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Abstract

In reinforcement learning, the value function is typically
trained to solve the Bellman equation, which connects the
current value to future values. This temporal dependency
hints that the value function may contain implicit informa-
tion about the environment’s transition dynamics. By rear-
ranging the Bellman equation, we show that a converged
value function encodes a model of the underlying dynam-
ics of the environment. We build on this insight to propose
a simple method for inferring dynamics models directly from
the value function, potentially mitigating the need for explicit
model learning. Furthermore, we explore the challenges of
next-state identifiability, discussing conditions under which
the inferred dynamics model is well-defined. Our work pro-
vides a theoretical foundation for leveraging value functions
in dynamics modeling and opens a new avenue for bridging
model-free and model-based reinforcement learning.

Introduction
The use of reinforcement learning (RL) for solving sequen-
tial decision-making tasks has grown substantially in recent
years, demonstrating its potential to discover novel solu-
tions in complex, unknown environments. Among RL ap-
proaches, model-based methods—which involve learning or
leveraging a model of the environment’s dynamics—have
often shown superior sample efficiency compared to model-
free methods, particularly in tasks with limited interaction
budgets. This advantage stems from the ability of model-
based approaches to plan over imagined trajectories, using
tools like Monte Carlo tree search to evaluate and improve
policies. However, these methods often come at the cost of
higher computational requirements and rely on the accuracy
of the learned dynamics model.

Despite the promise of model-based techniques, learning
an accurate model of the environment remains a significant
challenge, particularly in domains where simulators are en-
tirely unavailable or expensive to develop. Even with a well-
crafted simulator, discrepancies between simulated and real-
world dynamics (i.e., the “sim-to-real” gap) can degrade the
performance of policies at test time. These challenges high-
light the need for efficient and reliable ways to learn and use
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dynamics models, especially in situations where the envi-
ronment cannot be directly explored.

In this work, we propose a method for inferring a dynam-
ics model from pre-trained value functions. Our approach
builds on a new perspective of the Bellman equation, which
lies at the core of RL algorithms. Traditionally, the Bellman
equation is used to relate the value of a state to the expected
value of its successor states. This temporal relationship sup-
plies information about the environment’s transition dynam-
ics to the value function. By a simple rearrangement of the
Bellman equation, we make this dynamical information ac-
cessible, allowing one to recover a model of the environment
directly from a previously computed value function.

This insight opens new possibilities for model-based RL.
By re-purposing pre-trained value functions to infer dynam-
ics models, we can potentially enhance task performance in
settings like multi-task RL, where the inferred model can be
used to solve new tasks with changing reward functions. Our
method not only leverages existing value functions more ef-
fectively, but also provides a step toward bridging the model-
free and model-based communities in RL.

Motivation
In many reinforcement learning (RL) workflows, the value
function is trained using interactions with the environment
for a fixed reward function. Once trained, the value func-
tion (or the derived policy) is often saved and used solely
for evaluation purposes, with limited opportunities for reuse
when new tasks arise. However, in most practical scenarios,
tasks share a common environment structure but otherwise
differ only in their reward specifications. For example, in
robotics, the physical dynamics of the system remain con-
stant, while the task objectives (e.g., picking up specific ob-
jects; moving to specific target locations) will vary.

This observation motivates the need for better leveraging
pre-trained value functions, which will be particularly use-
ful in settings where the reward functions are handcrafted,
known, or even learned. If a dynamics model is accessi-
ble, the agent can utilize this model and the known reward
function to solve new tasks, either deriving exact solutions
or providing strong initializations for further training. Such
an approach can significantly reduce the burden of learning
from scratch for each new task.

In offline RL, a pre-collected dataset is used to train an



RL agent without further access to the environment. Anal-
ogously, we propose to use a pre-collected solution, in the
form of a value function, to infer the environment’s under-
lying transition dynamics. The inferred model could then be
used to finetune policies or adapt to related tasks analogous
to online finetuning, but without needing additional environ-
ment interactions.

