as the agent nears the goal, which is not desirable. This is
most simply shown numerically, for instance if we assume
the agent is 5.2 m from a goal and moves to 5.1 m away, and
later from 0.2 m to 0.1 m away:

1— AR 1 yhls)

AR
v=-(r— S T )
1-0.99%1 1—0.9952
I _
va==(09——545 099
1-0.99%1 1 —0.9902
I —
vp = —((09——545 1-0.99

vy = 0.15 > vz ~ 0.1

It should also be noted that a misleading heuristic is not
the same as introducing random noise to the heuristic value.
The practical effect of this kind of noise is shown in Fig-
ure 2, where adding noise to the heuristic at a rate of 1.0
does not cause learning to fail until X ~ U(—n,n), where
n > maxs.s(hy(s") — hy(s)). At this point, while not fail-
ing, the agent no longer follows the heuristic but instead
learns the efficient diagonal route. The decision of whether
to follow the heuristic is made at each decision point (e.g. to
move down or diagonally) with the heuristic followed when
n' < maxs.s(hy(s") — hy(s))/2 at that decision point.
Therefore, to ensure the heuristic error is controllably seen
as misleading by the algorithm, with poor actions seen as
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Figure 2: The results of adding a random value X ~
U(—n,n) to the calculated heuristic. The d-max and h-max
lines show the maximum rewards by following a diagonal
policy and a heuristic policy respectively. Learning fails at
n + ¢, and the heuristic is reliably followed at n’ — e.

good and good action seen as poor, Equations 5 and 7 are
used instead of a random noise function.

The following sections summarise key results, present
analysis of these, and discuss their implications for Rein-
forcement Learning with Heuristic guidance.

Results and Discussion

Each of the 4 algorithms, Q-Learning, DQN, SAC and PPO,
were trained 15 times at each error rate using random seeds.
Periodically through training each agent completed 15 eval-
uation episodes. Average scores of these evaluation episodes
are used to evaluate algorithm performance. Overall, re-
sults show that RL algorithms can be tolerant to misleading
heuristics. This is summarised in Table 1, showing a high
level of misleading heuristic is required before meaningful
degradation to learning occurs and before learning becomes
untenable. Compute for experiments was a HP ZBook with
128 GB RAM, Intel Core i9-13950HX CPU and Nvidia
RTX 5000 Mobile Ada GPU. Code is written in Python us-
ing PyTorch for DRL models and runs are multithreaded
where possible. These results are discussed in detail below.

Frozen Lake

The Heuristics section, along with Figure 2, introduces the
fact that random noise applied to the heuristic reward val-
ues is not enough to prevent the agent finding a good policy,
even when the noise rate reaches 0.8. This is good news for
the use of heuristic methods where the ordinality of a heuris-
tic may be correctly identified by a heuristic function but the
magnitude of the value inconsistently stated. For instance,
while using LLLMs to generate heuristics, Hu and Sadigh
(2023) used a log function to squash heuristic range, the
LLM able to correctly identify good and poor actions but re-
turning values across a larger range than is desirable for RL
rewards, a useful idea. The remainder of the results relate to
the far more problematic misleading errors.

As shown in Figure 4, without heuristics the Tabular Q-
Learning agent reliably learns an efficient diagonal route.

The heatmap shows that after some initial evaluation runs
where the agent tries to navigate the perimeter route, the pol-
icy settles on the expected diagonal trajectory. With a base-
line heuristic, the agent quickly learns the inefficient route
down the left edge and along the bottom, never trying the di-
agonal route during evaluation due to the additional heuristic
guidance. This indicates the agent learns from heuristic re-
ward shaping as opposed to general exploration, demonstrat-
ing its effectiveness and suggesting the approach is suitable
to evaluate RL algorithms’ tolerance to errors.

Once misleading errors are introduced, even at a rate of
0.1, initial learning takes approximately twice as long and
becomes less reliable, seen as an increasing spread of results
in Figure 5. However, it is not until error rates approach 0.4
that learning becomes problematically unreliable whereby
agents become unlikely to find a policy.

DQN learns in fewer episodes than Tabular Q-Learning
and learning is initially stable, as shown in Figure 3. Once
errors are introduced at an error rate of 0.1 it continues
to show similar behaviour to Tabular Q-Learning in that
it takes longer to learn and shows some instability. How-
ever, increasing the error rate further significantly increases
learning instability. Some instability is expected as an ef-
fect of DQN’s DNN function estimation, but policy stability
is lower than expected for such a simple environment. This
may be a result of the replay buffer repeatedly applying in-
correct heuristics through recorded heuristically-adjusted re-
wards, a theme identified through these results and discussed
further when reviewing SAC and PPO.

