
Per-Domain Generalizing Policies for Classical Planning:
On Scaling Behavior and Validation Instances

Anonymous submission

Abstract

Recently, graph neural networks have emerged as a powerful
tool in the AI planning community to train per-domain gener-
alizing policies. The key objective is scaling the policy’s ca-
pabilities from small training instances to large test instances.
However, prior work has used fixed sets for both testing and
validation. We first demonstrate that fixed test sets are insuffi-
cient for accurately assessing scaling behavior and, therefore,
introduce refined methodology for evaluating scaling behav-
ior. Second, we introduce a method generating validation sets
dynamically, on the fly, increasing instance size so long as in-
formative and feasible, leading to improved policy selection.
Our method consistently improves scaling behavior of graph
neural network policies across 9 domains.

1 Introduction
Recently, graph neural networks (GNNs) have emerged as a
powerful tool within the Artificial Intelligence (AI) research
community. GNNs excel at capturing complex relationships
and dependencies in graph-structured data. Besides others,
they have demonstrated remarkable effectiveness in predict-
ing molecular structures (Gilmer et al. 2017), facilitating
drug discovery (Bongini, Bianchini, and Scarselli 2021), and
enhancing recommender systems (Fan et al. 2019).

AI planning is a well-established field of the AI commu-
nity, which, at its core, is about devising sequences of ac-
tions, so-called plans, to achieve specific goals in problems.
This process is typically applied across various instances of
a planning domain, aiming to identify the optimal sequence
of actions that transitions from the instances’ well defined
start state to meet its established goal conditions. Practical
applications of planning include network penetration test-
ing (Speicher et al. 2019), autonomous driving (Bai et al.
2015), construction planning (Li and Lu 2019), and enter-
prise risk management (Sohrabi et al. 2018).

Given the structure of planning problems and the rule-
based manner in which the AI planning community typi-
cally formulates them, AI planning appears to be well-suited
for the application of GNNs. Consequently, researchers have
begun leveraging GNNs for learning policies that general-
ize across all instances of a planning domain, so-called per-
domain generalizing policies. The key objective in this set-
ting is scaling behavior, i.e., the ability to generalize from
small training instances to large test instances.

Toyer et al. presented the pioneering approach, utilizing
a CNN-inspired architecture to compute general policies
for probabilistic planning (2018). Their architecture features
modules specific to predicates and action schemas. Rivlin,
Hazan, and Karpas utilized a novel architecture combin-
ing layers of both GNNs and so-called Transformers, ad-
dressing several classical planning problems through train-
ing with deep reinforcement learning (2020). Furthermore,
Ståhlberg, Bonet, and Geffner developed a relational GNN
architecture for learning general value functions for classical
planning problems (2022a; 2022b).

A commonality of these works is that they evaluate their
approaches on limited test sets. For example, Ståhlberg,
Bonet, and Geffner evaluate their approaches on test sets
from the International Planning Competition (IPC), using
up to 120 test instances (Ståhlberg, Bonet, and Geffner
2022a,b, 2023, 2024). Rivlin, Hazan, and Karpas also use
IPC domains using 50 test instances, and Toyer et al. con-
sider three different probabilistic planning domains with up
to 30 instances per domain (Toyer et al. 2018, 2020a). While
such test sets may be suited for evaluating planning algo-
rithms, we argue that they are not representative enough to
asses the scaling behavior of per-domain generalizing poli-
cies.

As an illustrative example, consider Figure 1. We here
investigate the performance of a policy trained using
Ståhlberg, Bonet, and Geffner’s architecture (2022a). The x-
axis sorts the instances of the IPC 2023 Blocksworld domain
according to their size, e.g., the number of objects. The y-
axis measures the performance as the average percentage of
solved instances, which we refer to as coverage. The num-
ber of instances in the IPC test sets is limited, typically only
one or two instances per size and for some there are none at
all. Thus, the policy’s coverage for both IPC easy (orange)
and medium (brown) mostly reaches 100% or 0%, mean-
ing it can either solve all or none of the few instances of
a certain size. In contrast, consider the blue curve which
shows the results of our novel scaling behavior evaluation
method. Instead of relying on limited test sets, we lever-
aged the publicly available IPC generators to generate test
instances as needed. Specifically, we ran the policy on gener-
ated instances of increasing size up until the average cover-
age reached a confidence interval with a certain probability.
Our evaluation method clearly shows how the policy’s cov-



Figure 1: Scaling behavior (average coverage over instance size) of a Blocksworld policy trained following (Ståhlberg, Bonet,
and Geffner 2022a), measured on IPC test sets compared to our evaluation method. The confidence intervals are shown as light
blue shade.

erage decreases steadily with increasing instance size. How-
ever, this key insight is not visible in the IPC test sets at all.