By proposing a method to recover a dynamics model from
a value function, we aim to bridge the gap between model-
free and model-based RL. This approach not only effectively
re-purposes previously computed solutions in a novel way,
but also offers a path toward improving sample efficiency
and task adaptability in various RL settings.

Background
In this section we will introduce the relevant background
material for reinforcement learning and required definitions.

Reinforcement Learning
We will consider discrete or continuous state spaces and
discrete action spaces1. The RL problem is then mod-
eled by a Markov Decision Process (MDP), which we
represent by the tuple ⟨S,A, p, r, γ⟩ with state space S;
action space A; potentially stochastic transition function
(dynamics) p : S ×A → S; bounded, real reward function
r : S ×A → R; and the discount factor γ ∈ [0, 1).

The principle objective in RL is to maximize the total dis-
counted reward expected under a policy π. That is, to find
π∗ that maximizes the following sum of expected rewards:

π∗ = argmax
π

E
τ∼p,π

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In the present work, we consider value-based RL meth-
ods, where the solution to the RL problem is equivalently
defined by its optimal action-value function (Q∗(s, a)). The
aforementioned optimal policy π∗(a|s) is derived from Q∗

through a greedy maximization over actions. The optimal
value function can be obtained by iterating the following re-
cursive Bellman equation until convergence:

Q∗(s, a) = r(s, a) + γEs′∼p(·|s,a) max
a′

(Q∗(s′, a′)) . (2)

In the tabular setting, the exact Bellman equation can be ap-
plied until convergence. In the function approximator set-
ting, the Q table is replaced by a parameterized function
approximator, Qθ and the temporal difference (TD) loss is
minimized instead. To simplify the discussion, we will ne-
glect the details of precisely how the Q function is derived,
and we focus on general value functions alongside their ap-
proximations.

Preliminaries
For the theoretical discussion in later sections, we will need
several definitions and lemmas, which we present in this

1If the policy expectation over continuous action spaces can be
calculated exactly, the derived results are equally valid.

section. Hereon, we refer to a dynamics model as “identifi-
able” if such a model can be derived to recover the mapping
(s, a) → s′ for all s ∈ S, a ∈ A.

We begin with the assumption of deterministic dynamics:
Assumption 1. The transition dynamics are deterministic.
That is, there exists some f such that s′ = f(s, a) for all
s, s′ ∈ S, a ∈ A.

As the first step in this line of work, we focus on the case
where only a single successor state is expected. Of course,
the stochastic case will be more challenging, as it requires
e.g. a density model over state space. Additionally, we as-
sume some knowledge of the pre-trained task:
Assumption 2. The reward function r(s, a) and discount
factor γ used during training are known.

We believe this is not entirely limiting as the reward func-
tion and discount factor are often chosen by hand. Moreover,
the error analysis presented here can be easily extended to
the case with errors in the reward and discount factor.

Often in machine learning literature, the notion of
smoothness given by Lipschitz continuity (bounded deriva-
tive, loosely) is useful for controlling errors. Instead, we find
it useful to consider a reverse Lipschitz condition:
Definition 1 (Reverse Lipschitz continuity). If there exists
some L > 0 such that the function V satisfies

|V (s1)− V (s2)| > L|s1 − s2| ∀s1, s2 ∈ S, s1 ̸= s2

then we say V is reverse Lipschitz with constant L.
We use the suggestive notation for the function “V ” as it

will prove to be a useful property of the state value function
for later analysis. The norm used | · | in the previous defini-
tion can be any well-defined norm over the space S, but we
assume for concreteness the ℓ1 norm throughout.

The idea of a reverse Lipschitz function has been dis-
cussed by others (Kinoshita et al. 2023) (“inverse Lipschitz-
ness”2). In the present work, this notion is useful in deter-
mining when a value function leads to an identifiable dy-
namics model. It will also help to control the error when the
value function used is subject to error. Rather than the typi-
cal intuition that a small Lipschitz constant improves sample
complexity, we have the reverse: a larger reverse Lipschitz
constant (i.e. steeper slopes) helps in estimating the dynam-
ics model with higher accuracy.

