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Abstract

Abstraction is key to scaling up reinforcement learning (RL).
However, autonomously learning abstract representations and
temporally extended actions, like options, to improve trans-
fer and generalization remains a challenging open problem.
This paper presents a novel approach for inventing, represent-
ing, and utilizing options in continual RL settings to address
streams of stochastic problems with long-horizons, sparse re-
wards, and unknown transition and reward functions.
Our approach continually learns and maintains an inter-
pretable state abstraction, and uses it to invent high-level op-
tions with abstract symbolic representations. These options
meet three key desiderata: (1) composability for solving tasks
effectively with lookahead planning, (2) reusability across
problem instances for minimizing the need for relearning, and
(3) mutual independence for reducing interference among
options. Our main contributions are approaches for contin-
ually learning transferable, generalizable options with sym-
bolic representations, and for integrating search techniques
with RL to efficiently plan over these learned options to solve
new problems. Empirical results demonstrate that the result-
ing approach effectively learns and transfers abstract knowl-
edge across problem instances, achieving superior sample ef-
ficiency compared to state-of-the-art methods.

1 Introduction
Reinforcement Learning (RL) for enabling autonomous
decision-making has been constrained by two fundamental
challenges: sample inefficiency and poor scalability, particu-
larly in environments with long horizons and sparse rewards.
To address these limitations, researchers have focused on re-
ducing the problem complexity through: (1) state abstrac-
tion, which creates compact state representations (Jong and
Stone 2005; Wang et al. 2024), and (2) temporal abstraction,
which captures hierarchical task structures through tempo-
rally extended behaviors (Barto and Mahadevan 2003; Pate-
ria et al. 2021), such as options (Sutton, Precup, and Singh
1999). The powerful tools of abstraction promise principled
approaches for knowledge transfer across tasks (Abel et al.
2018), especially relevant in the challenging setting of con-
tinual learning (Liu, Xiao, and Stone 2021; Khetarpal et al.
2022), in which agents need to interact with and solve tasks
indefinitely. However, most existing research on option dis-
covery in RL either focuses on continuous control tasks
with short horizons and dense rewards (Bagaria, Senthil,

and Konidaris 2021; Klissarov and Precup 2021), is lim-
ited to single-task settings (Bagaria and Konidaris 2020;
Riemer, Liu, and Tesauro 2018), or lacks support for looka-
head planning over options to guide low-level policy learn-
ing (Machado et al. 2017; Khetarpal et al. 2020). A critical
challenge remains open: the autonomous discovery of op-
tions for long-horizon, sparse reward tasks in continual RL
settings. This is particularly relevant for many practical real-
world scenarios such as warehouse management, disaster re-
covery operations, and assembly tasks, where agents must
adapt to shifts in context and required behaviors without ac-
cess to closed-form analytical models.

We present a novel approach that coherently addresses op-
tion discovery and transfer with a unified symbolic abstrac-
tion framework for factored domains in continual RL set-
tings. We focus on long-horizon, goal-based Markov deci-
sion processes (MDPs) in RL settings with unknown transi-
tion functions and sparse rewards. Three conceptual desider-
ata for options computed in this work are designed to satisfy:
1) compositionality: allows options to be chained together
directly, supporting hierarchical planning instead of having
to learn a policy over options, 2) reusability: facilitates trans-
fer of options across different problem instances, minimiz-
ing the need for relearning, and 3) mutual independence:
reduces interference among options, allowing options to be
learned and executed independently with minimal side ef-
fects while ensuring they connect only at defined endpoints.
Most prior works meet some of these criteria but not all.

Our approach, Continual Hierarchical Reinforcement
Learning and Planning -- CHiRP -- takes as input a set of
state variables and a stochastic simulator, and develops a
novel process for invention of options using auto-generated
state abstractions. The invented options have symbolic de-
scriptions that directly support option composition and reuse
through high-level planning, instead of relying on RL. These
options also maintain their own encapsulated state abstrac-
tion independently and have stronger effects on different
sets of variables and/or values, reducing mutual interference.
The core idea is to capture notions of context-specific ab-
stractions that depend on and change with the current state
by identifying salient variable values responsible for great-
est variation in the Q-function, and use changes in the ab-
stractions as a cue for defining option endpoints. With every
new task in a continual stream of problems, CHiRP transfers



these options and invents new options, building a model of
options that is more broadly useful (Fig. 1). For example,
in large instances of the well-known taxi domain (Dietterich
2000), CHiRP autonomously invents four key options: nav-
igate to the passenger location, pickup the passenger, navi-
gate to the dropoff location, and dropoff the passenger.

Extensive empirical evaluation across a variety of chal-
lenging domains with continuous/hybrid states and dis-
crete actions demonstrates that our approach substantially
surpasses SOTA RL baselines in sample efficiency within
continual RL settings. Key strengths of our approach are:
fewer hyper-parameters and less tuning required compared
to many of the baselines, including SOTA DRL methods that
require extensive architecture tuning, greater interpretability,
increased sample-efficiency, and satisfaction of key concep-
tual desiderata for task decomposition.

To the best of our knowledge, CHiRP is the first approach
to autonomously invent composable, reusable, and mutu-
ally independent options using auto-generated state abstrac-
tions, and to use these options to create a novel hierarchical
paradigm for continual RL in long-horizon, sparse reward
settings. Our main contributions are: (a) a novel approach
for auto-inventing symbolic options with abstract represen-
tations, (b) a novel search process for composing options for
solving new tasks, and (c) a hierarchical framework that in-
tegrates planning and learning for continual RL.

2 Formal Framework
Problem Definition. We assume RL settings where an
agent interacts with a goal-oriented Markov decision pro-
cess (MDP) M defined by the combination of an environ-
ment ⟨S,A, T , γ, h⟩ and a task ⟨si, Sg , R⟩. Here, S is a
set of states defined using a factored representation, where
V = {v1, . . . , vn} is a set of continuous real-valued or dis-
crete variables, and each vi ∈ V has an ordered domain
Dvi = [Dmin

vi ,Dmax
vi ). We denote the value of variable vi in

state s as s(vi). Each state s ∈ S is defined by assigning
each vi ∈ V a value from its domain, i.e., s(vi) ∈ Dvi . A
is a set of finite actions. T : S × A → µS is a stochastic
transition function where µS is a probability measure on S.
γ ∈ (0, 1] is a discount factor and h is a horizon. Lastly, si
∈ S is an initial state, Sg ⊆ S is a set of goal states, and
R : S ×A → R is a reward function underlying the task.

