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Abstract

Transfer is a key promise of hierarchical reinforcement learn-
ing, but requires first learning transferable skills. For an agent
to effectively transfer a skill it must identify features that gen-
eralize and define the skill over this subset. However, this
task is under-specified from a single context as the agent has
no prior knowledge of what future tasks may be introduced.
Since successful transfer requires a skill to reliably achieve a
sub-goal from different states, we focus our attention on en-
suring sub-goals are represented in a transferable way. For
each sub-goal, we train an ensemble of classifiers while ex-
plicitly incentivizing them to use minimally overlapping fea-
tures. Each ensemble member represents a unique hypothesis
about the transferable features of a sub-goal that the agent can
use to learn a skill in previously unseen portions of the envi-
ronment. Environment reward then determines which hypoth-
esis is most transferable for the given task, based on the in-
tuition that useful sub-goals lead to better reward maximiza-
tion. We apply these reusable sub-goals to MINIGRID and
MONTEZUMA’S REVENGE, allowing us to learn previously
defined skills in unseen parts of the state-space.

Introduction
Hierarchical reinforcement learning (HRL) (Barto and Ma-
hadevan, 2003) is a promising approach for scaling RL
to challenging, long-horizon problems. HRL methods learn
temporally extended skills that abstract away the details of
low-level action executions. The most popular HRL frame-
work, the options framework (Sutton, Precup, and Singh,
1999), models skills using three components: a set of states
from which execution can begin, a policy which picks low-
level actions, and a collection of states where execution
ceases, which can be represented by a sub-goal.

To fully realize the benefits of HRL, learned options
should be transferable. For example, a robot trained to open
a door in a factory should be able to open doors in a user’s
home with minimal additional training. However, it is chal-
lenging to generalize an option from a single context to an-
other. This is primarily because all three components of the
option are conditioned on the entire state—which includes
spurious features unnecessary for successful execution—
making generalization from one example challenging be-
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cause it is severely under-specified. However, if these com-
ponents are defined over generalizable features of the state,
the option can transfer to novel contexts from a single in-
stance. The core problem here is that, in practice, an option
will first be discovered in a single context (like a factory)
without foreknowledge of the circumstances under which it
can be applied again in the future. When defined in a sin-
gle context, a sub-goal will have many confounding factors,
which cannot be untangled. We further argue this point with
a toy example in Section .

How can the agent learn a state representation that will
result in seamless transfer? This problem can be easily tack-
led in supervised learning by incorporating data from dif-
ferent contexts or by applying class-preserving data aug-
mentations. However, in supervised learning, the important
features have been selected prior to learning, through the
dataset. If we define the class dog, a human has previously
chosen what features represent a dog and selected a dataset
accordingly. If we wish to transfer from a single context, this
information is missing, resulting in a set of data that could
be defined accurately in multiple ways. If we have a sub-
goal that results in us opening a cupboard which contains
a red ball, is the sub-goal defined by opening the cupboard
or finding the red ball? From this one instance, we do not
have enough information to disentangle these two features.
Instead, we propose that the RL agent maintain several, di-
verse hypotheses over which features of the state might gen-
eralize to upcoming tasks, learning a set of classifiers with
minimal confounding features. The agent then selects from
among these hypotheses, testing them in the environment,
and updates its beliefs over which members of the ensemble
have learned transferable features for a given task.

We focus on transferring sub-goals, since the agent can
learn an option given a sub-goal (as we argue in Section
). We begin by assuming access to a sub-goal (potentially
discovered using an off-the-shelf option discovery method),
defined for a single context. This sub-goal is used to gen-
erate labeled data which acts as a training set for an ensem-
ble of classifiers. Each ensemble member maintains a unique
hypothesis of the generalizing state-features and is, individ-
ually, a new sub-goal; then, for each hypothesis, we learn
a low-level policy that aims to reach the hypothesized sub-
goal. Finally, a high-level policy selects among the low-level
policies to maximize extrinsic reward.



