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Abstract

We focus on the qualitative analysis in Markov Decision Pro-
cesses (MDPs), e.g. almost-sure reachability (with probabil-
ity 1), which are fundamental in sequential decision-making
systems. Counterexample-based methods have been proposed
as a means to refine policies for such properties. Recently, our
work (appeared at VMCAI 2025) introduced a scalable ap-
proach, called “1–2–3–Go!”, which leverages decision-tree-
based learning to effectively generalize policies from small
instances to arbitrarily larger ones.
In this ongoing work, we propose to utilize the scalable 1–2–
3–Go! approach to generate an initial “good” policy for large
instances. This policy serves as a starting point for further
refinement using counterexamples. By combining the scala-
bility of 1–2–3–Go! with precise counterexample-guided re-
finement, this approach addresses limitations in the original
framework and provides enhanced solutions for complex sce-
narios where smaller instances do not fully capture the dy-
namics of the system.

1 Introduction
Sequential decision-making under uncertainty is a funda-
mental problem in artificial intelligence (AI), with applica-
tions spanning robotics, autonomous driving, healthcare, fi-
nance, and more. A key mathematical framework for mod-
eling such systems is Markov Decision Processes (MDPs)
(Puterman 1994), which capture both the decision-making
process and the inherent stochasticity of the environment.
Policy synthesis for MDPs has been extensively studied,
with established methods available for finding optimal poli-
cies (Puterman 1994). However, synthesizing policies for
large, parameterized MDPs presents significant challenges
due to the state-space explosion problem. Traditional ap-
proaches often either fail to scale or cannot generalize so-
lutions to unseen parameterizations effectively.

Ensuring correctness in decision-making systems often
requires satisfying qualitative properties, such as almost-
sure or sure reachability and safety. These properties guaran-
tee that desired outcomes are achieved with probability 1 or
without any violations. For MDPs, Counterexample Guided
Abstraction Refinement (CEGAR) (Clarke et al. 2003) has
proven to be an effective method for synthesizing policies
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that satisfy such properties (Chatterjee, Chmelı́k, and Daca
2015). CEGAR iteratively refines an abstraction by analyz-
ing counterexamples until the desired solution is achieved.

While counterexample-based improvement has been suc-
cessful, its performance heavily depends on the choice of
initial policies, as a well-chosen starting point can signifi-
cantly reduce the number of refinement iterations required.
Machine learning techniques can play a pivotal role in en-
hancing this performance. For instance, the 1–2–3–Go! ap-
proach (Azeem et al. 2025) employs decision-tree learning
to generate policies for small, manageable instances of pa-
rameterized MDPs and then generalizes these policies to
larger instances. This avoids the need to solve large mod-
els directly and leverages the generalizability of decision-
tree representations. However, this generalization let alone
might not be sufficient in general due to some differences
in the policy because of large parameter. In the quantita-
tive setting, verifying the correctness of the generalized pol-
icy is particularly challenging, as it requires precise knowl-
edge of the actual model values—something achievable only
through solving the model. In contrast, in the qualitative set-
ting, we can simulate the model to identify counterexamples
that violate the qualitative property, as a single trace is suffi-
cient to demonstrate a violation.

Proposed Approach We propose a hybrid method for
qualitative analysis that integrates learning-based policy
synthesis with formal verification techniques to provide
scalable and correct solutions for parameterized MDPs.
Specifically, we extend the 1–2–3–Go! by complementing
it with counterexample-guided improvement. This approach
refines learned policies iteratively to ensure the satisfaction
of qualitative properties, combining the strengths of machine
learning and formal methods.

In this paper, we:

• Review the 1–2–3–Go! approach and its applicability.

• Present our idea for counterexample-guided policy im-
provement, integrating it with the 1–2–3–Go! approach
to do quantitative analysis.

1.1 Related Work
The state-space explosion problem in large probabilistic
models has been addressed through various methods.