While instability is observed during training, only one
agent failed to learn a good policy after 10,000 episodes
through all training to an error rate of 0.3 (60 runs to this
point), the main cost therefore being sample efficiency in
achieving the policy. However, the instability suggests that
in more complex environments the agents may struggle to
learn effectively and so DQN may not be a good option if the
heuristic may produce misleading indicators. Since Frozen
Lake is a discrete environment the trajectories with and with-
out heuristic are the same for DQN as they are for Tabular
Q-Learning and are not repeated.

Point Maze

As shown in Figure 3, the SAC algorithm learns quickly with
the accurate heuristic, reliably learning a good policy. With
an error rate of 0.1, training is a little more unstable at first
but quickly stabilises to a reliable policy. At an error rate
of 0.3 the instability is clear, and while it does learn a policy
the sample efficiency is significantly reduced and the learned
policy is less stable. At an error rate of 0.4, the agent is un-
able to reliably learn. Using SAC with heuristics, unless the
error rate is known to be below 0.2, could be problematic
since results indicate both sample efficiency and stability of
learning may be meaningfully affected. In a complex en-
vironment which already needs millions of steps, training
times may become prohibitive.

It is likely that learning methods which sample from a
replay buffer, such as DQN and SAC, are more affected
by misleading heuristics because errors are stored and then
repeatedly applied during updates. This occurs because it
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Figure 3: DQN (left) in Frozen Lake shows that it learns quite quickly and reliably with no errors. As error rates increase,
stability quickly declines. PPO (center) in Point Maze shows good stability and is not significantly affected by the misleading
heuristic until error rates approach 0.4. SAC (right) similarly becomes untenable at an error rate of 0.4, but lower error rates of
0.2 and 0.3 also show clear increases in instability compared to baseline. Max line is max achievable heuristic-guided rewards.

Figure 4: Locations traversed during evaluation with no
heuristic (left) and with error-free heuristic (right).
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Figure 5: Q-Learning evaluation episode results during
training at different heuristic errors showing the mean, 1st
and 9th deciles of the 15 evaluation episodes run every 1000
episodes (left). Agent learning becomes less stable until,
with error approaching 0.4, it no longer learns reliably.

is more computationally efficient to calculate the heuristic
once during exploration and store the resulting v’ in the re-
play buffer (the approach chosen for this project). To miti-

Figure 6: Locations traversed by SAC agents with 0.1 error
rate during training (left), evaluation (middle) and 15 test
episodes (right). Start position is top left and goal is bottom
right. Agents try the diagonal route during evaluation, but
the final policy follows the heuristic.

gate this, an alternative approach could be to recalculate the
heuristic during gradient updates. This requires more com-
pute but would prevent errors being repeatedly applied. Ex-
ploration of mitigations is left to future research.

As can be seen from the trajectory plots for SAC in Fig-
ure 6, with error rate 0.2 the agent must follow the heuristic-
preferred path during training and successfully explores the
heauristic-augmented rich rewards to the goal. During eval-
uation the agent attempts many different trajectories, some
of which involve the diagonal route. However, once the pol-
icy has been trained, it remains conditioned on the heuristic-
preferred route and in testing shows reliable adherence to
the perimeter path. This shows that SAC is not only able to
learn from a heuristic, but is also able to learn a sequence
of actions which follow defined characteristics. This can be
useful if a certain approach to the goal is required, but may
not be desirable if the general direction of a goal can be de-
fined heuristically while the most appropriate path can not.

PPO quickly and reliably learns a good policy when there
is no heuristic error. The need for early stopping or check-
point saving to ensure a good policy is saved can be seen in
the middle graph of Figure 3 since the stability of learning
starts to degrade as training continues. The effect of errors



on PPO agents is minimal, with error rates to 0.3 learning
at approximately the same rate. It is not until the error rate
reaches 0.4 that misleading heuristics start to cause mean-
ingful issues with learning stability at which point the agent
eventually learns, but policy stability is already degrading.
Once the error rate reaches 0.5 learning collapses completely
(not shown for graph clarity).