We test our approach in two simulated environments:
MONTEZUMASREVENGE (Bellemare et al., 2013; Machado
et al., 2018) and MINIGRID (Chevalier-Boisvert et al.,
2023). Given a set of options and their execution data from
the first room of MONTEZUMASREVENGE, we show that
our algorithm can successfully transfer those options to
other, visually dissimilar rooms. In MINIGRID, we demon-
strate how our agent learns transferable options and uses
them to rapidly solve a challenging exploration problem.

Background and Related Work
We consider Markov Decision Processes (MDP) M =
(S,A, r, p, γ) where S denotes the state-space, A is the
action-space, p(st+1|st, at) denotes the transition dynamics
and r(st, at) is the scalar reward function. The RL objec-
tive is to find a policy π(a|s) that maximizes the cumulative
discounted reward over the lifetime of the agent.

An option o is a temporally extended action and, for this
work, is defined by a tuple (Io, πo, βo). The initiation set,
Io : S → {0, 1}, is the set of states in which option o can
initiate. The termination set, βo : S → {0, 1} is the set of
states in which option o successfully terminates. The option
policy πo : S → A is a controller that transitions the agent
from states in Io to states in βo.

Identifying Sub-goals. For this definition, the option ter-
mination set is analogous to a sub-goal. Identifying sub-
goals is an important aspect of hierarchical reinforcement
learning. One popular method by Andrychowicz et al.
(2017) is a simple but powerful technique of generating
goals from previously visited states and has lead to several
branch-off works (Pitis et al., 2020; Fang et al., 2019). Nair,
Savarese, and Finn (2020) learn a latent dynamics model to
generate sub-goals and Florensa et al. (2018) focus on se-
lecting solvable sub-goals. Bagaria et al. (2023) generate a
protogoal space which consists of many possibly useful sub-
goals and an adaptive function to map this space to a small
set of useful goals. All these methods focus on the initial dis-
covery of sub-goals while our work focuses on transferring
an existing sub-goal and so can be used in tandem with any
of these methods.

Learning transferable skills. A task is defined by a goal
an agent must achieve in the environment. For example, a
task can be navigating to a location or obtaining an object.
Sub-goals can exist along the trajectory towards the goal,
which are intermediate goals that must be first achieved be-
fore a final goal can be completed, or a set of unrelated goals
the agent is tasked with completing. An option can be used to
achieve these sub-goals, by setting the termination set to be a
sub-goal. The use of options promises to aid in task learning
as we only need to learn to reach each sub-goal once but may
need to reach this sub-goal many times in future. However,
in their most basic formulation, options do not generalize.
This is because an option is defined over a specific subset
of the state space and has no prior knowledge about what
features are needed for successful transfer. One approach
to transfer is via derived input spaces with transferable se-
mantics. Konidaris and Barto (2007) showed that an agent-
centric representation, analogous to an egocentric space,
would be sufficient for option generalization but requires a

hand-designed agent-centric input. Dayan (1993) and Bar-
reto et al. (2018) use successor features to learn policies that
generalize across reward functions but not changes in tran-
sition dynamics. Touati, Rapin, and Ollivier (2022) expand
on the successor features framework to learn rapidly gener-
alizing policies under changing reward dynamics. Other at-
tempts at skill transfer learn from demonstration (Konidaris
et al., 2011; Ranchod, Rosman, and Konidaris, 2015), using
demonstrations from several tasks to identify and learn com-
mon skills. Wang et al. (2014) require first learning a large
number of skills and retroactively compressing these skills
into a single transferable skill and sub-goal. Barreto et al.
(2019) combine previously learned options into new options,
called the option keyboard, which allows for combining pre-
viously learned, possibly irrelevant, skills into something
more beneficial. A common approach to skill generalization
Agarwal et al. (2021); Frans et al. (2017); Gomez, Quijano,
and Giraldo (2022) assumes access to a distribution of rele-
vant tasks that can be sampled from during training. These
methods leverage this distribution to either learn useful state
representations or general policies and sub-goals, however,
carry an implicit assumption that an expert has predefined
which tasks should be generalized to. Many of these works
require either a large library of skills or assume a distribu-
tion of relevant tasks. As such, these methods either delay
the gain of generalized skills or assume the skill has already
been predefined and so are not compatible with existing skill
discovery methods. These methods are retroactive, looking
backwards on what has been learned or provided. We wish
to generalize forward—transferring a sub-goal from a single
option instance.