Running Example. Consider a hybrid state space (defined
by both continuous and finite variables) adaptation of the
classic taxi domain (Dietterich 1999), where a taxi starts at
a random location and is tasked with picking up a passenger
and transporting them to their destination. The pickup and
dropoff locations are chosen randomly among n specific lo-
cations. States are represented by variables V: x ∈ R (taxi’s
x-coordinate), y ∈ R (taxi’s y-coordinate), l ∈ {0, 1, . . . , n}
(passenger’s location, where integers indicate specific loca-
tions and 0 indicates elsewhere), and p ∈ {0, 1} (passen-
ger’s presence in the taxi). For clarity, consider variables
with small domains: Dx = [0.0, 5.0),Dy = [0.0, 5.0),
Dl = {0, 1, 2, 3, 4}, and Dp = {0, 1}. A state assigns a
value to each variable from its domain, e.g., s = ⟨s(x) =
0.9, s(y) = 2.1, s(l) = 3, s(p) = 0⟩. There are six primi-

Figure 1: Overall approach for Continual Hierarchical Reinforce-
ment Learning and Planning (CHiRP).

tive actions: navigate in four cardinal directions by a fixed
distance, pickup the passenger, and drop-off the passenger.

A solution to a goal-oriented MDP is a policy π : S → A,
which maps each state s ∈ S to an action a ∈ A, with the
objective of maximizing the expected discounted cumulative
reward. When analytical models of transition T and reward
R functions are available, classical dynamic programming
methods such as value iteration (Bellman 1957) and policy
iteration (Howard 1960) are used to compute policies. How-
ever, in RL settings, T (S,A) and R(S,A) can be sampled
but their closed-form analytical models are not available.
Methods like Q-learning (Watkins and Dayan 1992), DQN
(Mnih et al. 2013), and PPO (Schulman et al. 2017) are de-
signed to learn policies directly from samples, but they are
often sample inefficient and struggle to scale when effective
horizons are long (Laidlaw, Russell, and Dragan 2023) and
rewards are sparse (Dadvar, Nayyar, and Srivastava 2023).

Continual Reinforcement Learning. Many challenging
real-world scenarios are captured by continual or lifelong
learning setting (Ring 1994; Liu, Xiao, and Stone 2021),
where an agent must interact with and solve a stream of
related tasks, randomly sampled from a distribution, over
the course of its lifetime. In these tasks, subtle aspects of
the initial state, goal states, transition function, and reward
function change over time. The goal is to efficiently retain
and reuse knowledge from previous experiences to solve
new tasks. We adapt the definition of continual learning
(Khetarpal et al. 2022) to goal-oriented MDPs as follows.

Definition 2.1 (Continual Reinforcement Learning (CRL)).
CRL problem is a stream of n MDPs M where each
MDP M ∈ M shares ⟨S,A, γ, h⟩ and may have distinct
⟨T , sMi , SM

g ,RM⟩. An agent interacts with eachMi ∈M
for a maximum ofH timesteps in the order i = 1, . . . , n.

A solution to a CRL problem is a policy πM : S → A
for each MDP M in the problem stream M. The goal is
to solve eachM ∈M while minimizing agent interactions
and maximizing the expected discounted cumulative reward.
In such challenging settings, abstraction techniques emerge
as powerful tools for improving scalability and generaliza-
tion in RL (Li, Walsh, and Littman 2006).

State Abstractions. A state abstraction ϕ : S → S maps
each state s ∈ S to an abstract state s ∈ S, where S is a par-
titioning of S. Given a set of variables V , let s(vi) denote the
value of vi ∈ V in an abstract state s. An abstract state as-



Figure 2: Illustration of a Conditional Abstraction Tree (CAT)
(left) and Abstract Options (right) for a small instance in taxi world.
Left: Nodes show values of refined variables; other variables inherit
values from parent nodes. Right: Arrows denote option policies.
Abstract states are highlighted with solid red lines in both figures.

signs an interval of values to each variable from its domain,
e.g., state s = ⟨s(x) = 2.1, s(y) = 0.9, s(l) = 3, s(p) =
0⟩ can be abstracted as s = ⟨s(x) = [2.5, 5), s(y) =
[0.0, 2.5), s(l) = {3, 4}, s(p) = {0}⟩. Here, s represents
a set of states {s ∈ S|∀vi ∈ V , s(vi) ∈ s(vi)}. Also, the
coarsest state abstraction contains a single abstract state sinit
that assigns sinit(vi) = Dvi to each vi ∈ V . Formally, an
abstract state is defined as follows.
Definition 2.2 (Abstract State). Given a set of variables V
and the domain Dvi for each variable vi ∈ V , an abstract
state s ∈ S is defined by assigning an interval of values
s(vi) ⊆ Dvi to each vi ∈ V .

Conditional Abstraction Trees (CATs). State abstraction
on a variable’s values (such as taxi’s location) is conditioned
on the values of the other variables (such as passenger’s
presence in the taxi). Such rich conditional abstractions for a
task can be captured in the form of a Conditional Abstraction
Tree (CAT) (Dadvar, Nayyar, and Srivastava 2023) where
the root denotes the coarsest abstract state, while lower-
level nodes represent abstract states with greater refinement
on variables requiring higher resolution in variable values.
Fig. 2 illustrates a CAT for a small problem of taxi domain.
CATs are defined formally as follows.
Definition 2.3 (Conditional Abstraction Trees (CATs)). A
CAT ∆ is a tuple ⟨N , E⟩, where N is a set of nodes rep-
resenting possible abstract states and E is a set of directed
edges connecting these nodes. The root represents the coars-
est abstract state sinit. An edge e ∈ E from a parent abstract
state sp ∈ N to a child abstract state sc ∈ N exists iff
sc can be obtained by splitting atleast one of the variable
intervals in sp at most once. The leaf nodes represent the
active abstract state space S∆. ∆ defines a state abstraction
ϕ∆ : S → S∆ mapping each state s ∈ S to the abstract state
s ∈ S∆ represented by the unique leaf in ∆ containing s.

