
Towards Learning Foundation Models for Heuristic Functions to Solve
Pathfinding Problems

Anonymous submission

Abstract

Pathfinding problems are prevalent in robotics, computational
science, and natural sciences. Traditional methods to solve
these require training deep neural networks (DNNs) for each
new problem domain, consuming substantial time and re-
sources. This study introduces a novel foundation model
leveraging deep reinforcement learning to train heuristic
functions that seamlessly adapt to new domains without fur-
ther fine-tuning. Building upon DeepCubeA, we enhance the
model by incorporating domain-specific state transition in-
formation into the heuristic function, improving adaptability.
Using a puzzle generator for the 15-puzzle action space varia-
tion domains, we demonstrate our model’s ability to general-
ize and solve unseen domains. We achieve strong correlations
between learned and ground truth heuristic values across var-
ious domains, as evidenced by robust R-squared and Concor-
dance Correlation Coefficient metrics. Additionally, we train
a foundation model on domains generated using PDDLFuse,
achieving better generalizability across various n-puzzle ac-
tion variation domains compared to existing foundation mod-
els trained with supervised learning. These results under-
score the potential of reinforcement learning-based founda-
tion models in planning, establishing new benchmarks for
domain generalizability in AI-driven solutions for complex
pathfinding problems.

Introduction
Pathfinding aims to find a sequence of actions that forms
a path from a given start state to a given goal state while
minimizing the path’s cost. Pathfinding problems are preva-
lent across computer science, robotics, mathematics, and
the natural sciences. Heuristic search, one of the most
prominent approaches to solving pathfinding problems, re-
lies on a heuristic function. This function estimates the
cost of the shortest path from a given state to the near-
est goal state, commonly referred to as the “cost-to-go.”
Recently, deep reinforcement learning (DRL) (Sutton and
Barto 2018) has emerged as a promising method for the
automatic construction of domain-specific heuristic func-
tions in a largely domain-independent fashion (Agostinelli
et al. 2019; Agostinelli, Panta, and Khandelwal 2024). How-
ever, training such heuristic functions using deep neural net-
works (DNNs) (Schmidhuber 2015) can take days and re-
quire substantial computational resources, often necessitat-
ing retraining for even minor domain changes. These hard-

ware and time constraints limit accessibility and scalability
for broader research and applications.

Challenges similar to those in pathfinding have been
encountered in computer vision and NLP, where founda-
tion models have addressed generalization issues by being
pre-trained on large, diverse datasets and adapting to new
tasks with minimal fine-tuning. Creating a foundation model
for heuristic functions could similarly transform heuristic
search by enabling effective generalization across states and
pathfinding domains. However, existing foundation models
are limited by narrow set of domains they are trained on.
Generating diverse domains allows for better generalization,
as shown in reinforcement learning studies (Mehta et al.
2020; Ajani, Hur, and Mallipeddi 2023).

In this study, we propose a series of foundation models to
address generalizability in pathfinding. The first model gen-
eralizes across 15-puzzle action space variations for a fixed
puzzle size by incorporating action space information into
state representations. We extend this with a more generaliz-
able model that scales to any n-puzzle size without retrain-
ing, leveraging a single graph SLG representation (Chen,
Thiébaux, and Trevizan 2024). Lastly, we train a founda-
tion model on diverse domains generated with PDDLFuse
(Khandelwal, Sheth, and Agostinelli 2024), capable of gen-
eralizing to n-puzzle variations and other domains with-
out domain-specific training. These reinforcement learning-
based models demonstrate superior performance compared
to supervised learning-based foundation models, with strong
correlations to ground truth metrics such as R-squared and
Concordance Correlation Coefficient (CCC), underscoring
their ability to generalize across unseen domains.

• We introduce a novel approach integrating state transi-
tion information with state representations to enhance
generalizability of heuristics in pathfinding problems.

• We show that training on diverse generated domains
with reinforcement learning improves generalizability,
enabling models to handle 15-puzzle action variation do-
mains and achieve competitive results against domain-
specific and foundation models.

Background and Literature Review
This section provides an overview of the key concepts and
existing research relevant to our study.



Foundation Model
Foundation models are pre-trained deep learning models
using supervised or self-supervised techniques on exten-
sive, diverse datasets. These models are adaptable to various
downstream tasks.
Definition: A foundation model Fθ is trained to minimize
the loss function L over a dataset D, with diverse inputs:

θ∗ = argmin
θ

L(Fθ(x), x) for x ∈ D

Once trained, Fθ can generalize across different domains
and tasks with or without fine-tuning. Foundation models
have significant applications in natural language processing
(NLP), computer vision, and healthcare.

Pathfinding Problems
Pathfinding domains are typically represented by directed
weighted graphs where nodes symbolize states and edges
denote transitions between states, with weights representing
the costs of these transitions. In this context, a pathfinding
problem is defined by a domain along with specified start
and goal states. The enormity of state spaces in many such
problems precludes the full representation of the graph, ne-
cessitating more abstract representations. We define an ac-
tion space, A, which delineates permissible actions for tran-
sitioning between states, a state transition function, T , that
maps a state and an action to the resulting state, and a cost
function, c, which assigns costs to transitions.

Traditionally, pathfinding employs heuristic search strate-
gies such as A* search (Hart, Nilsson, and Raphael 1968),
which uses a heuristic function h to prioritize node expan-
sion in a search tree by combining the cost of a path with an
estimated cost to the goal. The process continues until a node
corresponding to a goal state is expanded. In the classical ap-
proach, the heuristic values, h(s), are stored in a lookup ta-
ble, each entry corresponding to a state s. The tabular value
iteration, central to this approach, updates the cost-to-go for
each state in the following form:

V ′(s) = min
a∈A

(c(s, a) + V (T (s, a))) (1)

Here, V is a table mapping states to their cost-to-go esti-
mates, and V ′ represents the updated estimates.

Approximate Value Iteration Due to the impracticality
of tabular methods for domains with large state spaces, such
as those involving complex combinatorial problems, we em-
ploy approximate value iteration (AVI). AVI uses a parame-
terized function to approximate the value iteration updates.
In AVI, the heuristic function h is updated iteratively using
a deep neural network (DNN) with parameters θ, approxi-
mating the value function. The heuristic update rule is given
by:

h′(s) = min
a∈A

(c(s, a) + h(T (s, a))) (2)

where c(s, a) is the cost of taking action a in state s, and
T (s, a) is the state reached by taking action a in state s.
The network refines its estimates for the cost-to-go values
by minimizing the loss:

L(θ) =

(
min
a∈A

(c(s, a) + hθ−(T (s, a)))− hθ(s)

)2

(3)

where hθ(s) approximates the cost-to-go and θ− denotes the
parameters of a target network, periodically synchronized to
θ to stabilize the training process against a non-stationary
target.

For this study, we work with the 15-puzzle, or sliding tile
puzzle (Keith 2011). The goal is to rearrange the numbered
tiles from an initial state to the goal state (shown in Figure
4), using canonical moves (up (U), down (D), left (L), right
(R)) and diagonal moves (upper-left (UL), upper-right (UR),
down-left (DL), down-right (DR)). More details are in the
Supplementary material.

Review of DeepCubeA
DeepCubeA (Agostinelli et al. 2019) applies deep reinforce-
ment learning integrated with approximate value iteration
(AVI) (Equation 2) and a weighted A* search to solve puz-
zles like Rubik’s Cube, N-Puzzle, Sokoban, and Lights-out.
DeepCubeA learns a domain-specific heuristic function in a
largely domain-independent way without human guidance.