Following this motivation, we give a detailed introduction
of our scaling behavior evaluation in Section 3, which allows
to systematically and accurately assess scaling behavior of
policies. Further, we introduce two measures for summariz-
ing how far and how well policies generalize.

The problems caused by a limited number of instances
not only occur during testing but also during the valida-
tion phase of training. During validation, the current policy’s
performance is assessed by computing the loss (Ståhlberg,
Bonet, and Geffner 2022a) or the coverage (Rossetti et al.
2024) on a small pre-computed validation set. When the
training ends, the final policy is selected as the one that per-
formed best during validation. However, as limited valida-
tion sets may estimate scaling behavior inaccurately, the ex-
isting validation approaches may fail to select the best poli-
cies found during training.

Therefore, instead of using pre-computed validation sets,
in Section 4 we introduce dynamic coverage validation,
which dynamically generates increasingly large validation
instances to better estimate scaling behavior.

In Section 5, we run experiments with GNN policies
trained following (Ståhlberg, Bonet, and Geffner 2022a)
on 9 IPC domains. Using our scaling behavior evaluation
method, we show that dynamic validation consistently im-
proves performance across all but one of these domains, with
substantial advantages in 7 of them.

2 Relational Graph Neural Network
Before introducing the newly proposed evaluation, we
briefly explain the GNN architecture used throughout this
paper. We use Ståhlberg, Bonet, and Geffner’s relational
graph neural network (R-GNN) (2022a; 2022b; 2024). How-
ever, we do not use the same policies, but use the R-GNN
architecture to train new policies.

For a fixed domain, the R-GNN is trained to compute a
state value function V , which, given a state s from any in-
stance, returns the optimal cost V (s) for reaching a goal
state from s. The learned state value function V then induces

a policy if, for any given state s, we always transition to the
successor state s′ with the lowest state value V (s′).

The R-GNN consists of several multi-layer perceptrons
(MLP): A predicate MLPp for each predicate p, an update
MLPU , and an output MLPO. Algorithm 1 shows the steps
of the R-GNN’s forward pass. Given a state s, the R-GNN
computes an embedding h(o) for each object o in the state,
which are then used to predict V (s). The object embeddings
h(o) are computed iteratively, where the initial embeddings
h0(o) only contain zeros. Every iteration i consists of two
steps:

1. Message Computation: For each atom q := p(o1, ..., on)
in s, we pass the involved objects’ embeddings hi−1(o)
to MLPp, which computes a so-called message mq,o for
each object o ∈ q.

2. Embedding Update: For each object o, we aggregate the
messages mq,o into a single message mo by applying
the smooth maximum function across each dimension.
The new embedding hi(o) is then computed by passing
hi−1(o) and mo to MLPU , with the addition of a residual
connection.

After L iterations, we aggregate the object embeddings
hL(o) into a single state embedding h(s) by computing a
dimension-wise sum. Lastly, the state embedding h(s) is
given to MLPO, which outputs V (s).

3 Scaling Behavior Evaluation
This section introduces our refined methodology for evalu-
ating scaling behavior. Additionally, we introduce two mea-
sures for summarizing the evaluation results.

Systematic instance size scaling. As discussed in Sec-
tion 1, the commonly used IPC test sets are not well suited
for the systematic evaluation of policy scaling behavior due
to their limited number of test instances. Much work has
been done in the past on benchmark instance scaling for
the purpose of evaluating planning systems (e.g., (Hoffmann
et al. 2006; Torralba, Seipp, and Sievers 2021)). Here, we
merely require a systematic scheme to generate instances



Algorithm 1: Relational graph neural network.
Input: Set of atoms q in state s, objects o ∈ s
Output: State value V (s)

1 h0(o)← 0k for each object o ∈ s ;
2 for i = 1, . . . , L do
3 for each atom q := p(o1, ..., on) do
4 mq,oj ←

[
MLPp(h

i−1(o1), ..., h
i−1(on))

]
j

;
5 for each object o do
6 mo ← aggregate({{mq,o|o ∈ q}}) ;
7 hi(o)← hi−1(o) + MLPU (h

i−1(o),mo) ;
8 h(s)←

∑
o∈s h

L(o) ;
9 V (s)← MLPO(h(s)) ;

of scaling size. In designing such a scheme, we stick to
community conventions and existing instance generators as
much as possible.