In this work, we use novel notions based on CAT-based
state abstractions to coherently address option invention and
transfer with a unified abstraction framework. We compute
CATs online using CAT+RL (Dadvar, Nayyar, and Srivas-
tava 2023) which refines states with high dispersion in TD-
errors during Q-learning over the abstract state space.

Abstract Options. We use the standard notion of options
(Sutton, Precup, and Singh 1999). An option o is a triple
⟨Io, βo, πo⟩, where Io ⊂ S is the initiation set where o
can initiate, βo ⊂ S is the termination set where o termi-
nates, and πo : S → A is the option policy prescribed by
o that maps states to actions. Our approach autonomously
learns all components of options, defined over an abstract
state space S∆o

as follows. We define an abstract option o
as a tuple ⟨∆o, Io, βo, πo⟩, where ∆o is the CAT-based state
abstraction ϕ∆o

: S → S∆o
, Io ⊂ S∆o

is the abstract initi-
ation set, βo ⊂ S∆o

is the abstract termination set, and πo :
S∆o

→ A is the abstract partial policy. Io and βo denote
option endpoints. The declarative description of an option is
termed as option signature ⟨Io, βo⟩. Additionally, two op-
tions oi and oj are composable iff βoi ⊆ Ioj .

3 Continual Hierarchical RL and Planning
The core contribution of this paper is a novel approach for
autonomously inventing a forward model of abstract options
using auto-generated CAT-based state abstractions and uti-
lizing them efficiently for solving continual RL problems.
Our approach CHiRP (Fig. 1) takes as input a continual
stream of tasks M and a stochastic simulator, and com-
putes a policy for each task. The key insight for option in-
vention is that CATs, auto-generated using CAT+RL, for
each task inherently capture abstractions that remain stable
within a subtask, but change significantly across subtasks
within the task. We use CATs to capture notions of context-
specific abstractions that depend on the current state and
then use changes in these abstractions as a cue for defining
option endpoints. For instance, in the taxi domain (Fig. 2),
when the passenger has not been picked up, the abstraction
needs greater refinement on the value of the taxi’s location
closer to the passenger’s location. However, when the con-
text changes to a situation where the passenger is in the taxi
and has not been dropped off, the abstraction needs greater
refinement on the value of the taxi’s location near the des-
tination. In this scenario, the pickup option (option o2 in
Fig. 2) can be seen as an option that achieves a significant
change in context-specific abstractions.

CHiRP maintains a universal CAT created from the cur-
rent and all previous problems in the stream, and exploits its
structure to identify context-variables, such as the passen-
ger’s presence in the taxi. These variables are used to define
a context-specific distance between states in a manner such
that higher distances correspond to greater changes in salient
variables and values. CHiRP operationalizes this notion of
changes in saliency to invent abstract options. Note that the
descriptions of the invented options are symbolic, hence di-
rectly support efficient composition and reuse. Thus, when a
new task is encountered in the stream, CHiRP’s novel plan-
ner uses the endpoints of learned options to chain them with
foresight for long-term planning. Each option maintains its
own encapsulated, symbolic CAT-based state abstraction, al-
lowing options to be used and updated independently. More-
over, generated options have stronger effects on different
sets of variables and values, reducing mutual interference.

In Sec. 3.1, we present CHiRP, our overall approach to



continual RL through autonomous invention, transfer, and
reuse of abstract options. Sec. 3.2 details our novel approach
for option invention, and Sec. 3.3 details a novel planner for
composing these options to solve new tasks.

3.1 Algorithm Overview
Given a continual RL problem, Alg. 1 begins with an empty
model of abstract options O and a CAT ∆ with the coarsest
state abstraction (lines 1-2). For each new task in the stream,
the CAT’s abstraction is used to compute the initial and goal
abstract states (line 4). Once a solution policy is found or a
budget of H timesteps is reached, the agent moves to solv-
ing the next task (line 5). To solve the current task, the agent
interleaves: (1) a planner to plan with the current model of
abstract options, (2) CAT+RL to refine the current CAT’s
state abstraction during learning, and (3) an option inven-
tor to invent novel abstract options using the updated CAT
(lines 6-16). The updated model of options O and CAT ∆
are transferred to solve subsequent tasks (line 3).

Given a new task, Alg. 1 uses a novel offline search pro-
cess with the current model of abstract options to compute
a plan from the current abstract state to a goal abstract state,
denoted by Π = ⟨o0, . . . , on⟩, oi ∈ O. The learned option
representations are used to compose this plan, as detailed
in Sec. 3.3 (line 6 computeOptionPlan()). The method ad-
ditionally creates new option signatures to allow connecting
endpoints of learned options with gaps between them. If no
plan is found with the current model, we initialize the plan
with a new option signature from the current abstract state
to the goal abstract states (line 8). The CAT and policies for
these options are learned later during RL.

For each newly created option signature or previously
learned option in the plan, o ∈ Π, we generate an MDP with
a sparse intrinsic reward for reaching the option’s termina-
tion (line 10). The option’s CAT ∆o and policy πo are then
learned or fine-tuned using CAT+RL (line 11). We use these
option-specific CATs and policies to invent new abstract op-
tions with updated representations, as detailed in Sec. 3.2
(line 13 inventOptions()). This process converts option sig-
natures into abstract options with learned CATs and policies.
We also update the universal CAT ∆ with each invented op-
tion’s CAT ∆o, adjusting the current abstract state (line 14).
Note that option executions can be stochastic, and the agent
may fail to successfully reach the termination set of an op-
tion. In such cases, we use active replanning (Kaelbling and
Lozano-Pérez 2011) from the current abstract state to a goal
abstract state (line 16), and continue learning option-specific
CATs and policies. This process repeats until the computed
plan of abstract options successfully solves the problem. Fi-
nally, Alg. 1 transfers the updated model O with the new
options and CAT ∆ to solve new tasks.