Unsupervised Representation Learning. Representa-
tion learning is often used to compress high dimensional
data to aid future learning (Bengio, Courville, and Vincent,
2013). One method to learn a useful representation is lever-
aging auxiliary tasks such as Denton and others (2017) who
use the downstream tasks such as classification and video
prediction to learn a compact representation. Higgins et al.
(2017) learn a disentangled representation of the state space
to improve an agents domain adaptation. Representation
learning has also been used to represent goals to improve ex-
ploration (Laversanne-Finot, Pere, and Oudeyer, 2018) and
sample efficiency (Nair et al., 2018). Our work differs from
these by learning multiple hypotheses, each of which is a
unique state representation.

The Diversity-By-disAgreement Training (D-BAT) al-
gorithm from Pagliardini et al. (2022) is designed to learn a
classifier able to transfer to out-of-distribution data. This is
done by making use of both labeled and unlabeled data in
a semi-supervised setting using the loss function defined in
Equation 1.

L =

N∑
m=1

(Llabel(hm)−α

N∑
i=1

(log(pyhi
ṗ ̸yhm

+p ̸yhi
ṗyhm

))) (1)

Where Llabel is the chosen label loss, hi is an ensemble
member, α is the diversity coefficient and pyhi

is the prob-
ability of class y or class ̸ y. The labeled data is sampled
from a subset of the distribution while the unlabeled data is



collected from the full distribution. D-BAT is an ensemble
method, which encourages each ensemble member to lower
classification loss on the labeled data while encouraging
disagreement among members on the unlabeled data. The
members of the resulting ensemble each maintain a unique
hypothesis over the relevant features. Given a sub-goal, we
generate a set of labeled data with the intention of general-
izing this option to unseen contexts.

Learning Transferable Sub-goals
Hierarchical reinforcement learning simplifies complex
problems by splitting a single task into multiple sub-tasks,
each of which can be defined by a sub-goal which can be
provided to the agent or discovered through a skill discovery
algorithm. These sub-goals are used to learn a policy to com-
plete the corresponding sub-task, giving rise to a skill. These
sub-goals can be represented in many ways, for example a
sub-goal to reach the door of a room can be defined over the
agent’s (x, y) location or the agent’s distance from the door.
While both feature sets can be used to effectively learn an
option in the discovering context, the agent’s position sub-
goal will not generalize to new states. Many previous works
tackle skill transfer retroactively, learning a large collection
of skills that are then compressed into a small collection of
reusable skills or assuming a predefined distribution of rele-
vant tasks. These skills are either found after countless inter-
actions with the environment—delaying access to a transfer-
able skill for a long time and still need to answer the question
of when to group a collection of skills—or require an expert
to define a set of tasks. Instead, we propose generalizing for-
wards, making these skills available to the agent after their
initial discovery and allows us to leverage the rich collection
of existing skill discovery algorithms.

Sub-goals are commonly modeled as classifiers. The clas-
sifier returns 1 for sub-goal states and 0 otherwise; when
executing a skill the agent runs a policy until reaching a sub-
goal state, where it receives a reward. This is the most im-
portant component of the skill and the output of most skill
acquisition algorithms. With only a transferable skill policy,
it is not clear when this policy has completed. A transferable
initiation set only tells us some policy can be started to reach
some sub-goal but this information alone has no value. How-
ever, if the agent has access to a transferable termination set,
the agent can learn a policy and initiation set that achieves
the same sub-goal in a new context.

Hypothesis Generation
Given state space S, we sample a dataset D which defines a
space of functions F , consisting of all functions that accu-
rately fit all points in D. This space of functions is very large
as there are many ways to define a function that accurately
fits some set of points. A function’s ability to generalize is
measured by how accurately the function can predict data
points that have not been included in D. When learning a
classifier to approximate one of these functions, the burden
of generalization is placed on the quality of data collection;
which must fully encompass the tasks you wish to general-
ize to in S. If the collected data does not accurately represent

the full distribution of relevant contexts, the classifier cannot
generalize reliably. Unfortunately, this is precisely the sce-
nario RL agents find themselves in when generalizing for-
wards.