However, despite its effectiveness, DeepCubeA faces sig-
nificant challenges, such as lengthy training times and the
necessity to retrain the model from scratch for a slight
change in the domain or its transition dynamics, increasing
computational demands for larger puzzles. These challenges
underscore the need for more adaptable and generalized so-
lutions in AI pathfinding systems that can leverage learned
heuristic functions across various domains without retrain-
ing from scratch.

Batch Weighted A* Search
A* search is a well-known pathfinding and graph traver-
sal algorithm, which offers a robust method for finding the
shortest path between nodes in a graph. A* search operates
by maintaining a priority queue of paths, where the priority
is determined by the sum of the path cost from the start node
to the current node and an estimated cost from the current
node to the goal. Here, each node represents a state in the
state space. This estimated cost is provided by a heuristic
function h(x), which ideally never overestimates the actual
minimum cost to reach the goal from node x. The fundamen-
tal operation of A* search can be described by the equation:

f(x) = g(x) + h(x) (4)

where g(x) represents the actual cost to reach node x from
the start node, and h(x) is the heuristic estimate of the cost
to reach the goal from node x.

Batch Weighted A* Search Despite its efficiency, A*
can be computationally demanding, particularly in terms of
memory usage, when applied to problems with vast state
spaces or complex transition dynamics. Batch Weighted A*
Search (BWAS) addresses this issue by introducing two
modifications to the traditional A* algorithm: a weighting
factor λ for the path cost, and batch processing of node
expansions (Agostinelli et al. 2019). The cost function in
BWAS is modified as follows:

f(x) = λg(x) + h(x) (5)

where λ is a coefficient that can be adjusted between zero
(emphasizing heuristic guidance) and one (emphasizing path



cost). Lowering λ typically results in faster execution but
may increase the path length, trading off optimality for com-
putational efficiency.

Moreover, BWAS enhances computational performance
by utilizing batch processing techniques. Instead of expand-
ing nodes one at a time, BWAS expands a batch of nodes N
with the lowest f -values simultaneously. This approach is
particularly effective when implemented on parallel comput-
ing architectures, such as GPUs, where the heuristic function
h(x), often computationally intensive, can be calculated for
multiple nodes concurrently.

BWAS has been successfully applied in complex problem
domains, such as solving combinatorial puzzles like the Ru-
bik’s cube and other large-scale pathfinding tasks. By adjust-
ing λ and N , practitioners can fine-tune the balance between
exploration and exploitation, optimizing the algorithm’s per-
formance to suit specific problem characteristics or resource
constraints.

Generalization in Pathfinding Problems

(Chen, Thiébaux, and Trevizan 2024) introduced three novel
graph representations for planning tasks using Graph Neu-
ral Networks (GNNs) to learn domain-independent heuris-
tics. Their approach mitigates issues with large grounded
GNNs by leveraging lifted representations and demonstrates
superior generalization to larger problems compared to mod-
els like STRIPS-HGN. However, it faces scalability issues
with large graph construction. Similarly, (Chen, Thiébaux,
and Trevizan 2023) proposed the GOOSE framework, us-
ing GNNs with novel grounded and lifted graph represen-
tations for classical planning. Their heuristics outperform
STRIPS-HGN and hFF in various domains but require ex-
tensive training data and struggle with very large graphs.
Additionally, (Toyer et al. 2018) utilized GNNs to improve
coverage and plan quality in classical planning tasks through
new graph representations, though their approach only gen-
eralizes across a subset of test domains. However, these ap-
proaches rely on supervised learning, which assumes the
ability to solve moderately difficult problem instances with
existing solvers, which may not always be the case for real-
world problems.

Large language models (LLMs), pre-trained on extensive
textual datasets, have shown potential in downstream natural
language processing tasks. While attempts to use LLMs for
pathfinding via in-context learning have shown modest per-
formance (Sermanet et al. 2023; Li et al. 2023; Silver et al.
2023), they face notable challenges and lack inherent search
capabilities. More details are provided in the Supplementary
material.

The Fast Downward planner (Helmert 2006) uses
domain-independent heuristics like the Fast Forward (FF)
heuristic (Hoffmann and Nebel 2001) to solve pathfinding
problems efficiently. These heuristics generalize across var-
ious domains but do not perform as well as learned heuristics
(Agostinelli, Panta, and Khandelwal 2024). More details are
provided in the Supplementary material.

Existing Foundation Models
We utilize the model introduced by (Chen, Thiébaux, and
Trevizan 2024) as a baseline for evaluating our approach.
This work addresses the challenge of generalization in plan-
ning by employing Graph Neural Networks (GNNs) trained
in a supervised manner on a novel representation. Specif-
ically, the model leverages the STRIPS Learning Graph
(SLG) representation, a grounded graph structure that ef-
ficiently encodes planning tasks. SLG represents planning
tasks with nodes corresponding to actions and propositions,
while edges capture preconditions and add and delete ef-
fects. Node features indicate whether a proposition is part
of the initial state or goal, resulting in a compact representa-
tion that retains critical planning semantics.

Domain Randomization and Generalization in
Reinforcement Learning
Domain randomization is a key technique in reinforcement
learning (RL) that improves robustness and generalizability
by exposing agents to diverse training domains, thereby im-
proving generalization to unfamiliar domains. Mehta et al.
(2020) introduced Active Domain Randomization (ADR),
which strategically manipulates challenging environmen-
tal parameters to improve policy robustness, particularly in
robotic control. Similarly, Ajani, Hur, and Mallipeddi (2023)
showed that varying physical properties like surface friction
can significantly boost an RL agent’s generalization ability.
Kang, Chang, and Choi (2024) further refined this with Bal-
anced Domain Randomization (BDR), which focuses train-
ing on rare and complex domains to enhance performance
under demanding conditions. In non-physical tasks, Koo,
Yu, and Lee (2019) applied adversarial domain adaptation to
align feature representations across domains, enhancing pol-
icy generalization in complex tasks like dialogue systems.
These studies demonstrate the power of domain randomiza-
tion in building resilient AI, aligning with PDDLFuse’s goal
to generate diverse planning domains to improve generaliza-
tion in automated planning.

PDDLFuse
PDDLFuse is a domain generation tool designed to cre-
ate novel and diverse planning domains by fusing exist-
ing ones (Khandelwal, Sheth, and Agostinelli 2024). Un-
like traditional methods that primarily reconstruct domains
from natural language descriptions, PDDLFuse employs do-
main randomization to generate new domains. By system-
atically manipulating predicates, preconditions, and effects
using probabilistic parameters, PDDLFuse produces highly
varied planning problems. This process includes integrating
object counts, predicate reversibility, and negations, result-
ing in challenging domains for evaluating foundational plan-
ning models. Generating complex, out-of-distribution do-
mains enables training across diverse scenarios, improving
model generalization.

Theoretical Framework
Pathfinding problems are represented as weighted directed
graphs, but encoding the entire graph is impractical due to its



large size. To generalize across a domain, we need to under-
stand several key components: the state space, the transition
function, and the transition cost function.

This study focuses on a subset of this broader problem
to demonstrate that deep reinforcement learning can achieve
this. Specifically, we keep the state representation consis-
tent, assume prior knowledge of the action space, and use
a uniform transition cost function. Consequently, the state
transition function is implicitly defined by the action space.
For the 15-puzzle, which involves actions such as {(U), (D),
(L), (R), (UL), (UR), (DL), (DR)}, we generate domain vari-
ations by randomly selecting the set of actions available for
each cell within the puzzle. We concatenate the domain’s
action space information with the state representation and
input is fed into the heuristic function h(s, va), where va
represents the action space information.