3.2 Auto-Inventing Model of Abstract Options
We now discuss our approach to invent abstract options us-
ing a learned CAT and an abstract policy (Alg. 1 line 13)
(Sec. 3.1 explains our approach for obtaining these inputs).
The key idea is to identify transitions that lead to signifi-
cant changes in context-specific abstractions, revealing that
the nature of the task has changed. We recognize changes in

Algorithm 1: CHiRP algorithm
Input: Stream of MDPs M, BudgetH
Output: Policy πM for eachM∈M

1 O ← Initialize empty model of abstract options
2 ∆← Initialize CAT with sinit
3 forM∈M do
4 s← sMi ; s, Sg ← abstractStates(∆, sMi , SM

g )

5 while πM not found or steps < H do
6 Π← computeOptionPlan(O, ∆, s, Sg)
7 if Π is not found then
8 Π← inventOptionSign(s, SM

g )

9 for o ∈ Π do
10 Mo← generate MDP for o
11 ∆o, πo← CAT+RL(Mo, ∆, s)
12 if πo is learned then
13 O.update(inventOptions(∆o,πo))
14 ∆←∆o; update s, s

15 else
16 break and replan Π

17 return ∀M ∈M πM

sets of salient variables and values that significantly impact
changes in the CAT’s structure, and use this as an indicator
for determining when to initiate and terminate options.

We capture context-specific abstractions for a given state
using structures called as Context-Specific CATs (C-CATs),
which are derived from the input CAT. To generate C-CATs,
we first identify context-variables, the variables that change
slowly and are maximally refined in the CAT. These vari-
ables undergo relatively fewer refinements than the most re-
fined variable. Specifically, if the maximum number of re-
finements for any variable in the CAT is m, then context-
variables are those variables that are refined greater than 0
and less than f ∗ m times in the CAT, where f is a frac-
tion (we use f = 0.5 in this paper). For instance, in the
running example, variable p denoting the passenger’s pres-
ence in the taxi, is a context-variable. Other variables that
are frequently refined, such as taxi’s location, indicate that
they were responsible for the greatest variation in the Q-
function during learning of the CAT. Note that frequently
refined variables have higher resolution around different val-
ues depending upon the values of context-variables. Since
only a few values of the context-variables span the entire
reachable state space, it makes it suitable to condition the
input CAT on these variables to generate C-CATs.

Conditioning the CAT on context-variables highlights ab-
stractions that are salient for different contexts—expressed
by different “active” subtrees—within the CAT. More
specifically, C-CATs fix values of context-variables in the
current state and preserve all abstract states in the CAT that
are consistent with these fixed values. All other abstract
states that are inconsistent are ignored (shown in dark in
Fig. 3). For example, Fig. 3 (left) illustrates the C-CAT for
state s1 where the passenger’s location is fixed at the bot-
tom left and the passenger has not yet been picked up, i.e.,



Figure 3: Illustration of two Context-Specific CATs (C-CATs)
highlighting different active abstractions in the CAT from Fig. 2.
The left C-CAT is conditioned on the passenger at the pickup loca-
tion, while the right is conditioned on the passenger in the taxi.

s1(p) = 0. Similarly, Fig. 3 (right) illustrates the C-CAT
for state s2 where the passenger has been picked up, i.e.,
s2(p) = 1. We formally define C-CATs as follows.
Definition 3.1 (Context-specific CATs (C-CATs)). Given a
CAT ∆ = ⟨N , E⟩ and context-variables V ⊆ V , a C-CAT
∆s for state s is defined as ⟨N ′, E ′⟩ where N ′ ⊆ N s.t.
N ′ = {s|s ∈ N , vi ∈ V, s(vi) ∈ s(vi)} and E ′ ⊆ E s.t.
E ′ = {(s1, s2)|(s1, s2) ∈ E , s1, s2 ∈ N ′}.
Identifying Option Endpoints. We identify transitions
that lead to significant changes in the context-specific ab-
stractions to define endpoints of new options. For instance,
consider C-CATs in Fig. 2 before and after the passenger
is picked up. These C-CATs are significantly different from
each other, indicating a significant change in abstraction.
To measure difference between abstraction functions repre-
sented by two C-CATs generated from the same CAT, we
now introduce a context-specific distance. Intuitively, this
distance is computed by traversing from the root node and
summing the structural differences between corresponding
subtrees of C-CATs. Given a C-CAT ∆s for state s, let ∆n

s
denote the subtree rooted at node n, and depthmax(∆

n
s ) de-

note the maximum depth of that subtree. We drop n from
∆n

s when n = sinit. Let ni denote the ith child of node n in
the CAT ∆. We formally define this distance as follows.
Definition 3.2 (Context-specific distance between C-CATs).
Given two C-CATs obtained from ∆ rooted at node n, ∆n

s1
and ∆n

s2 , the distance between them is defined as

δ(∆n
s1 ,∆

n
s2) =


depthmax(∆

n
s1), if n not in ∆n

s2 ;

depthmax(∆
n
s2), if n not in ∆n

s1 ;

Σiδ(∆
ni
s1 ,∆

ni
s2 ), otherwise.

To identify option endpoints using the context-specific
distance, we first compute a roll-out trajectory τ =
⟨s0, . . . , sn⟩ by executing the input policy π, identify
context-variables from CAT ∆, and generate C-CATs ∆τ =
⟨∆s0 , . . . ,∆sn⟩. Let δthre be a distance threshold. Then, for
each transition (si, si+1) ⊆ τ , we use abstract states ϕ∆(si)
and ϕ∆(si+1) to define option endpoints if δ(∆si ,∆si+1) >
δthre. The initial and goal abstract states are also included.