We therefore propose that, instead of sampling a single
function from F , we can instead sample multiple functions,
which form a collection of hypotheses, H. Each function,
h ∈ H, describes different features of S which accurately
describe D. By creating hypotheses over D we increase the
chance of learning generalizable features. For example con-
sider an agent learning to open a cupboard door and all
training samples have been collected on the same cupboard
which contains a red ball. One hypothesis attends to the red
ball inside the cupboard—which is only visible if the door
is open—while another learns to distinguish the location of
the cupboard door when it is open or closed. Both of these
hypotheses accurately describe the training data D but make
use of different sets of features. To further improve the qual-
ity of H, we can require that our sampling process focuses
on diverse functions, ensuring each function h differs mean-
ingfully on the features of our data D.

We leverage the D-BAT algorithm to ensure diversity
among h ∈ H, however, any algorithm that would result
in a collection of diverse functions can be used instead. This
algorithm makes use of labeled data D but also requires a set
of unlabeled data U ∈ S to train an ensemble of classifiers,
taking the environment state as input and outputs 1 if the
state is a sub-goal or 0 otherwise. Each ensemble member
is encouraged to reduce labeled loss while also decreasing
agreement on U . As a result, we learn an ensemble which is
our collection of hypotheses H, with each ensemble mem-
ber attending to different sets of features in S, informed by
U . Given some discovered sub-goal, we collect labeled data
which—due to the nature of discovered sub-goals—is col-
lected from a small subset of states in the state-space. We
can leverage the exploration required during policy learn-
ing to collect an unlabeled dataset which contains states in
which the sub-goal is not defined.

Option Learning for Multiple Hypotheses

Each hypothesis h ∈ H maps to a new sub-goal, each of
which is transferable if applied to a relevant set of tasks. For
example, consider Figure 1. This figure shows three states in
an environment, the first image is outside the defining sub-
goal while the second is inside the sub-goal. Given these two
images, what is the sub-goal these images define? One pos-
sible hypothesis is that the red key must be removed, which
accurately describes the given data. We can raise another
hypothesis; the yellow key must be at a specific grid loca-
tion. Another possible hypothesis may be that two keys are
present at all times, regardless of color or location. All three
of these hypotheses are consistent with the training data.
Each of these hypotheses can be used to learn a distinct skill
policy, one which collects the red key, one which places the
yellow key at a specific grid location and one that ensures
two keys are always present. As such, we learn a separate
option policy for each ensemble member as all members cor-
respond to valid sub-goals which may not overlap.



Figure 1: Given that the first image is False and the second image is True is the third image True or False?

Hypothesis Selection
Once we have learned H, we must select the best hypothesis.
This task however is challenging and cannot be done without
additional information. Returning to the example in Figure
1, can you determine if the third state satisfies the original
sub-goal? The answer is it depends; the red key is present,
so our red key sub-goal is not satisfied. Similarly the yellow
key has been collected so our yellow key sub-goal is also not
satisfied. There are, however, two keys in the environment
so our two key sub-goal has been met. Which hypothesis is
correct? If we were an agent in the environment, how do we
decide which hypothesis is most beneficial? It is very likely
that only one of these hypotheses is transferable given our
task, however, without knowledge of what that task is, we
cannot confidently select the most general hypothesis. But
in an RL problem, the task is encoded in the environment
reward. Therefore, we propose that the most transferable hy-
pothesis will lead to higher external reward. We provide a
high-level policy with an action space that contains options
defined by all h ∈ H, providing one option for each hy-
pothesis. This high-level policy then learns to maximize the
extrinsic reward, which encodes the task. As this high-level
policy begins reward maximization, it will naturally begin
selecting hypotheses that best support transfer.