We define instance size as the number of objects. This
leaves open the question of which objects, i.e., given a de-
sired size n, how to compose the object universe from the
different sub-types. Our answer is a uniform distribution
over the possible compositions given the respective IPC
instance generator. Obtaining the possible compositions is
non-trivial as IPC instance generators often do not allow to
directly set the number of objects of any given type (re-
quiring, e.g., to instead set the x- and y-dimensions of a
map), and often implement implicit assumptions across ob-
ject types (e.g., at least one truck per city). We capture these
constraints in terms of CSP encodings, and use a CSP solver
to find valid generator inputs that yield instances of size n.

Specifically, we model instance size as a constraint n =
c1v1+· · ·+ckvk+c0, where vi are the CSP variables encod-
ing the generator’s arguments, and the constants ci capture
the numbers of objects created by the generator. We repre-
sent any implicit assumptions made by the generator as ad-
ditional constraints. These CSP encodings tend to be very
small, and CSP solving time is negligible.

For example, in Childsnack the task is to prepare and
serve different kinds of sandwiches to children. The gen-
erator parameters are v1 number of children, v2 trays, v3
sandwiches. The generator always adds c0 = 3 tables,
as well as bread and content objects for each child yield-
ing c1 = 3; it returns an error if there are fewer sand-
wiches than children. Accordingly, our CSP encoding is
n = 3 · v1 + v2 + v3 + 3 ∧ v1 ≤ v3.

For the purpose of generating an individual instance in
dynamic validation, we compute all solutions to the CSP,
sample one of these uniformly, and pass it as input to the
generator. 1 If some of the generator parameters do not af-
fect instance size, for instance the ratio of allergic children
in Childsnack, we sample their values uniformly from the
possible range.

Our algorithm. Algorithm 2 outlines our evaluation
method.

1In dynamic coverage validation (see Section 4), to limit com-
putational cost, we only compute the first 100 solutions to the CSP
and sample from these uniformly.

Algorithm 2: Scaling behavior evaluation.
Input: Policy π, instance generator G, CSP
Parameters: Statistical parameters ϵ and κ, plan length

bound L, coverage threshold τ , consecutive
fails threshold ζ

Output: Statistical coverage Ĉn per instance size n
1 n← 0 ;
2 fails← 0 ;
3 while fails < ζ do
4 n← n+ 1 ;
5 if not instanceOfSizeExists(n) then continue ;
6 Ĉn ← −∞ ;
7 i← 0 ;
8 possibleInp = CSP(n,∞) ;
9 while P (|Ĉn − Cn| > ϵ) < κ do

10 Inp← uniform(possibleInp) ;
11 I ← generateInstance(G, Inp) ;
12 Ri ← runPolicy(π, I, L) ;
13 i← i+ 1 ;
14 Ĉn ←

∑i
j=1Rj/i ;

15 if Ĉn < τ then
16 fails← fails + 1 ;
17 else
18 fails← 0 ;

We start with instances of size n = 1, so as to evaluate
policy performance across the entire domain. In the algo-
rithm, we skip over values of n for which no domain in-
stance exists according to the generator parameters and as-
sumptions (and hence our CSP is unsolvable). We only stop
after ζ consecutive failures to meet the coverage threshold
τ , to allow for temporary lapses in policy performance.

For instance generation, we draw uniformly from all pos-
sible size-n instances. CSP(n,∞) returns all solutions to
the CSP for size n and Ri is a Boolean whose value is 1
iff the policy found a plan. We impose a plan length bound
L on policy executions, which we compute for each domain
automatically as L = 3N where N is the average length of
the teacher plans on the largest training instances. Further,
we add the current instance size n to L, as the optimal plan
length typically increases with the number of objects. We
keep generating instances and running the policy until the
estimated performance for size n is within a confidence in-
terval – precisely, with parameters κ and ϵ, until we reach
a confidence of (1 − κ) that the error between average cov-
erage Ĉn and real coverage Cn is at most ϵ. We refer to the
resulting value Ĉn as statistical coverage. The algorithm out-
puts that value as a function of n.