Additionally, our approach uses a context-independent
distance, also derived from the CAT, to allow decomposing
an option into multiple options. For example, navigating to
the pickup location can be decomposed into first reaching

Algorithm 2: Invention of Abstract Options
Input: CAT ∆, Policy π, thresholds δthre and σthre
Output: Abstract options O

1 τ ← computeTrajectory(π)
2 τ ← computeAbstractTrajectory(τ ,∆)
3 V ← identifyContextVariables(∆)
4 ∆τ ← generateContext-SpecificCATs(∆,τ ,V )
5 τ∗ ← identifyOptionEndPoints(∆,∆τ ,τ ,δthre,σthre)
6 O ← inventAbstractOptions(τ∗,τ ,∆,π)
7 O ← finetunePolicies(O)
8 return O

the larger bottom-left quadrant and then the exact pickup lo-
cation (Fig. 2). Intuitively, this distance is greater between
states that belong to highly distinct (having higher low-
est common ancestor (LCA)) and highly refined CAT sub-
trees. Let depthmax be the maximum depth of the CAT, and
depth(n1, n2) denote the number of edges between nodes n1

and n2. We formally define this distance as follows.

Definition 3.3 (Context-independent distance between ab-
stract states). Given a CAT ∆ and LCA of two abstract
states s1 and s2, the distance between them σ∆(s1, s2) is de-
fined as the weighted sum of (depthmax−depth(root,LCA)+
1) and (depth(LCA, s1) + depth(LCA, s2))/2.

To identify additional option endpoints using context-
independent distance, we compute trajectory segments
τ seg = ⟨sk, . . . , sm⟩ ⊆ τ s.t. ϕ∆(sk) and ϕ∆(sm) define
consecutive option endpoints. We also compute abstract tra-
jectory segments τ seg using the CAT. Let σthre ≤ 1.0 be a dis-
tance threshold and σmax be the maximum distance for any
transition in τ seg. Then, for each transition (si-1, si) ⊆ τ seg,
si is an option endpoint if σ∆(si-1, si) > σthre × σmax.

Overview of Inventing Abstract Options. Alg. 2 uses the
abstract policy to compute a roll-out trajectory and then uses
the CAT to compute its corresponding abstract trajectory
(lines 1-2). It extracts context-variables from the CAT and
generates a C-CAT for each state in the trajectory (lines 3-
4). The context-specific and context-independent distances
are then used to identify a sequence of option endpoints
τ∗ (line 5). We use the identified option endpoints to in-
vent abstract options as follows. For each consecutive op-
tion endpoints s∗i , s

∗
j ∈ τ∗, we first compute a segment

segij = ⟨s̄k, . . . , s̄m⟩ ⊆ τ s.t. s̄k = s∗i and s̄m+1 = s∗j . Then,
an abstract option oij = ⟨∆oij , Ioij , βoij , πoij ⟩ is invented,
where Ioij contains siblings of s∗i in the CAT ∆ that are
in segij , βoij = {s∗j}, ∆oij = ∆, and πoij = π (line 6). Fi-
nally, we fine-tune the policy for each option using CAT+RL
(line 7). Options invented in this fashion are used to update
the model of abstract options O.

3.3 Planning with Model of Abstract Options
We now describe a novel planning process to compute a plan
Π for a new task using (1) the learned model of abstract op-
tions and (2) the learned CAT overlayed with abstract transi-
tions, termed as a Plannable-CAT (Alg. 1 line 6). The sym-
bolic endpoints of options allow efficient composition for



lookahead planning. The plannable-CAT guides the search
process over these option endpoints while creating new op-
tion signatures to connect them when needed. Note tht while
execution of learned abstract options can be stochastic, we
apply single-outcome determinization (Yoon, Fern, and Gi-
van 2007) for planning by considering only the most likely
effects (here, the termination sets) of options. Alg. 1 uses ac-
tive re-planning to handle any execution failures of options.

To compute a plan of options, we first augment the
Plannable-CAT with transitions between option endpoints.
We also include lifted transitions between higher levels of
abstract states. We derive a cost function that prioritizes
lower-level transitions, and use the context-independent dis-
tance (Def. 3.3) as a heuristic for guiding A∗ search. The
idea is to compose abstract transitions at different levels of
abstractions. The resulting plan is refined by replacing con-
secutive higher-level transitions with a new option signa-
ture. This helps to bridge gaps between option endpoints and
compute a plan. Finally, CHiRP interleaves the execution of
the computed plan with learning of option policies for any
newly created option signatures, and solves the new task.

4 Empirical Evaluation
We evaluated CHiRP on a diverse suite of challenging do-
mains in continual RL setting (shown in Fig. 4). We include
details on domains and hyperparameters in the appendix.

4.1 Experimental Setup
Domains. For our evaluation, we compiled a suite of test
domains for continual RL that are amenable to hierarchichal
decomposition and challenging for SOTA methods. We then
created versions of these problems that are significantly
larger than prior investigations to evaluate whether the pre-
sented approaches are able to push the limits of scope and
scalability of continual RL. Our investigation focused on
stochastic versions of the following domains with contin-
uous or hybrid states: (1) Maze World (Ramesh, Tomar,
and Ravindran 2019): An agent navigates through randomly
placed wall obstacles to reach the goal; (2) Four Rooms
World (Sutton, Precup, and Singh 1999): An agent moves
within and between rooms via hallways to reach the goal;
(3) Office World (Icarte et al. 2018): An agent collects cof-
fee and mail from different rooms and delivers them to an
office; (4) Taxi World (Dietterich 2000): A taxi picks up
a passenger from its pickup location and them drops off at
the destination; (5) Minecraft (Andreas, Klein, and Levine
2017): An agent mines different resources, builds interme-
diate tools, and uses them to craft an axe.

Baselines. We selected the best-performing contemporary
methods that do not require any hand-engineered abstrac-
tions or action hierarchies as baselines to match the ab-
sence of such requirements in our approach: (1) Option-
Critic (Bacon, Harb, and Precup 2017): This gradient-based
method learns option policies and termination conditions
end-to-end for transfer. (2) CAT+RL (Dadvar, Nayyar, and
Srivastava 2023): This top-to-down abstraction refinement
method dynamically learns state abstractions during RL. (3)
PPO (Schulman et al. 2017): This policy-gradient Deep RL

method progressively learns latent state abstractions through
neural network layers.