Results
Our experiments are designed to first individually validate
each component of our algorithm, and finally to test a con-
solidated RL agent on a challenging sparse-reward prob-
lem. Specifically, we seek to answer the following questions
through our experiments:

1. Does the D-BAT algorithm produce accurate classifiers?
Do the different ensemble members attend to different,
diverse parts of the input-space?

2. How much labeled training data is needed to successfully
generalize an option’s sub-goal classifier to previously un-
seen contexts?

3. Are sub-goals generated by the D-BAT ensemble suffi-
cient for learning useful option policies?

4. Can an agent equipped with transferable options learned
using our algorithm solve challenging reinforcement
learning problems?

5. Does the reward-maximizing high-level policy eventually
prefer transferable options over non-transferable ones?

We define all sub-goals using expert collected trajectories
to ensure we can accurately evaluate the quality of transfer
during all experiments.

D-BAT Evaluation for Sub-Goal Generalization
From Figure 2 we see these ensemble members have at-
tended to different features of the image. Ensemble member
0 focuses on the ladder and player while ensemble mem-
ber 4 has mainly attends to the lava below the floor. In this
example, attending to the lava would not prevent the classi-
fier from correctly identifying this sub-goal but will prevent
generalization to future ladder instances if no lava is present.

Next we evaluate the accuracy of the classifiers produced
by the D-BAT ensemble as well as how much labeled data
is required for successful sub-goal generalization. MON-
TEZUMASREVENGE has multiple ladders located through-
out the game, each in a visually distinct room. We define
the CLIMBDOWNLADDER sub-goal as met when the agent
is at the base of any ladder. The purpose of learning an en-
semble of classifiers is to obtain at least one classifier de-
fined over a generalizing set of features. Therefore, only the
accuracy of the best performing ensemble member need to
be considered. We compare against a one-headed ensemble,
or standard CNN because traditionally sub-goals are repre-
sented with a single classifier providing a clear comparison
against what is often done in practice and is equivalent to
sampling a single hypothesis. We also evaluate the D-BAT
ensemble with a diversity weight of 0 to show the effect of
diversity on hypothesis sampling. Note that both ensembles
represent a collection of hypotheses, however, one is trained
to explicitly encourage diversity while a standard ensemble
must rely on random initializations for diversity.

Figure 3 shows the accuracy of all classifiers improves
greatly after seeing two rooms. However, because we in-



Figure 2: Saliency map showing that different ensemble members attend to different parts of the same image. Pixels marked as
positive contribute to the classifier’s final prediction; negative features contribute to the class the classifier did not predict. For
simplicity, only one frame is shown. The attribution plot for all frames for each ensemble member can be seen in Appendix
Figure 9.
We begin by confirming that each ensemble member is learning a unique hypothesis for a single sub-goal. MONTEZUMASRE-
VENGE is an Atari game in which the player must traverse through several rooms, collecting treasure or keys to open future
doors while avoiding enemies and hazards. Each screen in the game has a unique layout and looks visually different, making
sub-goal generalization challenging from pixel input. All classifiers are given a gray-scale stack of the four previous frames
resized to size 84× 84. We begin by providing the D-BAT ensemble with labeled data from the starting room, which contains
three ladders, and unlabeled data from one other room containing a ladder and one room without a ladder. We then use DeepLift
(Shrikumar, Greenside, and Kundaje, 2017) to identify the most important features for each ensemble head for an unseen state.

Figure 3: Accuracy of the best performing ensemble mem-
ber as the ensemble is given labelled data from more ladders
across the Montezuma’s Revenge game. Results are aver-
aged over 3 seeds and bands represent the standard devia-
tion.

tend to generalize forwards, the performance of the ensem-
ble when provided labeled data for a single ladder instance
is most significant as a skill discovery algorithm will only
provide one example. For this case both ensembles outper-
form the CNN by around 20%. While the diverse ensemble

Figure 4: Average Manhattan distance between the state in
which option execution terminated and the sub-goal region
of the option; bars represent mean and standard deviation
over the last 100 option executions (lower is better) averaged
over 3 seeds.