Model reduction techniques: Probabilistic bisimulation
techniques for MDPs and discrete-time Markov chains
(DTMCs) reduce model size while preserving temporal
logic properties (Groote, Verduzco, and de Vink 2018).
Other reduction methods focusing on specific temporal logic
subsets have been proposed in (Kamaleson 2018), along-
side high-level model reductions discussed in (Smolka et al.
2019; Lomuscio and Pirovano 2019). Efficient storage and
sparse representations for extensive models are explored
in (Hartmanns and Hermanns 2015), while compositional
methods for verifying stochastic systems are outlined in
(Feng 2014; Li and Liu 2019).

Machine Learning (ML) and Statistical Model Checking
(SMC): ML methods, particularly reinforcement learning
(RL), have been adapted for verification tasks with objec-
tives such as reachability (Brázdil et al. 2014; Hahn et al.
2019). However, RL suffers from issues like sparse rewards,
affecting scalability. Alternatively, SMC uses simulations
to approximate desired properties but struggles with non-
determinism resolution.

Counterexample-based improvments in sequential
decision-making: Counterexample-based imrovements
have been applied to decision-making under uncertainty
in (Gangopadhyay and Dasgupta 2021), where counterex-
amples of a trained reinforcement learning policy are
computed using Bayesian optimizations and failure points
of the path are identified using gradient-based updates.
For qualitative properties, CEGAR-based methods have
been employed in (Chatterjee, Chmelı́k, and Daca 2015) to
compute simulation relations for compositional analysis in
two-player games and MDPs.

2 Preliminaries
Definition 1 (MDP) A (finite) Markov Decision Process
(MDP) is a tuple M = (S,A, δ, s̄,G) where:
• S is a finite set of states,
• A is a finite set of actions, and A(s) denotes the (non-

empty) set of enabled actions for each state s ∈ S,
• δ : S×A → D(S) is the probabilistic transition function

mapping each state s ∈ S and enabled action a ∈ A(s)
to a probability distribution over successor states,

• s̄ ∈ S is the initial state,
• G ⊆ S is the set of goal states.

A Markov chain (MC) can be viewed as an MDP where
|A(s)| = 1 for all s ∈ S, i.e., a system exhibiting only prob-
abilistic behavior, without non-determinism.

The semantics of an MDP are defined in the standard way
through policies and paths in the Markov chain it induces.
An infinite path ρ = s1s2 . . . ∈ Sω is a sequence of states
extending indefinitely. A policy is a mapping σ : S → D(A)
that determines which action to take in each state. A pol-
icy is said to be deterministic if it selects exactly one ac-
tion per state, and randomized otherwise. The i-th state on
a path is denoted by ρi, the set of all paths is represented
as Paths, and the collection of all policies is denoted by Σ.
Applying a policy σ to resolve nondeterminism in an MDP
M results in a Markov chain Mσ (Baier and Katoen 2008,

Definition 10.92). This Markov chain induces a unique prob-
ability measure Pσ

s over paths starting from a state s (Baier
and Katoen 2008, Definition 10.10).

The reachability objective is integral to our MDP defini-
tion, reflected in the initial state s̄ and the set of goal states
G. The value V of the reachability objective represents the
maximum probability of reaching a goal state from the ini-
tial state. Formally, this is expressed as:

V(M) = optσ∈ΣPσ
s̄ [♢G],

where opt ∈ {max,min} indicates whether the goal is to
maximize or minimize the probability of reaching G, and
♢G = {ρ ∈ Paths | ∃i. ρi ∈ G} represents the set of paths
that eventually reach a goal state. This optimization can be
restricted to deterministic and memoryless policies (Puter-
man 1994, Proposition 6.2.1). The qualitative analysis fo-
cuses on the reachability objective with probability 1.

2.1 State Space Structure and Scalable Models
For effective learning techniques, such as decision tree
learning, it is crucial for the MDP’s state space to be fac-
tored. This means that each state is defined as a tuple of val-
ues assigned to state variables, rather than being represented
as a simple enumeration. In this factored representation, the
state space is characterized by multiple dimensions, such as
time or the state of a protocol. Each dimension corresponds
to a state variable vi with domain Di. Consequently, each
state s ∈ S is a tuple (v1, v2, . . . , vn), where vi ∈ Di is the
value of the i-th state variable.

Definition 2 (pMDP) A parameterized Markov Decision
Process (pMDP) is a tuple Mp = (S,A, δ, s̄,G,Θ), where
Θ is the parameter space and for each θ ∈ Θ, the tuple
(Sθ,Aθ, δθ, s̄θ,Gθ) defines an MDP instance.