Hyperparameters. A key strength of CHiRP over base-
lines is that it requires only five additional hyperparameters
beyond standard RL parameters (e.g., decay, learning rate),
unlike SOTA DRL methods that need extensive tuning and
significant effort in network architecture design. Throughout
our experiments, we intuitively set δthre = 0 and σthre ∼ 1
to minimize hyperparameter tuning. These values are robust
across domains, preventing options from being too small or
numerous. We use a limited set of values for kcap, sfactor, and
emax parameters across different domains to adaptively con-
trol the training of an option’s policy and CAT. All parame-
ters are set to the same values across a continual stream of
tasks. Details on the used hyperparameters for CHiRP and
the baselines are provided in the appendix.

Evaluation setting and metrics. We evaluate in a contin-
ual RL setting where an agent needs to adapt to changes
in initial states, goal states, transition and reward functions.
For each domain, 20 tasks are randomly sampled sequen-
tially from a distribution. Each approach is given a budget
ofH timesteps per task before moving to the next task. Due
to stochasticity and lack of transition models, a task is con-
sidered solved if the agent achieves the goal ≥ 90% of the
time among 100 independent evaluation runs of the learned
policy. We report the fraction of tasks solved within the total
allocated timesteps for each approach. This includes all the
interactions with the environments used for learning state
abstractions, option endpoints, and option policies. Results
are averaged, and standard deviations are computed from 10
independent trials across the entire problem stream.

4.2 Results
We evaluate the presented work across a few key dimen-
sions: sample-efficiency in continual RL setting, and sat-
isfaction of key conceptual desiderata for task decomposi-
tion—composability, reusability, and mutual independence.

Q1. Does CHiRP help improve sample-efficiency over
SOTA RL methods in continual RL setting?

Fig. 4 shows that CHiRP consistently outperforms all
baselines. Our results confirm that, while in principle base-
line approaches can solve problems without hand-designed
abstractions and hierarchies, they require orders of magni-
tude more data and struggle to solve streams of distinct long-
horizon tasks with sparse rewards. We found that CAT+RL
delivered the second-best performance, while Option-Critic
and PPO consistently underperformed across all domains,
failing to solve tasks within the allotted budget. While
Option-Critic has the advantage of reusing options, it strug-
gled to learn useful and diverse options. This is at least partly
due to lack of mechanisms for modelling initiation sets for
options and inability to plan long-term sequences of options,
leading to initiation of options in states where they were ei-
ther ineffective or unnecessary. CAT+RL performed well by
learning appropriate state abstractions for each task but did
not decompose these tasks into transferable options. PPO
struggled to learn likely due to the challenges associated



Figure 4: Fraction of tasks solved vs training steps, averaged over 10 independent trials. Each approach was evaluated on a sequence of
20 randomly sampled tasks in a continual learning setting, with a fixed budget of timesteps to solve each task. The timesteps include all
environment interactions used for learning both abstractions and policies.

with learning in environments with longer effective hori-
zons and sparse rewards, as shown by Laidlaw, Russell, and
Dragan (2023). Gradient-based methods typically struggle
in these tasks as they rely on dense reward shaping for local
gradient updates. In contrast, CHiRP overcomes these limi-
tations with its ability to learn options with limited, symbol-
ically represented initiation sets, maintain option policies at
different levels of abstraction, and perform long-term plan-
ning with these options. CHiRP generates state abstractions
and goes beyond by inventing reusable options, resulting in
more effective generalization and transfer across tasks.

Q2. Does CHiRP invent mutually independent options?
Can the options be composed and reused effectively?

A key advantage of options invented by CHiRP is their in-
terpretable symbolic representation−each option’s initiation
and termination sets are defined in terms of specific value
ranges of variables, enabling clear visualization. Our analy-
sis revealed that the invented options express distinct, com-
plementary high-level behaviors, with each option primar-
ily affecting different state variables and value ranges. For
example, in the taxi domain, CHiRP invented four distinct
options: two navigation options, affecting different values
of taxi location variable, specialized for moving to pickup
and drop-off locations, and two passenger interaction op-
tions, affecting different values of passenger variables, fo-
cused on picking up and dropping off passenger. The min-
imal overlap in the core affected variables and their value
ranges in the terminations indicate that the options operate
independently. Clear symbolic endpoints of options enable
direct sequencing of these options and reusing option poli-
cies, demonstrating strong composability and reusability.

5 Related Work
Abstraction has been a topic of significant research inter-
est in RL due to its potential to improve learning efficiency
and generalization, as seen in extensively studies for robotics
(Shah and Srivastava 2024; Shah et al. 2024) and structured
domains (Karia, Nayyar, and Srivastava 2022; Karia et al.
2024). Early research largely focused on hand-designed ab-
stractions (Andre and Russell 2002; Dietterich 2000). More
recent RL frameworks also use high-level planning models
or action hierarchies (Illanes et al. 2020; Kokel et al. 2021).

Typically, research on learning abstractions for RL has fo-
cused on either state abstraction or action abstraction in iso-
lation. For example, Jonsson and Barto (2000) learn state
abstractions for predefined options. Several methods have
also been developed for automatic discovery of subgoals or
options, such as identifying bottleneck states through graph-
partitioning (Menache, Mannor, and Shimkin 2002; Şimşek
and Barto 2007; Bacon and Precup 2013; Machado, Belle-
mare, and Bowling 2017), clustering (Mannor et al. 2004),
and frequency-based (McGovern and Barto 2001; Stolle and
Precup 2002) techniques. Feudal learning methods create a
hierarchy where the higher level sets goals for the lower
level to achieve (Vezhnevets et al. 2017; Nachum et al.
2018). Ravindran and Barto (2003) focus on learning rela-
tivized options and applying transformations to solve a re-
lated target task, while Konidaris and Barto (2007) reframe
the state space into agent- and problem-centric spaces, trans-
ferring portable options in the agent-space.

Prior research in option discovery not requiring hand-
engineered inputs is often limited to control tasks with short
horizons due to computational intractability. Gradient-based
approaches particularly rely on dense reward shaping for lo-
cal gradient updates (Riemer, Liu, and Tesauro 2018; Bacon,
Harb, and Precup 2017). Machado et al. (2023) discovers
exploratory options by leveraging graph Laplacian diffusion
models. Bagaria, Senthil, and Konidaris (2021) use dense
rewards and distance metrics to learn options, while many
recent methods learn a fixed prespecified number of options
and rely on learning a policy over options to utilize them
(Bacon, Harb, and Precup 2017; Klissarov and Precup 2021;
Machado et al. 2017; Khetarpal et al. 2020). In contrast, our
work tackles tasks with sparse rewards and long horizons in
continual learning settings. Our work can also leverage ideas
like reward redistribution by Arjona-Medina et al. (2019).