A sufficient condition for existence of the constant L
is given by the reverse of Theorem 1 in (Rachelson and
Lagoudakis 2010). That is, by reversing all inequalities in
their proof, one immediately obtains the following:
Lemma 1 (Rachelson and Lagoudakis (2010)). Consider an
MDP with reverse (Lr, Lp)-Lipschitz rewards and dynam-
ics, Lπ-Lipschitz continuous policy. Then, the correspond-
ing value function Qπ(s, a) is reverse Lipschitz continuous
with constant

LQ =
Lr

1− γLp(1 + Lπ)
.

2We use the word “reverse” here to better distinguish from the
inverse functions that will be considered later.



Intuitively, this corresponds to an MDP where the reward
function changes rapidly or the dynamics cause trajectories
to diverge sufficiently quickly. With such a structure, the
value function corresponding to any reverse Lipschitz (but
otherwise arbitrary) policy also inherits this property.

Finally, to extend our results to the setting of limited accu-
racy, we formalize the idea of an ε-accurate value function
with the usual definition below.

Definition 2 (ε-Accurate Value). An estimate for the action-
value function, denoted Q̂π(s, a) is said to be ε-accurate if
for some ε > 0, the following is satisfied:∣∣Q̂π(s, a)−Qπ(s, a)

∣∣ ≤ ε, (3)

for all s ∈ S, a ∈ A.

This error can arise from e.g. function approximation or
early stopping, which we lump together for simplicity. In
the following sections we discuss how such errors impact
the problem of identifiability.

Prior Work
The simplest dynamics model available in most value-based
RL algorithms is just the replay buffer: the dataset of stored
transitions experienced during online interaction. This prim-
itive “model” acts as a lookup table where the “closest”
match to a queried state-action tuple returns the correspond-
ingly stored next-state. Naturally, more sophisticated (and
useful) models can be derived. For example, leveraging the
generalization power of neural networks one could train a
deterministic model by regressing on the function f dis-
cussed in Assumption 1 during data collection.

In recent years, advanced techniques specific to the RL
problem have emerged for learning accurate world mod-
els (Hafner et al. 2023; Schrittwieser et al. 2020). These
methods often aim to generate optimal plans from “imag-
ined rollouts” in latent space, which guide decision-making
when online interaction resumes.

Our method, as outlined in the introduction, reuses previ-
ously trained Q functions. Prior work has explored a variety
of related strategies for effectively reusing such data. For in-
stance (Todorov 2009; Haarnoja et al. 2018a; Tasse, James,
and Rosman 2020; Nemecek and Parr 2021; Adamczyk et al.
2023b) compose the old value functions to obtain approxi-
mate solutions and bounds for new tasks. Separately, (Tay-
lor and Stone 2009; Agarwal et al. 2022; Adamczyk et al.
2023a; Uchendu et al. 2023) have discussed workflows that
enable agents to leverage old or suboptimal solutions, miti-
gating the need for retraining from scratch.

As discussed, our work diverges from these by using an
inverse of the Bellman equation itself to derive a transition
model directly from Q, rather than an online data stream.
This innovation bridges ideas from both model-based RL
and transfer learning, offering a unique perspective on data
and model reuse.

Results
We begin by noting the Bellman equation does not only hold
for the optimal policy as shown in Equation (2), but also

holds for arbitrary policies:

Qπ(s, a) = r(s, a) + γEs′∼p(·|s,a)V
π(s′), (4)

where V π is the (state) value function defined by the expec-
tation over the policy: V π(s) = Ea′∼π(·|s′)Q

π(s′, a′). We
write Qπ and V π throughout to emphasize that a model can
be obtained from the value of any policy (not just the optimal
policy) and under regularization (e.g. MaxEnt RL (Haarnoja
et al. 2018b)).