has lower variance, we find both ensembles seem to perform
equally well when evaluating on a set of previously collected
data. We should note that because the state comprises of four
previous frames, our current state is dependent on the previ-
ous four actions, making the space is very large. As such, our
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Figure 5: Scatter plot of termination locations. These are the locations of the agent for the last 100 skill executions for a single
sub-goal and policy seeing data from two ladders. The agent starts on top of the ladder in the middle room. If the agent climbs
down the ladder, they will arrive in the room to the right while traveling left from the starting room will place the agent in the
left room. Only the best performing member is shown. We see the ensemble methods outperform the CNN, with the D-BAT
ensemble resulting in more compact termination sub-goals.

collected data does not fully encompass all possible states
which an agent may encounter during policy learning, there-
fore, a high classification accuracy may not result in a useful
option. For example, if a 90% accuracy classifier includes
the top of the ladder as part of the sub-goal, the resulting
policy will transport the agent one or two steps down the
ladder which is not a useful CLIMBDOWNLADDER skill.

D-BAT evaluation for policy learning
It was previously shown that the D-BAT algorithm results in
an accurate and diverse ensemble but this may not be enough
for effectively training future skill policies. We again use
the CLIMBDOWNLADDER sub-goal, incrementally evalu-
ating on larger labeled datasets, while now including skill
policy learning. The agent is placed at the top of each lad-
der instance in the game, training a skill for each ensemble
member for 3× 105 environment steps per ladder. Each pol-
icy is given a reward of 1 if the sub-goal is satisfied and 0
otherwise. A new policy is trained for each ladder and the
state is equivalent to the classifier input.

After policy training, we average the Manhattan distance
between the final termination location and the closest true
termination for the last 100 option runs and again average
the performance for each ladder to get a single distance.
Because we use a frame skip of 4, the Manhattan distance
is equivalent to 4 times the number of actions away from
the true termination. If an option starts in the termination
set—the classifier predicts the top of the ladder as part of
the sub-goal—the Manhattan distance is set to 300 which
is the mode ladder length. We again consider only the best
performing head for evaluation.

Figure 4 shows that, although the ensemble accuracies are
very close, there is a significant difference in the Manhattan
distance for the 1 ladder case. We see that the ensembles per-
form similarly when more data is available, indicating that
while a diverse ensemble helps when we have limited data,
there is no additional benefit once we have a diverse set of
training data. However, we must keep in mind that we wish

Figure 6: Average undiscounted reward for the modified
MINIGRID DOORKEY environment. All results are aver-
aged over 10 seeds and bands represent the standard error.

to generalize forward from one option instance and so can-
not guarantee diverse data. For all instances we find the en-
semble methods outperform the single CNN by a significant
margin indicating that having multiple hypotheses improves
sub-goal transfer.

While the Manhattan distance decreases as more ladder
instances are introduced, it does not intuitively confirmed
that our learned CLIMBDOWNLADDER policies are useful.
To further investigate the quality of the sub-goals defined
by the D-BAT ensemble, we plot the final 100 termination
locations for the best performing member after exposure to
two ladders on a previously unseen partition of the environ-
ment. Looking at Figure 5, we see both ensemble methods
terminate at the base of the leftmost ladder, with the diver-
sity ensemble leading to a more compact termination set.
The ensemble methods also identify the rightmost ladder,



(a) Ensemble member 2 which is the least picked
by the agent.

(b) Ensemble member 3 which is the most picked
by the agent.

Figure 7: Overlaid termination states identified by members of the D-BAT ensemble for the OPENREDDOOR sub-goal.

(a) Ensemble member 1, tied for most picked. (b) Ensemble member 3, tied for most picked.

Figure 8: Overlaid termination states identified by members of the D-BAT ensemble for the GOTOGOAL sub-goal.

which continues through the floor of the room. During train-
ing, the classifiers see no labeled instances of ladders con-
tinuing through the floor as we leave these states unlabeled,
showing that both ensembles have generalized to this case
without seeing similar labeled examples. The CNN never
identifies the right ladder termination and is less success-
ful at identifying ladder bases despite having an accuracy of
90% on our expert collected data. Both ensemble members
also rarely terminate erroneously in the middle of the ladder.
From these experiments we can conclude that both ensemble
sub-goals can be used to learn policies that transfer the ini-
tial option, however, the D-BAT ensemble has significantly
better performance.