This additional context allows heuristic functions to more
accurately predict cost-to-go values, even in previously un-
seen domains. Thus, we can present a new domain to our
deep neural network with the action space information, fa-
cilitating the development of heuristic functions that are ef-
fective within a single domain and adaptable across various
domains. This approach advances the field of pathfinding
in AI, showcasing the potential for domain generalizability
through Deep RL.

Methodology
This section details the techniques used to generate dynamic
puzzle domains and an updated approach to approximate
value iteration. We also outline the evaluation metrics em-
ployed to assess the correlation between learned and ground-
truth heuristic values.

Action Variation N-Puzzle Environment Generator
This section outlines Algorithm 1 (provided in the Sup-
plementary Material), which generates dynamic puzzle do-
mains by initializing randomized actions for each cell while
ensuring the availability of reversible actions. The environ-
ment generator assigns a random set of actions to each cell
in the puzzle grid and validates their reversibility to ensure
bidirectional navigation.

Reversible moves are essential as they ensure that every
action in the environment has a counteraction to revert the
state, confirming the puzzle’s solvability from any configu-
ration. Reversible moves are also used to obtain ground-truth
heuristic values, as unsolvable states (with infinite costs)
would complicate heuristic value determination. However,
the updated AVI based model can also solve domains with-
out reversible moves; this approach is chosen for conve-
nience in this study.

For the 8-puzzle, 8 actions across 9 cell positions yield 72
possible mappings for defining available actions. Reversible
moves occupy 18 mapping slots (9 cells × 2 actions), leav-
ing 72 − 18 = 54 slots, resulting in 254 possible domain
variations. Similarly, the 15-puzzle with 8 actions and 16
cell positions yields 296 configurations, and the 24-puzzle
with 8 actions and 25 cell positions gives 2150 configura-
tions. This method ensures a comprehensive set of domains
for effective model training and evaluation.

Updated Approximate Value Iteration
In the updated approach to approximate value iteration, we
enhance the state representation by concatenating it with a
one-hot encoding of the action space. This combined rep-
resentation provides additional context to the heuristic func-
tion about the available actions at each state, leading to more
accurate predictions. The updated cost-to-go function now
incorporates this augmented representation, as shown in the
equation below:

h′(s, va) = min
a

(c(s, T (s, a)) + h(T (s, a), va)) (6)

Here, h′(s, va) is the updated heuristic function,
c(s, T (s, a)) is the transition cost, T (s, a) represents
the state transition function, and va denotes the action
variation context. This modification allows the heuristic
function to leverage both state and action information,
thereby improving the generalization and accuracy of
cost-to-go estimations.

Other Foundation Models
To extend our analysis, we train other foundation mod-
els. These include the GOOSE foundation model, a super-
vised learning-based domain-independent approach (Chen,
Thiébaux, and Trevizan 2024), and two reinforcement
learning-based models trained using PDDLFuse. The first
PDDLFuse model is trained on diverse domains derived
from n-puzzle action variation domains (these variations are
based on the environment generator), while the second is
trained on a mix of n-puzzle and other domains.

Evaluation Metrics
The correlation between the learned heuristic value and the
ground truth heuristic value is evaluated using two statis-
tical measures: 1. Concordance Correlation Coefficient
(CCC): CCC measures the agreement between two vari-
ables (learned and true heuristic values) by considering both
precision and accuracy, capturing how closely the predic-
tions match the ground truth. 2. Coefficient of Determi-
nation (R-squared, R2): R2 quantifies the proportion of
variance in the ground truth heuristic values that is pre-
dictable from the learned heuristic values, providing in-
sight into the goodness of fit of the model. In addition to
statistical metrics, planning-specific metrics such as aver-
age path length, optimality percentage, nodes expanded,
time taken, nodes expanded per second, and percentage
of problems solved are used to evaluate solution quality,
search efficiency, computational performance, and model
robustness. These metrics provide a holistic view of the
model’s practical applicability in planning tasks. More de-
tails are in the Supplementary material.

Experimental Setup and Results
Our experimental setup evaluates the performance of foun-
dation models on n-puzzle problems across 8-puzzle, 15-
puzzle, and 24-puzzle domains. The models are trained us-
ing various inputs and paradigms, with detailed experimen-
tal configurations provided in the Supplementary Material.



Trained Foundation Models
We trained several foundation models using different
methodologies and architectures:

UAVI Model: The UAVI (Updated Approximate Value It-
eration) model is trained on domains generated by the ac-
tion variation n-puzzle environment generator. It employs a
Residual Network (ResNet) (He et al. 2016) implemented in
PyTorch (Paszke et al. 2019). The architecture includes an
input layer for state or combined state-action space, initial
processing layers that expand the input to a hidden space of
size 5000 with ReLU activation, and four residual blocks,
each operating in a 1000-dimensional hidden space, to fa-
cilitate deep learning without performance degradation. The
output layer then transforms the processed data into heuris-
tic estimates.

GOOSE Model: The GOOSE model is a supervised
learning-based foundation model trained on 50,000 data
points from existing IPC domains (Chen, Thiébaux, and Tre-
vizan 2024). It uses an SLG graph representation and a Mes-
sage Passing Neural Network (MPNN) with 16 message-
passing layers, mean aggregation, a hidden dimension of 64.
Training optimizes Mean Squared Error (MSE) loss with the
Adam optimizer and an initial learning rate of 0.001.

PDDLFuse-Based Models: Two models were trained on
domains generated using PDDLFuse (Khandelwal, Sheth,
and Agostinelli 2024), leveraging the SLG representation
and MPNN architecture similar to GOOSE Model.

• Action-GNN (AGN): Trained exclusively on
PDDLFuse-generated domains derived from action
variations in n-puzzle domains (N ranging from 8 to 24).
This model focuses on structural variability in actions
and their effects, training for 850,000 iterations with a
batch size of 100 using approximate value iteration.

• Fuse-GNN (FGN): Trained on domains generated by
PDDLFuse, covering diverse base domains such as
Blocksworld, Sokoban, n-puzzle, and other IPC domains.
This model emphasizes cross-domain generalization and
is trained for 1,000,000 iterations with a batch size of 100
using approximate value iteration.

Baseline Models
To assess the impact of training configurations, we also
trained the original DeepCubeA model on three n-puzzle do-
mains: canonical actions (C: U, D, L, R), diagonal actions
(D: UL, UR, DL, DR), and all actions combined (C+D) for
8-puzzle, 15-puzzle, and 24-puzzle. DeepCubeA, using the
original deep value iteration method (Equation 2), observes
10 billion examples during training due to its constant action
space, enabling faster example generation.

In contrast, the UAVI model generates approximately 1
billion examples, with each state derived from a new ac-
tion space variation domain, resulting in slower example
generation. This model is trained using approximate value
iteration with state transition information (Equation 6) for
8-puzzle, 15-puzzle, and 24-puzzle. Additionally, another
baseline model was trained on examples from new action

space variation domains using approximate value iteration
without state transition information (Equation 2) for the 8-
puzzle and 15-puzzle.

Test Data Generation
To evaluate the performance of UAVI, we generated three
distinct test datasets:

• Data1: 500 states per domain (C, D, and C+D) generated
via random walks ranging from 1,000 to 10,000 steps
from the goal state.

• Data2: 100 states for each of 500 unique action space
variation domains, generated via random walks of up to
500 steps from the goal state.