This aspect of PPO learning is similar to Tabular Q-
Learning; in both cases the misleading heuristics do not sig-
nificantly affect learning until an error rate of 0.4. In contrast
to DQN and SAC, Tabular Q-Learning and PPO do not re-
quire a persistent replay buffer. PPO processes then discards
each minibatch, meaning any individual heuristic error is not
later re-applied to the policy. Similarly, Tabular Q-Learning
updates the policy on each step with the most recent expe-
rience, also not storing it. This supports the mitigation idea
outlined above and could be interesting for future research.
In general, the stability of PPO in the face of misleading er-
rors to an error rate of over 0.3 makes the algorithm a good
option for learning with heuristics which may contain errors.

Another meaningful difference between PPO and the
other algorithms used is in test behaviour. If a stochastic pol-
icy is used during test, the agent will successfully use either
route to reach the goal even though it hasn’t used the effi-
cient diagonal route during training, see Figure 7. Here, the
PPO agent uses a stochastic policy (left) to successfully find
the goal during all 15 test episodes even though it doesn’t al-
ways traverse the heuristic-preferred, or other rational, path.
This is despite never seeing the diagonal path during training
(middle), meaning it sees the diagonal path as valuable for
some reason other than association with collected rewards.
Forcing use of the action distribution mean (right) interest-
ingly leads the agent to only use the diagonal route which,
to reiterate, it has never traversed during training. This raises
some fundamental questions about the nature of learning
since, despite the agent directly experiencing that most re-
wards are to be found around the edge, it has learned that
some other sequence of actions is preferable. This funda-
mental question is left for future research.

This behaviour by PPO agents makes it useful in the op-
posite situation to SAC. Specifically, where a heuristic for
an approximate action sequence can be implemented but
the most appropriate action sequence is unknown, the PPO
agent may be able to find the more effective policy. However,
if a specific action sequence is desirable, it may not be possi-
ble to guide PPO to achieve a goal in a specific heuristically-
indicated manner leading to unexpected behaviours.

Algorithm | Unstable | Untenable
Q-Learning | > 0.35 <04
DOQN > 0.1 < 0.3
SAC > 0.2 <0.3
PPO > 0.3 <04

Table 1: Rates of misleading heuristic error by RL algorithm
showing when training becomes unstable and untenable.

Figure 7: Successful PPO stochastic policy test (left) with 15
episodes uses both routes even though it has never seen the
diagonal route in training (middle). Testing with only mean
value actions (right) unexpectedly prefers the diagonal route.

Conclusion and Future Work

Heuristics are an effective way to improve learning effi-
ciency of general RL algorithms by conferring domain-
specific knowledge to the agent. However, heuristics are es-
timates by nature, and in some cases may be misleading.
Reinforcement Learning is shown in this work to cope well
with misleading heuristics, able to reliably learn effective
policies with misleading error rates to 0.3. This is good news
for RL researchers since it means the common RL algorithm
types can make use of heuristics to provide domain knowl-
edge and increase sample efficiency, even where misleading
errors are expected, such as where LLMs are used.

As discussed, Tabular Q-Learning is the most clear cut
and learning is minimally affected by a misleading heuristic
until it approaches an error rate of 0.4, at which point it be-
comes unstable. Interestingly, PPO appears closest to Tabu-
lar Q-Learning in tolerance to misleading heuristics, perhaps
because both algorithms discard experiences having updated
the policy. DQN and SAC, however, store these experiences
and therefore repeatedly apply the error to the policy, per-
haps making them more susceptible to misleading heuristics
and causing the higher learning instability seen in Figure 3.
Identifying mitigations for this is left to future research; the
author’s initial suggestion is to recalculate the heuristic dur-
ing policy updates, although this will increase compute.

A difference between how SAC and PPO execute policies
is also noted in results, with SAC following the heuristically-
defined path and PPO preferring a more efficient route. Both
can be useful, with SAC a good option where following the
heuristic-indicated path is desirable and PPO where the de-
sired policy can’t be defined heuristically. What this implies
about the nature of agent learning is left to future work.

DQN is most affected by misleading heuristics and the
difference in performance to Tabular Q-Learning is signifi-
cant, increasing error rates making a clear difference to early
learning and overall stability. Despite this, DQN does even-
tually learn a good policy until error rates approach 0.4.

This work has focused on a simple navigation task to set a
baseline of RL algorithm tolerance to misleading heuristics,
showing RL is capable of learning in the face of fairly sig-
nificant error rates. Further experiments by the authors will
explore other tasks, such as grasping, to determine whether
they show similar results.
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