As an example, consider Figure 2, which depicts the eval-
uation results of two policies trained on the Blocksworld do-
main. The statistical coverages Ĉn per instance size n are
plotted as curves, and the shaded areas represent the 5%-
confidence intervals.

Summary measures. When analyzing the scaling behav-
ior of per-domain generalizing policies, mainly two charac-
teristics are of interest: how far a policy scales, i.e., up to
which size it can reliably solve instances, and how good it



Figure 2: Statistical coverages Ĉn of two policies trained on the Blocksworld domain using the R-GNN architecture.

generalizes, i.e., how many instances it solves. While both
can be observed from visualizing the statistical coverages
(e.g., see Figure 2), we here introduce two numerical mea-
sures to support this investigation.

The Scale measure is the largest instance size n before the
policy falls below the threshold τ for ζ consecutive times,
measuring “how far up” we get a minimum level of perfor-
mance. The SumCov sums up the statistical coverages Ĉn up
to instance size n, measuring the “area beneath the coverage
curve”.

Consider Figure 2 again. Policy A (red) scales better,
reaching the termination criterion (dashed line) only after
size 33, while policy B (orange) has a Scale value of 19.
However, policy B achieves higher statistical coverages be-
fore termination, yielding a SumCov value of 16.1, whereas
policy A has a lower SumCov value of 15.4. This example
shows that it is important to consider both measures.

4 Dynamic Validation
We next introduce our dynamic validation method. We give
an overview of prior work, and then describe the method
itself.

Prior work. Per-domain policy learning typically relies
on a form of supervised learning (Ståhlberg, Bonet, and
Geffner 2022a,b, 2024; Müller et al. 2024; Rossetti et al.
2024), training the policy to imitate an optimal planner on a
set of small training instances. To identify when the policy
achieves the best scaling behavior – generalization to larger
domain instances – it is validated after every epoch, assess-
ing its current performance on a set of larger validation in-
stances. From all policies encountered during this process,
the one with best validation set performance is selected as
the final policy. Algorithm 3 outlines this training loop.

For the validation in line 6 of this loop, a common ap-
proach is to compute a loss between the policy’s predic-
tions and a teacher planner’s decisions (Ståhlberg, Bonet,
and Geffner 2022a,b, 2024). Alternatively, the policy can be
validated by running it on the validation instances and com-
puting coverage, i.e., the fraction of solved instances, which
has the benefit of not requiring to run the teacher on the val-
idation set (Rossetti et al. 2024).

Algorithm 3: Per-domain policy training loop.
Input: Training set T , validation set V , epochs E
Output: Policy πbest

1 π0 ← random ;
2 πbest ← π0 ;
3 vbest ← 0 ;
4 for i = 1, . . . , E do
5 πi = train(πi−1, T ) ;
6 vi = validate(πi, V ) ;
7 if vi better than vbest then
8 πbest ← πi ;
9 vbest ← vi ;

All prior approaches to validation in per-domain policy
learning do, to the best of our knowledge, rely on a pre-
defined fixed validation set. Yet this limits their ability to
assess scaling behavior. The data on a fixed validation set
is not informative if the policy already has perfect cover-
age/loss there. Further, the fixed validation sets are typically
taken from IPC instance suits, limiting the number of avail-
able validation instances and hence the ability to see fine-
grained differences between policies.

These limitations are quite unnecessary. As we discuss
next, one can generate validation instances on the fly, ensur-
ing informativity for policy selection as well as feasibility of
the validation process.

Dynamic validation. Algorithm 4 outlines our dynamic
validation method. The overall mechanics of the procedure
are similar to scaling behavior evaluation, with the main dif-
ference being that it does not provide statistical guarantees
to reduce computational cost.

Given training instances of maximal size n0, we generate
validation instances starting at n0 + 1. We keep generating
m instances of each size so long as policy coverage remains
above a threshold τ , otherwise we terminate immediately.
As in scaling behavior evaluation, we impose a plan length
bound L = 3N , but we do not increase L based on the cur-
rent instance size n. The final validation score vπ of policy
π is computed as the sum of achieved coverages Ci.