• Data3: 1,500 states per domain (C, D, and C+D) gener-
ated via random walks of 0 to 500 steps from the goal
state, specifically designed to evaluate heuristic accuracy
against optimal ground truth values.

Ground truth heuristic values for all test data were com-
puted using the Fast Downward planner with the merge-and-
shrink heuristic (Sievers 2018). This approach simplifies the
state space by merging and shrinking states, yielding opti-
mal heuristics. However, it is computationally demanding.
For example, obtaining ground truth values for Data3 re-
quired running 15 parallel instances of 100 problems each,
with a 144-hour cutoff per instance, taking over three weeks
to complete.

Comparison Against Ground Truth
We evaluated UAVI’s heuristic accuracy by comparing its
predictions against ground truth values for the 15-puzzle do-
main.

Plotting Ground Truth Heuristic Values. Figure 1 illus-
trates the results for UAVI with action information and the
baseline model without action information. UAVI achieved
a CCC of 0.99 and R2 of 0.98, significantly outperforming
the model without action information (CCC of 0.74 and R2

of 0.46).
For the 15-puzzle domain, UAVI achieved:

• R2 = 0.96 and CCC = 0.98 for C.
• R2 = 0.93 and CCC = 0.97 for D.
• R2 = 0.99 and CCC = 1.0 for C+D.

In comparison, DeepCubeA achieved near-perfect results
(R2 and CCC of 1.0) across all domains except for C, where
R2 = 0.99 and CCC = 1.0 (Figures 2 and 3). Results for
8-puzzle and 24-puzzle are provided in the Supplementary
Material.

To assess performance, we compare UAVI, DeepCubeA,
AGN, FGN, GOOSE, and the Fast Downward Planner using
the Fast Forward heuristic (FD(FF)) across puzzle sizes (8-
puzzle, 15-puzzle, and 24-puzzle) and action domains (C,
D, and C+D). UAVI, AGN, FGN, GOOSE and DeepCubeA
used weighted A* search with a weight of 0.8 and a batch
size of 1000 under a 200-second time limit, while FD(FF)
employed standard A* search with the same time constraint.



(a) Without Action Info (b) With Action Info

Figure 1: Comparison of heuristic values predicted by the UAVI (1b) and the model without action information (1a) against
ground truth heuristic values for 15-puzzle. The model with action information performs significantly better.

(a) C: P vs GT (b) D: P vs GT (c) C+D: P vs GT

Figure 2: Comparison of trained and ground truth (GT) heuristic values for the 15-puzzle domain for the UAVI (P) variants,
each showing heuristic values for 1500 states across canonical actions (C), diagonal actions (D), and canonical + diagonal
actions (C+D).

Comparing solvers. Table 1 presents the results for
the 15-puzzle domain, comparing solvers across canoni-
cal (C), diagonal (D), and combined canonical + diag-
onal (C+D) action variants. UAVI and DeepCubeA, as
domain-specific models, achieve near-optimal results across
all variants. UAVI demonstrates strong generalization and
matches DeepCubeA’s 100% success rate in all cases, with
slightly reduced optimality in the canonical domain (C) and
higher efficiency in the diagonal domain (D) (3.28E+04
vs. 2.73E+04 nodes/second). In the C+D domain, UAVI
achieves near-optimal performance, illustrating its ability to
balance generalization and computational efficiency.

AGN and FGN, trained on PDDLFuse-generated do-
mains, show robust generalization and significantly outper-
form the supervised GOOSE model. AGN achieves a 100%
success rate across all domains but with lower efficiency
and optimality compared to UAVI and DeepCubeA. FGN
demonstrates competitive performance (e.g., 94% success in
C+D) but does not match AGN’s generalizability. GOOSE,
hindered by its reliance on supervised learning, struggles to
handle diverse action spaces, with success rates as low as
40% in C and 70% in C+D. While RL-based approaches like
AGN and FGN offer superior generalization, they require

significantly more data and training time (approximately 12
days) compared to GOOSE, which completes training in
about one day. Results for 8-puzzle and 24-puzzle are pro-
vided in the Supplementary Material.

Discussion and Future Work
To the best of our knowledge, this is one of a kind study
leveraging reinforcement learning to achieve generaliza-
tion across pathfinding domains using Deep Approximate
Value Iteration (DAVI). In contrast to domain-specific mod-
els like DeepCubeA, our approach integrates state transi-
tion information into state representations, enabling mod-
els like UAVI, AGN, and FGN to adapt to unseen domains
without retraining. UAVI demonstrates strong generalization
and competitive performance with domain-specific planners,
achieving high efficiency and success rates across various
15-puzzle action space variation domains.

AGN and FGN illustrate the benefits of training on
PDDLFuse-generated action-variation domains, emphasiz-
ing the value of reinforcement learning and domain ran-
domization in generalization. AGN achieves robust gen-
eralization and adaptability across diverse domains, while
FGN extends these capabilities to broader base domains,



(a) C: DCA vs GT (b) D: DCA vs GT (c) C+D: DCA vs GT

Figure 3: Comparison of trained and ground truth (GT) heuristic values for the 15-puzzle domain for DeepCubeA (DCA)
variants, each showing heuristic values for 1500 states across canonical actions (C), diagonal actions (D), and canonical +
diagonal actions (C+D).

Domain Solver Len Opt Nodes Secs Nodes/Sec Solved

15 Puzzle (C)

DeepCubeA 52.03 99.4% 1.82E+05 4.31 4.22E+04 100%
UAVI 52.18 93.76% 3.62E+05 10.39 3.48E+04 100%
AGN 59.70 75% 5.00E+05 30.39 1.67E+04 100%
FGN 73.60 7% 7.00E+06 85.63 8.24E+04 70%
FD(FF) 52.75 24.80% 2.92E+06 42.11 6.94E+04 80.80%
GOOSE 80.20 3% 8.00E+06 100.08 8.00E+04 40%

15 Puzzle (D)

DeepCubeA 10.80 100% 8.20E+02 0.03 2.73E+04 100%
UAVI 10.81 99.8% 1.64E+03 0.05 3.28E+04 100%
AGN 14.78 90% 2.50E+03 3.03 8.33E+02 100%
FGN 20.22 60% 3.00E+04 8.10 3.75E+03 100%
FD(FF) 10.86 96.8% 4.18E+01 0.21 1.99E+02 100%
GOOSE 22.20 50% 4.00E+04 12.30 3.33E+03 90%

15 Puzzle (C+D)

DeepCubeA 25.66 100% 1.78E+05 3.74 4.76E+04 100%
UAVI 25.67 99.8% 1.78E+05 4.72 3.77E+04 100%
AGN 29.90 70% 2.50E+06 20.05 1.25E+05 100%
FGN 39.36 36% 7.00E+05 30.11 2.33E+04 94%
FD(FF) 29.32 13.4% 8.40E+03 1.17 7.18E+03 100%
GOOSE 45.74 20% 8.00E+05 40.21 2.00E+04 70%

Table 1: Performance comparison on the 15-puzzle domain across different solvers and action variants. The UAVI model
demonstrates high optimality and efficiency, surpassing PDDL-Fuse variants and GOOSE, especially in complex action sets.

though at a slightly higher computational cost and reduced
efficiency. Comparatively, supervised models like GOOSE
struggle with generalizability, particularly in complex and
diverse domains, highlighting the limitations of domain-
independent supervised approaches.