A simple rearrangement of this equation “solving” for s′
gives, under deterministic dynamics

V π(f(s, a)) =
Qπ(s, a)− r(s, a)

γ
. (5)

Indeed, under suitable assumptions, Eq. (5) can be in-
verted to find the transition function:
Proposition 1. Under Assumptions 1 and 2, if an inverse
state-value function exists, the successor state can be iden-
tified:

s′ = f(s, a) =
[
V π

]−1
(
Qπ(s, a)− r(s, a)

γ

)
. (6)

This initial result shows that with the right assumptions,
one can use an exact value function to calculate any suc-
cessor state. However, obtaining an exact Q-function is im-
practical, so we instead consider a value function suffering
a globally bounded error: that is, we suppose an ε-accurate
value function Q̂π is given. In the following two sections, we
consider the case of continuous state spaces (where we use
the reverse Lipschitz assumption) and the case of discrete
state spaces (where we introduce a new definition necessary
for identifiability).

Theory for Continuous Spaces
In the setting of an ε-accurate value, the function V̂ π(s′)
cannot be inverted exactly, but the next-state can still be
identified within an interval, leading to an extension of
Proposition 1:

Theorem 1. Given an ε-accurate value function
Q̂π(s, a) with reverse Lipschitz constant L, the er-
ror in estimating the next-state s′ from any (s, a) is
upper bounded:

|s′ − ŝ′| < 1 + γ

γL
ε. (7)

The proof and an intuitive visualization of Theorem 1 is
provided in the Appendix. The error accumulates in both the
queried value function V π(s′) and also the “scanned” value,
which we denote V (which depends on (s, a) through the
right-hand side of Eq. (5)). With a lower bound on the value
function’s derivative, this region translates to a confidence
interval over state space S.

In practice, where obtaining exact value functions is in-
feasible, Theorem 1 demonstrates that even inexact value
functions can still be effective for deriving reliable models.



Theory for Discrete Spaces
In the case of discrete states, we need an alternative way to
ensure the “function” (now a table) V π(s′) remains invert-
ible. A necessary condition for all states to be identifiable is
that the corresponding values be distinct:
Definition 3 (δ-Separable Value Function). A state value
function V is said to be δ-separable if there exists a δ > 0
such that

|V (s)− V (x)| > δ, (8)
for all s, x ∈ S such that s ̸= x.

Finding sufficient structural assumptions for such separa-
bility seems to be a challenging problem in itself, which may
be of independent interest. Nevertheless, if δ-separability
can be assumed (or determined a posteriori), then identi-
fiability holds. The following result ensures the next-state
prediction problem remains identifiable, even in the case of
errors:

Theorem 2 (Successor-State Identifiability). Sup-
pose the true value function (V π) is δ-separable and
an ε-accurate estimate of the value function (V̂ π)
is given. If ε < δ(2γ−1 + 2)−1, then the dynamics
model is identifiable.

Theorem 2 is the analogue of Theorem 1 in the discrete
case. Again, this result highlights that even inaccurate value
functions can provide robust dynamics models which in this
case return the exact successor state. The proof of this result
can be found in the Appendix. Interestingly, in both con-
tinuous and discrete spaces, our analysis formally suggests
that larger discount factors improve the model accuracy by
(a) reducing the uncertainty in Theorem 1 and (b) increasing
the minimum tolerance for identifiability in Theorem 2.

Experiments
As a proof of concept, we first consider a simple experi-
ment in the tabular setting to verify our theoretical results.
Here, the value function can be solved exactly with suffi-
ciently many iterations of the Bellman optimality operator.
In the following, we thus use the policy π = π∗, though
the framework is agnostic to such a choice. Since the state
space is discrete, we treat the Q function with a max over
action dimension as a lookup table, comparing its entries to
the value of V , calculated from the right-hand side of Eq. (6).
We choose the index whose corresponding value is closest
to V , and the state index is considered the successor state
prediction, s′. Indeed, when the value function is calculated
to high precision, the accuracy of our method remains con-
sistent: for all possible state-action pairs, the corresponding
successor state is predicted successfully (corresponding to
100% on the vertical axis of Fig. 1).