Algorithm 4: Dynamic coverage validation.
Input: Policy π, instance generator G, CSP , size n0

Parameters: per-size #instances m, plan length bound L,
coverage threshold τ

Output: Validation score vπ
1 n← n0 ;
2 repeat
3 n← n+ 1 ;
4 if not instanceOfSizeExists(n) then
5 Cn ← 0 ;
6 continue ;
7 possibleInp = CSP(n, 100) ;
8 for i ∈ {1, . . . ,m} do
9 Inp← uniform(possibleInp) ;

10 I ← generateInstance(G, Inp) ;
11 Ri ← runPolicy(π, I, L) ;
12 Cn ←

∑
iRi/m ;

13 until Cn < τ ;
14 vπ ←

∑n
i=n0+1 Ci ;

5 Experiments
Our experiments evaluate our dynamic validation method
for GNN policies, against loss-based and coverage-based
validation on fixed validation sets as used in prior work. We
employ our scaling behavior evaluation methods to obtain
fine-grained comparisons. In what follows, we outline our
benchmarks, training and validation set construction, policy
training and selection setup, and empirical results.

Benchmarks. We use 9 different domains, which is a
common number for papers on per-domain policy learning
(e.g., Rivlin, Hazan, and Karpas 5 (2020), Ståhlberg, Bonet,
and Geffner 8 (2022a), 9 (2022a), 10 (2023)). 7 of our do-
mains have already been used in the context of per-domain
generalization, while we additionally use Ferry and Child-
snack from the latest IPC (2023). The generators were taken
from IPC 2023 where available, and otherwise from the FF
domain collection.2

Training. We use (Ståhlberg, Bonet, and Geffner 2022a)’s
R-GNN architecture. The R-GNN learns a state value func-
tion and the policy is obtained by greedily following the
best action, i.e., the action leading to the state with the low-
est state value. To prevent cycles, we prohibit the policy
from visiting states more than once (Ståhlberg, Bonet, and
Geffner 2022b).

We use similar training hyperparameters as Ståhlberg,
Bonet, and Geffner with 30 GNN layers, a hidden size of 32,
a learning rate of 0.0002 for the Adam optimizer (Kingma
2014), and a gradient clip value of 0.1 (Ståhlberg, Bonet,
and Geffner 2022a,b). However, we use a fixed number of
100 training epochs and a batch size of 1024 for fast train-
ing. For each domain, the training was repeated with three
random seeds.

Instance sets. We construct the instance sets by uniformly
sampling 100 instances per size from a range of 11 sizes,
discarding duplicates. For each domain, except Visitall, we

2https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

assign the instances of the eight smallest sizes to the training
set. Similarly, for the fixed validation sets, we randomly se-
lect 12 instances, equally distributed (if possible) among the
three largest instance sizes. The instance sizes used for each
domain are presented in Table 1.

We note that strictly separating instance sizes of training
and validation sets is critical for generalization. Without this
separation, the policy with the best validation performance
may be the one that has only learned to generalize up to the
largest instance size shared between both the training and
validation sets.

Domain Training Validation
Blocksworld [7− 14] [15− 17]

Ferry [8− 15] [16− 18]
Satellite [8− 15] [16− 18]

Transport [8− 15] [16− 18]
Childsnack [8− 15] [16− 18]

Rovers [10− 17] [18− 20]
Gripper [8− 15] [16− 18]
Visitall {4, 9, 16, . . . , 49} {64, 81}

Logistics [8− 15] [16− 18]

Table 1: Number of objects in instances used for training and
validation sets.

We use the seq-opt-merge-and-shrink configuration of
Fast Downward (Helmert 2006) with limits of 20 minutes
and 64 GB as the teacher planner, computing optimal plans
for both sets. We discard instances for which the planner
fails to find a plan within the given time and memory limits.
Additionally, we terminate the plan generation early if the
planner fails to find a plan for 10 consecutive instances.

Joint policy training and selection. Our setup is designed
such that we perform the training procedure jointly for all
three validation methods. After every training epoch, we ap-
ply each method in turn, fixed-set loss (henceforth: loss),
fixed-set coverage (henceforth: coverage), and our dynamic-
set coverage method as introduced in Section 4 (henceforth:
dynamic coverage). At the end of training, for each vali-
dation method, we select the respective best policy. In this
manner, we guarantee that any differences in policy per-
formance are exclusively due to the difference in validation
methods.