Future work will focus on refining these models by ex-
ploring advanced techniques, such as dynamic PDDL-based
domain generation and integrating knowledge graphs to en-
code transitions. Incorporating knowledge graphs could im-
prove heuristic function accuracy by allowing explicit repre-
sentation of domain constraints and transitions, particularly
in dynamic applications like robotics. These advancements
aim to create more generalizable and robust heuristic func-
tions capable of solving pathfinding problems in a wider va-
riety of domains with enhanced efficiency and adaptability.

Conclusion

This work demonstrates that integrating state transition in-
formation with state representations enables heuristic func-
tions, such as those in UAVI, AGN, and FGN, to general-
ize across diverse 15-puzzle action space variation domains.
UAVI showcases competitive performance with domain-
specific planners like DeepCubeA, while AGN and FGN
leverage reinforcement learning and domain randomization
to achieve significant generalization improvements com-
pared to supervised models like GOOSE. These findings un-
derscore the potential of reinforcement learning to enhance
generalization and efficiency in solving complex pathfind-
ing problems. Future work will expand these techniques to
broader domains and explore integrating graph-based mod-
els and knowledge graphs to further enhance adaptability,
efficiency, and robustness.



References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Panta, R.; and Khandelwal, V. 2024. Spec-
ifying goals to deep neural networks with answer set pro-
gramming. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 34, 2–10.
Ajani, O. S.; Hur, S.-h.; and Mallipeddi, R. 2023. Evaluat-
ing Domain Randomization in Deep Reinforcement Learn-
ing Locomotion Tasks. Mathematics, 11(23): 4744.
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Gianinazzi, L.; Gajda, J.; Lehmann, T.; Podstawski, M.;
Niewiadomski, H.; Nyczyk, P.; et al. 2023. Graph of
thoughts: Solving elaborate problems with large language
models. arXiv preprint arXiv:2308.09687.
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2023. GOOSE:
Learning domain-independent heuristics. In NeurIPS 2023
Workshop on Generalization in Planning.
Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2024. Learning
Domain-Independent Heuristics for Grounded and Lifted
Planning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, 20078–20086.
Chicco, D.; Warrens, M. J.; and Jurman, G. 2021. The coef-
ficient of determination R-squared is more informative than
SMAPE, MAE, MAPE, MSE and RMSE in regression anal-
ysis evaluation. Peerj computer science, 7: e623.
Dalal, M.; Chiruvolu, T.; Chaplot, D. S.; and Salakhutdinov,
R. 2023. Plan-Seq-Learn: Language Model Guided RL for
Solving Long Horizon Robotics Tasks. In 2nd Workshop on
Language and Robot Learning: Language as Grounding.
Gramopadhye, M.; and Szafir, D. 2022. Generating exe-
cutable action plans with environmentally-aware language
models. arXiv preprint arXiv:2210.04964.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253–302.
Hu, H.; Lu, H.; Zhang, H.; Lam, W.; and Zhang, Y. 2023.
Chain-of-Symbol Prompting Elicits Planning in Large Lan-
gauge Models. arXiv preprint arXiv:2305.10276.
Huang, W.; Wang, C.; Zhang, R.; Li, Y.; Wu, J.; and Fei-
Fei, L. 2023. Voxposer: Composable 3d value maps for
robotic manipulation with language models. arXiv preprint
arXiv:2307.05973.

Kang, C.; Chang, W.; and Choi, J. 2024. Balanced Domain
Randomization for Safe Reinforcement Learning. Applied
Sciences, 14(21): 9710.
Keith, M. 2011. Vintage plastic sliding-letter puzzles. Word
Ways, 44(4): 22.
Khandelwal, V.; Sheth, A.; and Agostinelli, F. 2024. PDDL-
Fuse: A Tool for Generating Diverse Planning Domains.
arXiv preprint.
Koo, S.; Yu, H.; and Lee, G. G. 2019. Adversarial approach
to domain adaptation for reinforcement learning on dialog
systems. Pattern Recognition Letters, 128: 467–473.
Lawrence, I.; and Lin, K. 1989. A concordance correlation
coefficient to evaluate reproducibility. Biometrics, 255–268.
Li, Y.; Kamra, N.; Desai, R.; and Halevy, A. 2023. Human-
Centered Planning. arXiv preprint arXiv:2311.04403.
Logeswaran, L.; Sohn, S.; Lyu, Y.; Liu, A. Z.; Kim, D.-
K.; Shim, D.; Lee, M.; and Lee, H. 2023. Code Mod-
els are Zero-shot Precondition Reasoners. arXiv preprint
arXiv:2311.09601.
Lu, Y.; Lu, P.; Chen, Z.; Zhu, W.; Wang, X. E.; and Wang,
W. Y. 2023. Multimodal Procedural Planning via Dual Text-
Image Prompting. arXiv preprint arXiv:2305.01795.
Mehta, B.; Diaz, M.; Golemo, F.; Pal, C. J.; and Paull, L.
2020. Active domain randomization. In Conference on
Robot Learning, 1162–1176. PMLR.
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.;
Horesh, L.; Srivastava, B.; Fabiano, F.; and Loreggia, A.
2022. Plansformer: Generating symbolic plans using trans-
formers. arXiv preprint arXiv:2212.08681.
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.; Sri-
vastava, B.; Horesh, L.; Fabiano, F.; and Loreggia, A. 2023a.
Understanding the Capabilities of Large Language Models
for Automated Planning. arXiv preprint arXiv:2305.16151.
Pallagani, V.; Muppasani, B.; Srivastava, B.; Rossi, F.;
Horesh, L.; Murugesan, K.; Loreggia, A.; Fabiano, F.;
Joseph, R.; Kethepalli, Y.; et al. 2023b. Plansformer Tool:
Demonstrating Generation of Symbolic Plans Using Trans-
formers. In IJCAI, volume 2023, 7158–7162. International
Joint Conferences on Artificial Intelligence.
Parakh, M.; Fong, A.; Simeonov, A.; Gupta, A.; Chen,
T.; and Agrawal, P. 2023. Human-Assisted Continual
Robot Learning with Foundation Models. arXiv preprint
arXiv:2309.14321.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.
Sermanet, P.; Ding, T.; Zhao, J.; Xia, F.; Dwibedi, D.;
Gopalakrishnan, K.; Chan, C.; Dulac-Arnold, G.; Maddi-
neni, S.; Joshi, N. J.; et al. 2023. RoboVQA: Multimodal
Long-Horizon Reasoning for Robotics. arXiv preprint
arXiv:2311.00899.



Sievers, S. 2018. Merge-and-shrink heuristics for classical
planning: Efficient implementation and partial abstractions.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 9, 90–98.
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L. P.; and Katz, M. 2023. Generalized Planning in
PDDL Domains with Pretrained Large Language Models.
arXiv preprint arXiv:2305.11014.
Singh, I.; Blukis, V.; Mousavian, A.; Goyal, A.; Xu, D.;
Tremblay, J.; Fox, D.; Thomason, J.; and Garg, A. 2023.
ProgPrompt: program generation for situated robot task
planning using large language models. Autonomous Robots,
1–14.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Valmeekam, K.; Marquez, M.; and Kambhampati, S.
2023. Can Large Language Models Really Improve
by Self-critiquing Their Own Plans? arXiv preprint
arXiv:2310.08118.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large Language Models Still Can’t Plan
(A Benchmark for LLMs on Planning and Reasoning about
Change). arXiv preprint arXiv:2206.10498.
Wang, L.; Xu, W.; Lan, Y.; Hu, Z.; Lan, Y.; Lee, R. K.-W.;
and Lim, E.-P. 2023. Plan-and-solve prompting: Improv-
ing zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T. L.; Cao,
Y.; and Narasimhan, K. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv preprint
arXiv:2305.10601.
Zelikman, E.; Huang, Q.; Poesia, G.; Goodman, N.; and
Haber, N. 2023. Parsel: Algorithmic Reasoning with Lan-
guage Models by Composing Decompositions. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems.