To further test the accuracy of our model, in connec-
tion to the theoretical results derived, we compute the ac-
curacy (again over all state-action pairs) for increasingly
lower precision (that is, larger values of ε, in the defini-
tion of ε-accurate value function). To validate the idea of
δ-separability, we also prepare 20 reward-varying MDPs

(with the same dynamics) each having a similar value gap,
δ (within 1% of the stated value). Due to space constraints,
we give a full description of the experiment in the Appendix.
We find these experiments support the result of Theorem 2.

Figure 1: Value separability improves model accuracy. Bars
denote the standard error in an average over 20 tasks solved
to fixed tolerance (in some cases smaller than thickness of
bar). The vertical dashed lines indicate the critical value
given by the bound in Theorem 2.

Discussion
The idea of δ-separability seems closely related to the “gap”
familiar from the bandit literature. It may be of interest in
future work to extend the results here using analysis on a
distribution of state value gaps, i.e. P (0 ≤ δ(s) ≤ t) ≤ cgt

ζ

as in (Farahmand 2011). This would allow for a probabilistic
extension of Theorem 2 in the continuous case, where one
may employ a Gaussian prior over states as an inductive bias
for locality.

In general, a single non-invertible value function poses is-
sues for identifiability. Explicitly requiring trained (or dis-
tilled) value functions to be invertible (Ardizzone et al.
2019) may be a useful path forward. However, solutions may
still be recovered in the non-invertible regime. For example,
one may solve for the level set, S = {s ∈ S : V π(s) = V},
which now represents the set of all possible successor states
consistent with the expected state-value function. The de-
generacy |S| > 1 can potentially be bypassed with addi-
tional structural assumptions. For example, with sufficiently
“smooth” dynamics, the distance between any two consecu-
tive states can be bounded. Thus, the cardinality of the level
set can be reduced by only considering states s′ ∈ S within
some neighborhood of the current state.

An independent technique for “pruning” the level set is to
use multiple cached value functions: for example the values
of different policies or the optimal value functions for dif-
ferent (e.g. reward-varying, discount-varying) tasks. These
value functions provide unique level sets which must each
contain the true successor state. Thus, s′ can be found by
continually pruning the level set: s′ ∈

⋂k
i=1 Si.

With a sufficient number of diverse value functions (i.e.
diverse enough to generate non-identical level sets), the suc-
cessor state can be systematically recovered.



We find the proposed approach to dynamics modeling
both simple and effective. We believe this new perspective
has the potential to generate new algorithms at the inter-
section of model-based and model-free RL while simultane-
ously opening avenues for deeper theoretical investigation.
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Appendix: Proofs
Proof of Theorem 1
We will first restate the theorem for convenience:
Theorem. Given an ε-accurate value function Q̂π(s, a) with reverse Lipschitz constant L, the error in estimating the next-state
s′ from any (s, a) is upper bounded:

|s′ − ŝ′| < 1 + γ

γL
ε.

Figure 2: Illustration of the errors described in Theorem 1. The dashed lines represent uncertainty bounds on V π and the
scanned value V from the Bellman equation, forming an uncertain region around the star (the true next-state and corresponding
value). Note: although we plot the value as a function of state s, in practice this should be interpreted as the space of potential
successor states, s′.

Proof. First note that if the action-value error is bounded, the state-value error is equally bounded, as shown below:

|V̂ π(s)− V π(s)| = |Ea∼π(·|s)Q̂
π(s, a)− Ea∼π(·|s)Q

π(s, a)|

≤ Ea∼π(·|s)|Q̂π(s, a)−Qπ(s, a)|
≤ Ea∼π(·|s)ε = ε,

where we use the triangle inequality in the penultimate line. Additionally, note that the “scanned value” V = γ−1(Q− r) also
suffers a bounded error. Assuming the reward function and discount factor are known exactly:

∣∣V̂ − V
∣∣ =∣∣∣∣ Q̂π(s, a)− r(s, a)

γ
− Qπ(s, a)− r(s, a)

γ

∣∣∣∣
= γ−1|Q̂π(s, a)−Qπ(s, a)|
≤ γ−1ε.