(a) Blocksworld.

(b) Ferry. (c) Satellite.

(d) Transport. (e) Childsnack.

(f) Rovers. (g) Gripper.

(h) Visitall. (i) Logistics.

Figure 3: Statistical coverage Ĉn over n of policies selected using fixed-set loss (blue), fixed-set coverage (orange), and dynamic
coverage (purple) validation on 9 domains. The instance sizes used for training are within the vertical red lines, the instance
sizes used in fixed validation sets are within the two green lines. Dynamic covarage validation starts at the lower green line (in
Visitall that line has a gap to the largest training size because there are no instances for the sizes in between).



Loss Coverage Dynamic
Domain Scale SumCov Scale SumCov Scale SumCov
Blocksworld 56 44.47 41 30.43 58 48.61
Ferry 75 46.55 51 33.9 74 46.63
Satellite 31 18.15 26 16.37 37 22.29
Transport 33 19.4 39 23.72 43 25.56
Childsnack 35 17.62 35 17.63 46 22.16
Rovers 16 3.96 21 8.07 25 11.6
Gripper 44 35.15 39 29.35 48 36.54
Visitall 100 6.46 169 9.55 225 10.97
Logistics 26 13.02 19 10.39 29 14.16

Table 3: Scale and SumCov scores of policies selected using loss, coverage, and dynamic coverage validation.

For each instance size, dynamic coverage validation gen-
erates m = 10 instances and stops when the coverage drops
below τ = 30%. In coverage, we imposed the same fixed
plan length bound L as in dynamic coverage. Note that, dur-
ing scaling behavior evaluation, L is scaled linearly with the
instance size for all policies. The plan length bounds for each
domain are listed in Table 2. Further, we imposed a one-hour
time limit on the validation processes, but this was never
reached in our experiments.

Domain Validation Evaluation
Blocksworld 123 123 + n

Ferry 72 72 + n
Satellite 42 42 + n

Transport 36 36 + n
Childsnack 18 18 + n

Rovers 54 54 + n
Gripper 69 69 + n
Visitall 162 162 + n

Logistics 30 30 + n

Table 2: Plan length bounds used during validation and eval-
uation.

Results. Figure 3 shows the scaling behavior evaluation
of the policies validated based on loss (blue), coverage (or-
ange), and dynamic coverage (purple). The confidence in-
tervals were computed with ϵ = 0.05 and κ = 0.1, and the
evaluation stopped when the estimated coverage dropped be-
low τ = 30% for ζ = 2 consecutive times.

The policies selected by the two fixed-set validation meth-
ods have roughly comparable performance, each outper-
forming the other in 2 domains and being close in the others.
Dynamic validation, however, consistently yields the best
scaling behavior across all domains, except Ferry where it is
close to the best method; it exhibits substantial advantages
in Satellite, Transport, Childsnack, Rovers, Gripper, Visitall,
and Logistics.

To provide a summary view of these results, consider Ta-
ble 3, which lists the Scale and SumCov measures for all
policies. Reflecting Figure 3, our dynamic validation method

dominates in all domains in both measures, with the single
exception of Scale in Ferry.

Remember that in these results the policy selection was
performed on the same training run, so the superiority of
dynamic validation is exclusively due to policy selection.

6 Conclusion
Per-domain generalization in classical planning is a natu-
ral and popular setting for policy learning. Our work con-
tributes new insights into the evaluation of scaling behavior
for empirical performance analysis and the use of validation
for policy selection in this context. The results are highly
encouraging, showing clear improvements in 8 out of 9 do-
mains.

An intriguing aspect of these improvements is that they
are obtained through policy selection exclusively. We plan
to investigate ways to feed back insights from validation into
training, guiding the training process towards better scaling
behavior. Another interesting direction is the application of
our ideas in training processes based on reinforcement learn-
ing instead of supervised learning (e.g., (Rivlin, Hazan, and
Karpas 2020; Ståhlberg, Bonet, and Geffner 2023)). Since
our methods are agnostic to the policy representation, all this
can in principle be done in arbitrary frameworks (e.g., (Toyer
et al. 2020b; Rossetti et al. 2024)).

Another promising direction for future research is to ex-
tend our generalization evaluation to analyze additional pol-
icy properties, such as average plan length. We note that sim-
ilar approaches have been successfully employed in the con-
text of deep reinforcement learning (Gros et al. 2023, 2024).