Appendix
Background and Literature Review

N-Puzzle
The n-puzzle, also known as the sliding tile puzzle (Keith
2011), is a classic problem in artificial intelligence. The puz-
zle consists of a grid of n + 1 tiles, where n tiles are num-
bered sequentially, and one tile is left empty. The objective
is to rearrange the tiles from a given initial state to a goal
state, typically with tiles ordered sequentially from top-left
to bottom-right, and the empty tile in the bottom-right cor-
ner, as shown in Figure 4b. Traditionally, actions correspond
to moving a tile into the empty space, which can be one of
the following moves: up (U), down (D), left (L), and right
(R). These moves define the canonical action set. In addition
to the canonical moves, we consider diagonal actions: upper-
left (UL), upper-right (UR), lower-left (DL), and lower-right
(DR). These additional moves increase the possible transi-
tions from any given state. Figure 4 illustrates an example of
a scrambled state and the goal state.

(a) Scrambled State (b) Goal State

Figure 4: Example of a scrambled state and the goal state
for the 8-puzzle domain. The cost-to-go is significantly re-
duced when including diagonal moves: 16 steps for canon-
ical moves only versus 2 steps for canonical and diagonal
moves combined.

Large Language Models in Pathfinding Problems
Large language models (LLMs) are a foundation model pre-
trained on extensive textual datasets using self-supervised
learning techniques. These models, characterized by their
ability to generate and comprehend human-like text, have
shown potential in various natural language processing
(NLP) tasks. LLMs can be fine-tuned as foundation models
for several downstream tasks, such as machine translation
and question-answering. There have been several attempts
to use LLMs for solving pathfinding problems and generat-
ing a sequence of actions to solve the problem.

While attempts to use causal LLMs to solve pathfinding
problems via in-context learning have shown modest per-
formance and indicates notable challenges (Sermanet et al.
2023; Li et al. 2023; Silver et al. 2023; Parakh et al. 2023;
Zelikman et al. 2023; Besta et al. 2023; Huang et al. 2023;
Dalal et al. 2023; Wang et al. 2023; Valmeekam et al. 2022;
Valmeekam, Marquez, and Kambhampati 2023; Gramopad-
hye and Szafir 2022; Singh et al. 2023). Other prompting

techniques have been introduced to enhance LLMs’ reason-
ing capabilities (Hu et al. 2023; Yao et al. 2023).

Efforts to generate multimodal, text, and image-based se-
quences of actions are exemplified by (Lu et al. 2023). Ad-
ditionally, a subset of studies investigates the fine-tuning of
seq2seq, code-based language models (Pallagani et al. 2022,
2023b), which are noted for their advanced syntactic encod-
ing. These models show promise within the confines of their
training datasets (Logeswaran et al. 2023) yet exhibit lim-
itations in generalizing to out-of-distribution domains (Pal-
lagani et al. 2023a), highlighting a gap in their adaptability
across diverse pathfinding problem domains.

One of the major drawbacks of LLMs is that they do not
inherently possess search capabilities, nor do these papers
employ heuristic search techniques. This limitation presents
a significant challenge in applying LLMs to pathfinding
problems, as effective search strategies are crucial for op-
timal solutions.

Domain-Independent Planning
The Fast Downward planner (Helmert 2006) is a well-
known automated planning system that utilizes various
heuristics to solve complex pathfinding problems. One key
heuristic employed by Fast Downward is the Fast Forward
(FF) heuristic (Hoffmann and Nebel 2001). The FF heuris-
tic estimates the cost-to-go by ignoring the delete effects of
actions, allowing it to compute heuristic values with min-
imal computational overhead rapidly. These heuristics are
domain-independent, meaning they can generalize across
various planning domains without requiring domain-specific
adjustments. This generalizability makes them highly ver-
satile and efficient for various applications. However, de-
spite their efficiency, domain-independent heuristics do not
perform as well as learned heuristics (Agostinelli, Panta,
and Khandelwal 2024). This underscores the limitations of
domain-independent heuristics and highlights the potential
benefits of leveraging training to achieve superior pathfind-
ing performance.

Methodology
Environment Generator
This section lists the environment generator algorithm.

Evaluation Metrics
The correlation between the learned heuristic value and the
ground truth heuristic value is evaluated using two statistical
measures:
1. Concordance Correlation Coefficient (CCC): Denoted
as ρc, CCC measures the agreement between two variables
(learned and true heuristic values), considering both the pre-
cision and accuracy (Lawrence and Lin 1989). It is defined
as:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2

Where ρ is the Pearson correlation coefficient between the
variables, σx and σy are the standard deviations, and µx and
µy are the means of the true and predicted values, respec-
tively.



Algorithm 1: Environment Generator - NPuzzle with action
variation

1: Input: n - dimension of the puzzle grid (e.g., n = 3 for
an 8-puzzle)

2: Output: Puzzle environment P with reversible actions
validated

3: procedure INITIALIZEANDVALIDATEPUZZLE(n)
4: Let P be an n× n grid of cells
5: Define A = {U, D, L, R, UL, UR, DL, DR} as the

set of all possible actions
6: for each cell cij ∈ P do
7: Assign to cij .A a random subset of A
8: end for
9: for each cell cij ∈ P do

10: for each action a ∈ cij .A do
11: Determine the target cell ckl from cij using

action a
12: Identify the reverse action a′ corresponding

to a
13: if a′ /∈ ckl.A then
14: Remove a from cij .A
15: end if
16: end for
17: end for
18: return P
19: end procedure

This metric quantifies the proportion of variance in the de-
pendent variable (ground truth heuristic values) that is pre-
dictable from the independent variable (predicted heuristic
values). It primarily measures the trend of the predictive ac-
curacy but does not account for how close the predictions
are to the identity line (perfect agreement).
2. Coefficient of Determination (R-squared, R2): This
metric quantifies the proportion of variance in the depen-
dent variable that is predictable from the independent vari-
able, providing insight into the goodness of fit of the model
to the data (Chicco, Warrens, and Jurman 2021).

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2

where yi are the ground truth values, ŷi are the predicted
heuristic values, and ȳ is the mean of the ground truth val-
ues.
This metric assesses the agreement between two variables,
considering the precision and the accuracy. This metric cap-
tures the relationship trend between predicted and true val-
ues and evaluates how closely the predictions conform to the
identity line, indicating perfect prediction accuracy.

In addition to these statistical metrics, we also evaluate the
models on planning-specific metrics: path length, optimal-
ity percentage, number of nodes expanded, time taken,
nodes expanded per second, and percentage of problems
solved (% solved). These metrics provide a comprehensive
assessment of model performance: - Path length and opti-
mality percentage evaluate the quality of the generated so-
lutions compared to optimal solutions. - Number of nodes

expanded and nodes expanded per second measure the effi-
ciency of the heuristic in guiding the search process. - Time
taken captures computational efficiency. - % solved reflects
the robustness of the model in solving problems within a
given time limit.

These metrics are critical for understanding the practi-
cal applicability and computational feasibility of the UAVI
models in real-world planning tasks.

Experimental Setup
Hardware Details
We have used two servers to run our experiments: one with
48-core nodes each hosting 2 V100 32G GPUs and 128GB
of RAM, and another with 256 cores, eight A100 40GB
GPUs, and 1TB of RAM. The processor speed is 2.8 GHz.