Consolidated Reinforcement Learning Agent in
MiniGrid
Although, we previously showed that a collection of hy-
potheses can be used to learn option policies that transfer
to new ladder instances in MONTEZUMASREVENGE, this
is not significant unless these transferred sub-goals can be
used by an agent to solve reinforcement learning problems.
MINIGRID is a 2-dimensional grid-world environment con-
sisting of goal-oriented tasks. The DOORKEY environment
places the agent in one of two rooms separated by a locked
door. The agent must collect the key to unlock the door and
travel to the goal location in the other room. Traditionally,
this environment has a red door and a single red key. We
modify this task to include a blue and green key to increase
the difficulty of the task. The agent must collect the correct
key—the red key—to unlock the door and reach the goal to
receive a reward of 1 or 0 for every other time step, making
this a sparse reward problem. We use the full RGB image as

our state.

We define 5 sub-goals; COLLECTBLUEKEY, COLLECT-
GREENKEY, COLLECTREDKEY, OPENREDDOOR and
GOTOGOAL. Labeled data is collected from seed 0 and un-
labeled data is collected from seeds 1 and 2. Data from test
seeds is not shared among agents. The lower-level ensemble
policies are not pre-trained, and must be learned in conjunc-
tion with the higher-level policy. We use a PPO (Schulman
et al., 2017) agent with access to only the option policies,
each of which is a Deep-Q Network (Van Hasselt, Guez, and
Silver, 2016) with a prioritized replay buffer (Schaul et al.,
2015). Each ensemble member is an executable skill, with an
independent low-level policy. The PPO agent has an action
space of size 15, consisting of 3 hypotheses for all 5 orig-
inal sub-goals. We aim to show that giving the agent skills
that are not aligned with the overall task will not irreparably
damage policy learning, and the strong performance of our
ensemble agent cannot be explained by our use of DQN and
PPO. As such we evaluate against a DQN and a PPO agent,
each of which have access to the original environment ac-
tions. All agents are run for 1.5 million environment steps
with a maximum episode length of 500 steps.

Figure 6 shows the option agent is able to learn to reach
the goal consistently, while the DQN and PPO agents fail
to complete the task. We can conclude that hypothesizing
helps the agent complete the task goal by allowing the agent
to leverage previously defined useful sub-goals, simplifying
the original task.



Hypothesis Selection through Reward
Optimization
Our previous experiments have shown that we can learn at
least one generalizing hypothesis but has not yet shown how
to identify the corresponding ensemble member. We previ-
ously claimed that reward maximization is a useful proxy
for identifying the hypothesis that best transfers. To evaluate
this claim, we compare the termination sets of the most and
least selected ensemble members. Overall, we find that the
most popular hypothesis closely resembles our hand-defined
generalized sub-goals. Figure 7 overlays multiple termina-
tion sets for two members of the OPENREDDOOR sub-goal.
For the least selected ensemble member, the sub-goal does
not fully correlate with our definition of the OPENRED-
DOOR sub-goal; i.e. positioned in front of an open door. On
the other hand, Figure 7a shows the most picked ensemble
member which requires the agent always stands at the open
door, matching our hand-defined OPENREDDOOR sub-goal.

For the GOTOGOAL sub-goal, shown in Figure 8, we
show two ensemble members, neither of which seems to
be favored. Both of these sub-goals require the agent to be
standing on the goal position which again aligns with our
previously defined sub-goal. The final member of this en-
semble, which has a significantly lower selection probabil-
ity, does not trigger for this DOORKEY environment seed.
This supports our statement that reward maximization leads
to the selection of the most generalized sub-goals. We can
conclude that, not only does diversity allow for successful
sub-goal generalization for a given option but also that re-
ward maximization is a good measure for identifying the
most transferable hypothesis.