Regarding further scientific experiments, an interesting
analysis could be to vary the size of the training data as well,
and determine its impact on scaling behavior. We could, for
example, examine Scale and SumCov scores as a function
of training data size.

Lastly, further constraints could be imposed on the in-
stance generation process, as the IPC generators used in this
work may generate instances that are large yet trivial, e.g.,
a Transport instance with 500 trucks but only one package.
The resulting instances may be better suited for learning per-
domain generalization, or enable more fine-grained evalua-
tion.



References
Bai, H.; Cai, S.; Ye, N.; Hsu, D.; and Lee, W. S. 2015.
Intention-aware online POMDP planning for autonomous
driving in a crowd. In 2015 ieee international conference
on robotics and automation (icra), 454–460. IEEE.
Bongini, P.; Bianchini, M.; and Scarselli, F. 2021. Molecular
generative graph neural networks for drug discovery. Neu-
rocomputing, 450: 242–252.
Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; and Yin,
D. 2019. Graph neural networks for social recommendation.
In The world wide web conference, 417–426.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International conference on machine learn-
ing, 1263–1272. PMLR.
Gros, T. P.; Groß, J.; Höller, D.; Hoffmann, J.; Klauck, M.;
Meerkamp, H.; Müller, N. J.; Schaller, L.; and Wolf, V.
2023. DSMC Evaluation Stages: Fostering Robust and Safe
Behavior in Deep Reinforcement Learning–Extended Ver-
sion. ACM Transactions on Modeling and Computer Simu-
lation, 33(4): 1–28.
Gros, T. P.; Müller, N. J.; Höller, D.; and Wolf, V. 2024. Safe
Reinforcement Learning Through Regret and State Restora-
tions in Evaluation Stages. In Principles of Verification:
Cycling the Probabilistic Landscape: Essays Dedicated to
Joost-Pieter Katoen on the Occasion of His 60th Birthday,
Part III, 18–38. Springer.
Helmert, M. 2006. The Fast Downward Planning System.
26: 191–246.
Hoffmann, J.; Edelkamp, S.; Thı́ebaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering Benchmarks for
Planning: the Domains Used in the Deterministic Part of
IPC-4. 26: 453–541.
Kingma, D. P. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.
Li, D.; and Lu, M. 2019. Classical planning model-based
approach to automating construction planning on earthwork
projects. Computer-Aided Civil and Infrastructure Engi-
neering, 34(4): 299–315.
Müller, N. J.; Sánchez, P.; Hoffmann, J.; Wolf, V.; and Gros,
T. P. 2024. Comparing State-of-the-art Graph Neural Net-
works and Transformers for General Policy Learning. In
ICAPS Workshop on Planning and Reinforcement Learning
(PRL).
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
planning with deep reinforcement learning. arXiv preprint
arXiv:2005.02305.
Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Putelli, L.; Se-
rina, I.; Chiari, M.; and Olivato, M. 2024. Learning General
Policies for Planning through GPT Models. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 34, 500–508.
Sohrabi, S.; Riabov, A.; Katz, M.; and Udrea, O. 2018. An
AI planning solution to scenario generation for enterprise
risk management. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Speicher, P.; Steinmetz, M.; Hoffmann, J.; Backes, M.; and
Künnemann, R. 2019. Towards automated network mitiga-
tion analysis. In Proceedings of the 34th ACM/SIGAPP sym-
posium on applied computing, 1971–1978.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 32, 629–637.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
generalized policies without supervision using gnns. arXiv
preprint arXiv:2205.06002.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Learning
general policies with policy gradient methods. In Proceed-
ings of the International Conference on Principles of Knowl-
edge Representation and Reasoning, 647–657.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2024. Learning
General Policies for Classical Planning Domains: Getting
Beyond C 2. arXiv preprint arXiv:2403.11734.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Proceedings of
the 31st International Conference on Automated Planning
and Scheduling (ICAPS’21), 376–384.
Toyer, S.; Thiébaux, S.; Trevizan, F.; and Xie, L. 2020a. As-
nets: Deep learning for generalised planning. Journal of Ar-
tificial Intelligence Research, 68: 1–68.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020b.
ASNets: Deep Learning for Generalised Planning. Journal
of Artificial Intelligence Research, 68: 1–68.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence.