Test Data Generation
To evaluate the performance of UAVI, we generated three
distinct test datasets:

• Data1: 500 states per domain (C, D, and C+D) generated
via random walks ranging from 1,000 to 10,000 steps
from the goal state.

• Data2: 100 states for each of 500 unique action space
variation domains, generated via random walks of up to
500 steps from the goal state.

• Data3: 1,500 states per domain (C, D, and C+D) gener-
ated via random walks of 0 to 500 steps from the goal
state, specifically designed to evaluate heuristic accuracy
against optimal ground truth values.

These datasets were essential for thoroughly comparing
the models’ performance and adaptability across different
action spaces.

Using the Fast Downward planner with the merge-and-
shrink heuristic (Sievers 2018), we obtained the ground truth
heuristic values for all generated test data. This heuristic
simplifies the state space by merging and shrinking states,
providing optimal heuristics. However, obtaining ground
truth for complex puzzles like the 24-puzzle is computation-
ally intensive.

For Data1:

• 8-puzzle: The process took approximately one day with a
cutoff of 160 minutes per problem, running one instance
of the planner per domain.

• 15-puzzle: The process took about a week with a cutoff
of 160 minutes per problem, running five instances of the
planner per domain.

• 24-puzzle: The process took around 2 weeks with a cut-
off of 144 hours per problem, running 50 instances of the
planner per domain.

For Data2:

• 8-puzzle: The process took one week with a cutoff of 160
minutes per problem, running 50 instances overall.

• 15-puzzle: The process also took one week with a cut-
off of 160 minutes per problem, running 500 instances
overall.



For Data3:
• 8-puzzle: The process took approximately 2 days with a

cutoff of 160 minutes per problem, running one instance
of the planner per domain.

• 15-puzzle: The process took about a week with a cutoff
of 160 minutes per problem, running 15 instances of the
planner per domain.

• 24-puzzle: The process took over 3 weeks, running 100
instances per domain, with 15 problems per instance and
a cutoff of 144 hours per problem.

These computations highlight the significant computa-
tional resources and time required to obtain ground truth
heuristic values for large-scale puzzles, underscoring the
challenges in benchmarking heuristic functions for complex
domains.

Results
To quantitatively assess the performance of the trained
heuristic model, we employ several metrics that reflect both
the accuracy of the heuristic values and the efficiency of the
pathfinding process.

Plotting Ground Truth Heuristic Values 8-Puzzle. We
generate (D2) for the 8-puzzle domain. We plot the ground
truth optimal heuristic values against the trained heuristic
values for both the UAVI model (with action information)
and the model trained without action information, as shown
in Figure 5. The UAVI model achieved a CCC of 0.98 and
R2 of 0.97, while the model without action information
achieved a CCC of 0.69 and R2 of 0.44, demonstrating the
UAVI model’s superior performance.

For the 8-puzzle domain (Figure 6), DCA graphs show
a perfect correlation with R² and CCC of 1.0. The UAVI
model achieves an R² of 0.96 and CCC of 0.98 for the C
only domain, and perfect correlation (R² and CCC of 1.0)
for the D and C+D domains. The UAVI model demonstrates
near-perfect accuracy, especially in the more complex action
domains.

Plotting Ground Truth Heuristic Values 24-Puzzle. For
the 24-puzzle domain (Figure 7), DCA graphs show perfect
correlation (R² and CCC of 1.0). The UAVI model achieves
R² of 0.97 and CCC of 0.98 for C only, R² of 0.94 and
CCC of 0.97 for D only, and near-perfect correlation (R² of
0.98 and CCC of 0.99) for C+D. The UAVI model maintains
high accuracy across all domains, demonstrating its general-
izability.

To assess performance, we compare UAVI, DeepCubeA,
AGN, FGN, GOOSE, and the Fast Downward Planner using
the Fast Forward heuristic (FD(FF)) across puzzle sizes (8-
puzzle, 15-puzzle, and 24-puzzle) and action domains (C,
D, and C+D). UAVI, AGN, FGN, GOOSE and DeepCubeA
used weighted A* search with a weight of 0.8 and a batch
size of 1000 under a 200-second time limit, while FD(FF)
employed standard A* search with the same time constraint.

Comparing solvers for 8-Puzzle. Table 2 presents the
results for the 8-puzzle domain, comparing solver perfor-
mance across canonical (C), diagonal (D), and combined
canonical + diagonal (C+D) action variants.

UAVI and DeepCubeA achieve near-identical perfor-
mance, with both models consistently solving 100% of the
problems across all action variants. In the canonical do-
main (C), UAVI matches DeepCubeA in solution length
(18.38) and optimality while demonstrating slightly reduced
efficiency (4.07E+04 nodes/second compared to 5.20E+04
for DeepCubeA). In the diagonal domain (D), UAVI main-
tains its 100% success rate with slightly improved effi-
ciency (4.05E+03 nodes/second compared to 1.95E+03 for
DeepCubeA). Similarly, in the C+D domain, UAVI matches
DeepCubeA in optimality and solution length, processing
nodes at a comparable rate (3.99E+04 nodes/second).

AGN and FGN, trained on PDDLFuse-generated do-
mains, exhibit strong generalizability but with reduced ef-
ficiency and success rates compared to UAVI and Deep-
CubeA. AGN achieves 100% success in the canonical and
diagonal domains, with solution lengths slightly longer than
UAVI and DeepCubeA (e.g., 18.50 in C and 1.46 in D). FGN
demonstrates moderate generalization, achieving 100% suc-
cess in the canonical domain but falling to 90% in the C+D
domain, with significantly higher computational costs and
reduced efficiency.

GOOSE, relying on supervised learning, shows limited
generalizability and struggles with efficiency. In the canon-
ical domain, GOOSE achieves 100% success but with a
longer average solution length (22.00) and lower nodes pro-
cessed per second (3.00E+04). Its performance further dete-
riorates in the diagonal and C+D domains, achieving only
55% and 50% success rates, respectively, highlighting its
limitations in handling diverse action configurations.

Overall, UAVI and DeepCubeA deliver the best perfor-
mance, combining optimality, efficiency, and adaptability
across all action variants. AGN and FGN demonstrate the
strengths of reinforcement learning-based approaches in
generalization, although their efficiency and success rates
are less consistent. GOOSE highlights the challenges faced
by supervised learning-based domain-independent planners,
further emphasizing the benefits of reinforcement learning
and domain randomization for handling diverse problem
configurations.

Comparing solvers for 24-Puzzle. Table 3 presents the
results for the 24-puzzle domain, comparing solver perfor-
mance across canonical (C), diagonal (D), and combined
canonical + diagonal (C+D) action variants.

UAVI and DeepCubeA maintain strong performance de-
spite the increased complexity of the 24-puzzle. DeepCubeA
achieves near-optimal results across all domains, consis-
tently solving 100% of the problems. UAVI performs com-
petitively, matching DeepCubeA’s success rate of 100%
while demonstrating slightly reduced optimality in some
cases. In the canonical domain (C), UAVI achieves a suc-
cess rate of 100%, with a marginally longer average solu-
tion length (92.80 vs. 89.48) and slightly lower efficiency
(3.16E+04 nodes/second compared to 4.15E+04 for Deep-
CubeA). In the diagonal domain (D), UAVI maintains a
100% success rate with efficiency (3.78E+04 nodes/sec-
ond) close to that of DeepCubeA (5.43E+04). Similarly, in
the C+D domain, UAVI achieves 100% success with near-



(a) Without Action Info (b) With Action Info

Figure 5: Comparison of heuristic values predicted by the UAVI model (5b) and the model without action information (5a)
against ground truth heuristic values for 8-puzzle. The model with action information performs significantly better.