6 Conclusion and Future Work
We presented a novel approach to continual RL based on
learning and utilizing symbolic abstract options under the
assumption of full observability and discrete actions. An in-
teresting future research direction is to extend our approach
to settings with continuous parameterized actions. Optimal-
ity is another good direction for future work.
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7 Appendix
This paper presents a novel approach for autonomous inven-
tion and transfer of options, a challenging open problem for
hierarchical and continual RL.

8 Selection of Domains and Task Details
We chose test domains that are well established as chal-
lenging for state-of-the-art RL (Andreas, Klein, and Levine
2017; Kokel et al. 2021; Jin et al. 2022) with considerably
larger value ranges for the layout than those used in most
prior investigations. In each domain, we generated a contin-
ual stream of 20 randomly generated tasks, varying in initial
states, goal states, transition and reward functions. We evalu-
ated each approach on its ability to solve the entire continual
RL problem within a given budget for each task. The cho-
sen tasks are particularly difficult due to their long horizons
and sparse rewards. Below, we detail the specific differences
among the tasks for each continual RL problem. These tasks
share the same state and action spaces but vary in their ob-
jectives as follows.
• In Maze World (Ramesh, Tomar, and Ravindran 2019),

the agent must navigate from a randomly selected start
location to a randomly chosen goal within a large 24×24
continuous map, avoiding randomly placed wall obsta-
cles. It can move in four cardinal directions, with a 0.8
probability of successful movement and a 0.1 probabil-
ity of slipping to an adjacent cell. The agent receives a
reward of 500 upon reaching the goal and -1 elsewhere.

• In Four Rooms (Sutton, Precup, and Singh 1999),
the agent navigates within and between rooms, moving
through hallways to reach a randomly chosen goal from
a random starting location within a 33×33 continuous
map. The effects of actions due to stochasticity and the
reward structure are the same as in Maze World.

• In Office World (Icarte et al. 2018), the agent starts at a
random location, tasked with collecting coffee and mail
from specific locations and delivering them to a ran-
domly chosen desk within an 11×15 office. The agent
receives a reward of 500 upon successfully completing a
task and 0 elsewhere.

• In Taxi World (Dietterich 2000), the taxi starts at a ran-
dom location, must pick up a passenger from a randomly
selected pickup location and drop them off at a randomly
chosen destination. The map of size 30×30 features four
specific pickup and dropoff locations. The agent is penal-
ized with a -100 reward for illegal pick or dropoff actions,
and it receives a reward of 500 for successfully complet-
ing the task of delivering the passenger to its destination,
with a -1 penalty for other moves.

• In Minecraft (Andreas, Klein, and Levine 2017), the
agent starts at a random location in a 22×22 map, needs
to gather wood from randomly selected forest locations
to craft a stick, and then mine resources like iron or stone
to build either a stone or an iron axe. The tasks are ran-
domly chosen to build either a stone or an iron axe, so the
agent must identify and collect the necessary resources.
Movement incurs a cost of -1, and the agent receives a
reward of 500 for crafting the correct axe.

For training option policies in our approach, we provide the
agent an intrinsic sparse reward of 500 upon reaching ab-
stract terminations of options.

9 Selection of Baselines
We evaluated existing work to select the best performing
baselines on the selected problems, focusing on those that
do not rely on hand-engineered abstractions or action hier-
archies. Extensive evaluation by (Dadvar, Nayyar, and Sri-
vastava 2023) showed that CAT+RL dominated Qlearning
(Watkins and Dayan 1992) and state-of-the-art deep RL ap-
proaches like DQN (Mnih et al. 2013), PPO (Schulman et al.
2017), and A2C (Mnih et al. 2016). As a result, we selected
CAT+RL as a suitable baseline for comparison. We com-
pared with Option-Critic (Bacon, Harb, and Precup 2017)
as it is a SOTA approach for end-to-end learning of transfer-
able options. Lastly, we also compared with PPO (Schulman
et al. 2017), a SOTA DRL approach for learning latent rep-
resentations to solve RL problems.

10 Hyperparameter Details
We implemented our approach CHiRP in Python. For base-
lines, we used the open-source code available for Option-
Critic 1, CAT+RL 2, and used standard architectures for PPO
from Stable-Baselines3 3 by (Raffin et al. 2019).

A key advantage of our approach, CHiRP, over most base-
line methods is that it requires only five additional hyperpa-
rameters beyond standard RL parameters (e.g., decay, learn-
ing rate), and is robust to most parameter values, as long as
they are intuitively set. In contrast, SOTA deep RL methods
need extensive tuning, significant effort in network architec-
ture design, and are highly sensitive to hyperparameter val-
ues. Unlike Option-Critic, CHiRP does not require the num-
ber of options to be specified in advance. For Option-Critic,
we parameterize the intra-option policies with Boltzmann
distributions and the terminations with sigmoid functions.
Tables 1 (Maze World), 2 (Four Rooms), 3 (Taxi World),
4 (Office World), and 3 (Minecraft) show the used hyperpa-
rameters for CHiRP and all baselines on these domains.

The parameters used by CHiRP are: δthre and σthre are dis-
tance thresholds used for option invention, kcap is the cap
on the number of abstract states refined in option-specific
CATs, sfactor is a scaling factor for adaptively adjusting the
stepmax for training option policies (stepmax for an op-
tion is set to sfactor * length of recent successful trajec-
tory), and emax is the maximum episode limit for learning
an option’s policy before halting training to do replanning.
Our approach uses kcap parameter for controlling abstrac-
tion refinement for options, as used by CAT+RL for the en-
tire problem. Throughout our experiments, we intuitively set
δthre = 0 and σthre ∼ 1. These values are robust across do-
mains, preventing options from being too small or numer-
ous. We use a limited set of values for other parameters to
minimize hyper-parameter tuning. All parameters are set to
the same values across tasks in a continual RL problem.