Notice that in the previous bound one can readily extend the analysis for ε-accurate reward functions and discount factors.
With these terms bounded, we can now suppose that the value function changes at its smallest rate: L, which incurs the worst

error. The function V π and the inverse value V both have bounded error, which in turn implies that the error in estimating the
inverse (the state) is also bounded. From the first “function evaluation” error, let δs1 denote the error in s caused by incorrectly
using the value of V̂ (s), depicted by the intersection of the blue line and red dashed lines in Fig. 2. Then, the resulting error can
be bounded as

ε

δs1
= V ′(s) > L,

δs1 < L−1ε,



and similarly for the second “inverse value” error:
ε/γ

δs2
= V ′(s) > L,

δs1 < L−1ε/γ,

where V ′ denotes the derivative of the state-value function with respect to s. To complete the proof, we note that the worst-case
error occurs when these terms combine additively, resulting in the stated error bound:

|s′ − ŝ′| < δs1 + δs2

< L−1ε+ L−1ε/γ

=
1 + γ

γL
ε.

Proof of Theorem 2
Theorem (Successor-State Identifiability). Suppose the true value function (V π) is δ-separable and an ε-accurate estimate of
the value function (V̂ π) is given. If ε < δ(2γ−1 + 2)−1, then the dynamics model is identifiable.

Proof. In the tabular setting, it is clear that δ-separability for any δ > 0 allows for states to be distinguished, since each state
has a unique corresponding value. However, incorporating an error of ε in the value function has a non-obvious effect on the
ability to identify states. Specifically, if ε is too large, the margin of error for two states may overlap, i.e., V may no longer be
separable for any δ > 0. Thus, we must first show that the ε-accurate model V̂ π is also δ-separable.

The separability condition is determined by the smallest gap between any two state values. Without loss of generality, assume
V π(s) > V π(x) represent the two closest state values. Then, by definition of separability, the states s and x must satisfy the
defining bound:

V π(s)− V π(x) > δ.

In the worst-case scenario, the estimate of the highest value V̂ π(s) is an overestimate of V (s) by ε, and the estimate of the
next largest value V̂ π(x) “adversarially” underestimates the true value V π(x) by ε. This reduces the gap between the values as
follows:

V̂ π(s)− V̂ π(x) > V (s)− ε− (V π(x) + ε)

= δ − 2ε,

where the first line follows from the definition of ε-accuracy, and the second line follows from the δ-separability of the exact
value function, V π(s). Since this setting represents the closest any two states can be in value under V̂ π(s), we have for all states
s, x ∈ S:

|V̂ π(s)− V̂ π(x)| > δ − 2ε.
As expected, using an imprecise value function reduces the minimum possible gap.
Now that the estimated value function is δ-separable, the proposed algorithm would involve “scanning” for the value V(s′)

among the table’s entries. However, the scanned value is also subject to error. In the proof of Theorem 1 we showed that∣∣V̂ − V
∣∣ < γ−1ε, which equally holds in the present context.

For the next-state to be properly identified, the margin of error implied by V̂ must not overlap with the remaining separability
gap, of size δ − 2ε. To be precise: given V̂ the entire range of plausible underlying V values lie in a range of size 2γ−1ε. Thus
we require

δ − 2ε > 2γ−1ε,
for there to remain a gap between state values. This imposes the constraint on ε:

ε <
δ

2γ−1 + 2
,

which is the bound shown in the main text.

Appendix: Experiments
We describe the details of the experiments shown in Fig. 1 below. First, the deterministic dynamics are fixed for an “empty”
5 × 5 gridworld (meaning: no obstacles, 4 actions in cardinal directions). We then generate reward functions uniformly at
random within the range r(s) ∈ (−1, 1)|S|. Each reward function defines a task, which is solved to determine the value of δ,
corresponding to the minimum gap in state values after optimization. Once a reward function has been determined to have a
value of δ within 1% of the desired value (as presented in the legend), we solve this task over a range of precision values (ε,
on x-axis in Fig. 1). The value of ε is controlled by using an appropriate number of iterations of the Bellman operator. The
discount factor is fixed to γ = 0.99.