Conclusion
In this work we tackle sub-goal generalization from a single
instance; the most crucial step for forward skill generaliza-
tion. We do this by learning an ensemble of diverse hypothe-
ses over generalizing feature sets using the D-BAT algo-
rithm. Our experiments show that this ensemble can success-
fully transfer the CLIMBDOWNLADDER sub-goal in MON-
TEZUMASREVENGE with 70% accuracy when exposed to
a single set of ladders in the game. These classifiers can
be used to learn options that takes the agent to the bottom
of ladders throughout MONTEZUMASREVENGE. We also
show that these sub-goal classifiers can be used for learning
a modified DOORKEY task in MINIGRID and reward max-
imization can be used to identify the hypothesis that best
supports transfer.
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Additional Results

Figure 9: Feature importance of a sample for all ensemble members. Features marked as positive contribute to the classifier’s
final prediction. Negative features contribute to the class the classifier did not predict. We also include the label and predictions
for each ensemble member.



Hyperparameters
MONTEZUMA’SREVENGE hyperparameters.
All classifier models consist of three CNN layers, with batch
normalization and ReLU activations between. The CNN lay-
ers then feed into two dense layers before final classification.
We use the Adam optimizer and a cross entropy classifica-
tion loss for labelled data. Unlabelled data is optimized us-
ing the Kullback-Liebler divergence.

We use a Deep-Q network for all policy training. The net-
work consists of two CNN layers, each followed by a batch
normalization layer, ReLU activation and max pooling layer.
This is fed to a Gated Recurrent Unit before passing through
two dense layers for action selection, optimized using the
Adam optimizer. All options were allowed to run for 200
time steps before terminating if they did not reach the sub-
goal defined by the classifier.

MINIGRID DOORKEY hyperparameters.
All classifier models consist of two CNN layers, with batch
normalization and ReLU activations between. The CNN lay-
ers then feed into three dense layers before final classifica-
tion. We use the Adam optimizer and a cross entropy classi-
fication loss for labelled data. Unlabelled data is optimized
using the Kullback-Liebler divergence.

We use a Deep-Q network for all policy training. The net-
work consists of two CNN layers, each followed by a batch
normalization layer, ReLU activation and max pooling layer.
This is fed to a Gated Recurrent Unit before passing through
two dense layers for action selection, optimized using the
Adam optimizer. All options were allowed to run for 10 time
steps before terminating if they did not reach the sub-goal
defined by the classifier.

We train a PPO agent to reach the goal for DOORKEY
MINIGRID. The PPO agent has three CNN layers reperated
by ReLU activations fed into a dense layer. These layers are
shared between the actor and critic layers. The actor has an
additional gaussian policy head and the critic has a single
dense layer.



Table 1: MONTEZUMA’SREVENGE D-BAT Ensemble Hyperparameters.

Hyperparameter D-BAT D-BAT - no diversity CNN

Learning Rate 5× 10−4 5× 10−4 5× 10−4
Diversity Weight 3× 10−4 0.0 3× 10−4
Member Number 6 6 1
L2 Regularization Weight 5× 10−4 5× 10−4 5× 10−4
Class weighting 0.8 negative 0.2 positive 0.8 negative 0.2 positive 0.8 negative 0.2 positive
Batchsize 64

Table 2: MONTEZUMA’SREVENGE Policy Hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 4
Q-target update interval 10
Final Exploration frame 4× 105 decaying from 1 to 0.01
Learning rate 2.5× 10−4
Batchsize 32

Table 3: MINIGRID DOORKEY D-BAT Ensemble Hyperparameters.

Hyperparameter Values

Learning Rate 2× 10−4
Diversity Weight 1× 10−4
Member Number 3
L2 Regularization Weight 1× 10−4
Class weighting 0.5 negative 0.5 positive
Batchsize 64

Table 4: MINIGRID DOORKEY DQN Hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 4
Q-target update interval 10
Final Exploration frame 8× 103 decaying from 1 to 0.01
Learning rate 2.5× 10−4
Batchsize 32

Table 5: MINIGRID DOORKEY PPO Hyperparameters.

Hyperparameter Value

Replay buffer length 1× 105

Update interval 100
Entropy coefficient 0.01
Lambda 0.97
Batchsize 64
Epochs per update 10
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