1https://github.com/lweitkamp/option-critic-pytorch
2https://github.com/AAIR-lab/CAT-RL.git
3https://github.com/DLR-RM/stable-baselines3



Hyperparameters CHiRP Option-Critic CAT+RL PPO

Task budget in timesteps (H) 1.5M 1.5M 1.5M 1.5M
Exploration decay 0.997 0.997 0.997 −
Minimum exploration rate 0.05 0.05 0.05 −
Learning rate (α) 0.05 0.05 0.05 3e-4
Discount factor (γ) 0.99 0.99 0.99 0.99
Episode stepmax 500 500 500 500
Cap on abstraction refinement (kcap) 2 − 5 −
Context-specific distance threshold (δthre) 0 − − −
Context-independent distance threshold (σthre) 0.95 − − −
Factor to adjust stepmax for options (sfactor) 10 − − −
Maximum episodes to halt option training (emax ) 500 − − −
Number of options − 8 − −
Temperature − 0.001 − −
Termination regularization − 0.01 − −
Entropy regularization − 0.01 − −
Generalized Advantage Estimator (gae lambda) − − − 0.95
Steps to run per update (n steps) − − − 2048
Entropy coefficient (ent coef) − − − 0.0
Value function coefficient (vf coef) − − − 0.5
Maximum gradient clipping (max grad norm) − − − 0.5

Table 1: Hyperparameters used in Maze World.

Hyperparameters CHiRP Option-Critic CAT+RL PPO

Task budget in timesteps (H) 2M 2M 2M 2M
Exploration decay 0.998 0.998 0.998 −
Minimum exploration rate 0.05 0.05 0.05 −
Learning rate (α) 0.05 0.05 0.05 3e-4
Discount factor (γ) 0.999 0.999 0.999 0.999
Episode stepmax 800 800 800 800
Cap on abstraction refinement (kcap) 2 − 5 −
Context-specific distance threshold (δthre) 0 − − −
Context-independent distance threshold (σthre) 0.95 − − −
Factor to adjust stepmax for options (sfactor) 10 − − −
Maximum episodes to halt option training (emax ) 500 − − −
Number of options − 8 − −
Temperature − 0.001 − −
Termination regularization − 0.01 − −
Entropy regularization − 0.01 − −
Generalized Advantage Estimator (gae lambda) − − − 0.95
Steps to run per update (n steps) − − − 2048
Entropy coefficient (ent coef) − − − 0.0
Value function coefficient (vf coef) − − − 0.5
Maximum gradient clipping (max grad norm) − − − 0.5

Table 2: Hyperparameters used in Four Rooms World.



Hyperparameters CHiRP Option-Critic CAT+RL PPO

Task budget in timesteps (H) 4M 4M 4M 4M
Exploration decay 0.999 0.999 0.999 −
Minimum exploration rate 0.05 0.05 0.05 −
Learning rate (α) 0.05 0.05 0.05 3e-4
Discount factor (γ) 1 1 1 1
Episode stepmax 1000 1000 1000 1000
Cap on abstraction refinement (kcap) 2 − 5 −
Context-specific distance threshold (δthre) 0 − − −
Context-independent distance threshold (σthre) 1 − − −
Factor to adjust stepmax for options (sfactor) 4 − − −
Maximum episodes to halt option training (emax ) 200 − − −
Number of options − 8 − −
Temperature − 0.001 − −
Termination regularization − 0.01 − −
Entropy regularization − 0.01 − −
Generalized Advantage Estimator (gae lambda) − − − 0.95
Steps to run per update (n steps) − − − 2048
Entropy coefficient (ent coef) − − − 0.0
Value function coefficient (vf coef) − − − 0.5
Maximum gradient clipping (max grad norm) − − − 0.5

Table 3: Hyperparameters used in Taxi World.

Hyperparameters CHiRP Option-Critic CAT+RL PPO

Task budget in timesteps (H) 4M 4M 4M 4M
Exploration decay 0.9991 0.9991 0.9991 −
Minimum exploration rate 0.05 0.05 0.05 −
Learning rate (α) 0.05 0.05 0.05 1e-2
Discount factor (γ) 0.99 0.99 0.99 0.99
Episode stepmax 800 800 800 800
Cap on abstraction refinement (kcap) 5 − 5 −
Context-specific distance threshold (δthre) 0 − − −
Context-independent distance threshold (σthre) 1 − − −
Factor to adjust stepmax for options (sfactor) 10 − − −
Maximum episodes to halt option training (emax ) 200 − − −
Number of options − 8 − −
Temperature − 0.001 − −
Termination regularization − 0.01 − −
Entropy regularization − 0.01 − −
Generalized Advantage Estimator (gae lambda) − − − 0.95
Steps to run per update (n steps) − − − 2048
Entropy coefficient (ent coef) − − − 0.0
Value function coefficient (vf coef) − − − 0.5
Maximum gradient clipping (max grad norm) − − − 0.5

Table 4: Hyperparameters used in Office World.



Hyperparameters CHiRP Option-Critic CAT+RL PPO

Task budget in timesteps (H) 3M 3M 3M 3M
Exploration decay 0.999 0.999 0.999 −
Minimum exploration rate 0.05 0.05 0.05 −
Learning rate (α) 0.05 0.05 0.05 3e-4
Discount factor (γ) 1 1 1 1
Episode stepmax 1000 1000 1000 1000
Cap on abstraction refinement (kcap) 2 − 5 −
Context-specific distance threshold (δthre) 0 − − −
Context-independent distance threshold (σthre) 1 − − −
Factor to adjust stepmax for options (sfactor) 10 − − −
Maximum episodes to halt option training (emax ) 200 − − −
Number of options − 8 − −
Temperature − 0.001 − −
Termination regularization − 0.01 − −
Entropy regularization − 0.01 − −
Generalized Advantage Estimator (gae lambda) − − − 0.95
Steps to run per update (n steps) − − − 2048
Entropy coefficient (ent coef) − − − 0.0
Value function coefficient (vf coef) − − − 0.5
Maximum gradient clipping (max grad norm) − − − 0.5

Table 5: Hyperparameters used in Minecraft.