(a) C: UAVI vs GT (b) D: UAVI vs GT (c) C+D: UAVI vs GT

(d) C: DCA vs GT (e) D: DCA vs GT (f) C+D: DCA vs GT

Figure 6: Comparison of trained and ground truth (GT) heuristic values for the 8-puzzle domain. 6a, 6b, 6c for the UAVI model
(UAVI), and 6d, 6e, 6f for DeepCubeA (DCA) variants, each showing heuristic values for 1500 states across canonical actions
(C), diagonal actions (D), and canonical + diagonal actions (C+D).



(a) C: UAVI vs GT (b) D: UAVI vs GT (c) C+D: UAVI vs GT

(d) C: DCA vs GT (e) D: DCA vs GT (f) C+D: DCA vs GT

Figure 7: Comparison of trained and ground truth (GT) heuristic values for the 24-puzzle domain. 7a, 7b, 7c for the UAVI
model (UAVI), and 7d, 7e, 7f for DeepCubeA (DCA) variants, each showing heuristic values for 1500 states across canonical
actions (C), diagonal actions (D), and canonical + diagonal actions (C+D).

Domain Solver Len Opt Nodes Secs Nodes/Sec Solved

8 Puzzle (C)

DeepCubeA 18.38 100% 3.59E+04 0.69 5.20E+04 100%
UAVI 18.38 100% 7.17E+04 1.76 4.07E+04 100%
AGN 18.50 98% 8.50E+04 3.50 2.43E+04 100%
FGN 20.50 55% 1.10E+05 6.50 1.69E+04 100%
FD(FF) 18.80 81% 5.56E+02 0.11 5.05E+03 100%
GOOSE 22.00 60% 1.20E+05 4.00 3.00E+04 100%

8 Puzzle (D)

DeepCubeA 1.44 100% 1.95E+01 0.01 1.95E+03 100%
UAVI 1.44 100% 4.05E+01 0.01 4.05E+03 100%
AGN 1.46 98% 5.00E+01 0.05 1.00E+03 100%
FGN 1.60 65% 6.00E+01 0.50 1.20E+02 100%
FD(FF) 1.44 100% 2.45E+00 0.20 1.23E+01 100%
GOOSE 1.70 55% 5.00E+01 0.50 1.00E+02 95%

8 Puzzle (C+D)

DeepCubeA 11.84 100% 6.20E+04 1.18 5.26E+04 100%
UAVI 11.84 100% 6.23E+04 1.56 3.99E+04 100%
AGN 11.90 96% 7.00E+04 3.50 2.00E+04 100%
FGN 20.50 50% 7.50E+05 12.00 6.25E+04 90%
FD(FF) 12.90 54.2% 8.68E+01 0.13 6.68E+02 100%
GOOSE 22.00 50% 8.00E+04 5.50 1.45E+04 90%

Table 2: Performance comparison on the 8-puzzle domain across different solvers and action variants. The UAVI model matches
DeepCubeA in optimality and solution length, outperforming PDDL-Fuse variants and GOOSE in efficiency and nodes pro-
cessed per second.



Domain Solver Len Opt Nodes Secs Nodes/Sec Solved

24 Puzzle (C)

DeepCubeA 89.48 96.98% 3.34E+05 8.05 4.15E+04 100%
UAVI 92.80 22.03% 7.60E+05 24.06 3.16E+04 100%
AGN 97.50 53% 1.00E+06 63.30 1.57E+04 80%
FGN 121.24 5% 8.00E+06 167.08 4.78E+04 33%
FD(FF) 81.00 0.40% 2.68E+06 89.84 2.98E+04 1.01%
GOOSE 125.30 0.5% 9.00E+06 225.60 3.98E+04 5%

24 Puzzle (D)

DeepCubeA 14.90 100% 2.55E+04 0.47 5.43E+04 100%
UAVI 14.92 99.8% 5.10E+04 1.35 3.78E+04 100%
AGN 16.45 76% 1.00E+05 10.2 1.00E+04 100%
FGN 29.18 30% 1.50E+06 40.32 3.75E+04 55%
FD(FF) 15.16 89.2% 2.64E+02 0.12 2.20E+03 100%
GOOSE 35.10 15% 2.00E+06 60.98 3.33E+04 40%

24 Puzzle (C+D)

DeepCubeA 31.33 100% 2.27E+05 4.83 4.70E+04 100%
UAVI 31.34 99.6% 2.27E+05 6.78 3.35E+04 100%
AGN 35.75 52.6% 3.50E+05 25.90 1.40E+04 83%
FGN 72.42 11% 1.00E+06 90.34 1.11E+04 64%
FD(FF) 36.81 13.8% 1.70E+04 5.35 3.18E+03 99.4%
GOOSE 75.80 5% 1.20E+06 110.21 1.09E+04 40%

Table 3: Performance comparison on the 24-puzzle domain across different solvers and action variants. The UAVI model main-
tains high performance, while PDDL-Fuse variants and GOOSE show significant performance degradation due to increased
puzzle complexity and limited training data.

optimal results, matching DeepCubeA in nodes processed.
AGN and FGN, trained on PDDLFuse-generated do-

mains, exhibit strong generalization but face challenges in
handling the increased complexity of the 24-puzzle. AGN
achieves competitive success rates across all action variants,
including 100% in the diagonal domain (D) and 83% in
the C+D domain. However, AGN incurs higher computa-
tional costs and reduced efficiency, processing fewer nodes
per second compared to UAVI and DeepCubeA. FGN shows
moderate generalization, achieving a 64% success rate in the
C+D domain but struggling with efficiency and optimality,
as seen in its significantly longer solution lengths (e.g., 72.42
in C+D).

GOOSE, relying on supervised learning, struggles signif-
icantly with the 24-puzzle’s complexity. Its success rates
drop to 5% in the canonical domain (C) and 40% in the
diagonal domain (D), highlighting its inability to gener-
alize effectively to larger problem spaces. Additionally,
GOOSE demonstrates limited efficiency and suboptimal so-
lution lengths across all domains.

Overall, UAVI and DeepCubeA outperform other solvers,
maintaining robust performance and high efficiency. AGN
and FGN demonstrate the potential of reinforcement learn-
ing and domain randomization for generalization, though
they face limitations with larger puzzles. GOOSE’s signif-
icant performance degradation underscores the limitations
of supervised learning-based approaches when addressing
complex, high-dimensional problems.

GOOSE vs PDDLFuse variations
The training time for PDDLFuse-based models (AGN and
FGN) and the GOOSE model highlights a key distinction
in their methodologies. GOOSE is trained in a supervised

manner on a fixed dataset of 50,000 examples, requiring
approximately one day to complete training. In contrast,
PDDLFuse-based models are trained using an unsupervised
reinforcement learning approach with Approximate Value
Iteration (AVI), taking around 12 days. One major challenge
with PDDLFuse is that the generated domains often have
significantly higher branching factors compared to the fixed
domains used by GOOSE. This increased complexity re-
quires processing a greater number of state transitions and
heuristic updates during training, which contributes to the
extended training time. While the longer training duration of
PDDLFuse models is a limitation, the reinforcement learn-
ing framework enables these models to generalize across
a much broader set of domains, demonstrating adaptability
and performance that supervised approaches like GOOSE
cannot achieve.