Given a pMDP Mp, different parameter values θ ∈ Θ
yield different instances of the MDP, and the parameteriza-
tion can affect the state space, transition dynamics, or both.

Example 1 Consider the pMDP in Figure 1. Each state is a
tuple (m,x) with m ∈ Dm = {0, 1, . . . , k} and x ∈ Dx =
{0, 1, 2}. The variable m identifies one of k+1 blocks, while
x specifies the position within a block.

The block m = 0 is special, containing the initial state
(0, 0), the goal state (0, 2), and a sink state (0, 1) (not reach-
able to the goal). For m ∈ [1, k], state x = 0 allows action
a (progress to x = 1) or b (self-loop). For m ∈ [1, k − 1],
state x = 1 permits action a (return to x = 0) or b (leave
the block). Action b transitions with 50% chance to the sink
state (0, 1) or x = 0 in block m + 1. In block k, leaving
progresses to the goal.

This model scales with k, yielding a state space of size
2k + 3 and a maximum reachability probability of 0.5k−1.

2.2 Decision trees for policy representation
Knowing that the state space is a product of state-variables,
a deterministic policy is a mapping

∏
i Di → A from tu-

ples of state variables to actions. By viewing the state vari-
ables as features and the actions as labels, we can employ
machine learning classification techniques such as decision



Figure 1: A parameterized, scalable MDP with k+1 blocks,
described in Example 1.

trees , see e.g. (Mitchell 1997, Chapter 3), to represent a
policy concisely. We refer to (Ashok et al. 2021) for an ex-
tensive description of the approach and its advantages. Here,
we shortly recall the most relevant definitions in order to for-
mally state our results.

Definition 3 A decision tree (DT) T is defined as follows:

• T is a rooted full binary tree, meaning every node either
is an inner node and has exactly two children or is a leaf
node and has no children.

• Every inner node v is associated with a decision predi-
cate αv which is a boolean function S → {false, true}
(or equivalently

∏
i Di → {false, true}).

• Every leaf ℓ is associated with an action aℓ ∈ A.

For a given state s, we use the following recursive pro-
cedure to obtain the action σ(s) = a that a DT prescribes:
Start at the root. At an inner node, evaluate the decision pred-
icate on the given state s. Depending on whether it evaluates
to false or true, recursively continue evaluating on the left or
right child, respectively. At a leaf node, return the associated
action a.

Example 2 Consider again the MDP given in Figure 1. The
optimal policy needs to continue towards the goal and not be
stuck in any loops. This can be achieved by playing action
a in states where x = 0 and action b in all other states.
Traditionally, this policy would be represented as a lookup
table, storing 2k + 3 state-action pairs explicitly. Instead,
we can condense the policy to the DT given in Figure 2b,
mimicking the intuitive description of the policy: If x > 0,
we play b, otherwise, we play a.

We assume the MDPs are defined using high-level mod-
eling languages such as Probmela (Baier and Katoen 2008),
PRISM (Kwiatkowska, Norman, and Parker 2012) or MOD-
EST (Hartmanns 2012).

3 Generalized policy using 1–2–3–Go!
Approach

Our work (Azeem et al. 2025) introduces a novel ap-
proach 1-2-3-Go! for synthesizing policies in parameterized

(a) MDP instance for m = 1. (b) Optimal policy represented
as a decision tree.

Figure 2: Illustration of (a) the MDP instance for m = 1
from Figure 1 and (b) the optimal policy learned and repre-
sented as a decision tree.

Markov Decision Processes (MDPs), addressing the critical
challenge of scalability in large probabilistic models.

Solving small instances. By leveraging small instances of
parameterized MDPs, we precisely compute optimal poli-
cies using model checking and generalize them using deci-
sion tree (DT) learning. This approach avoids explicit ex-
ploration of the state space for large instances, enabling the
synthesis of scalable and interpretable policies for models
that are otherwise beyond the reach of traditional verifica-
tion tools.

Example 3 Our running example has one parameter k, the
number of modules. In fact, we will see that it suffices to
consider B = {b1} where b1 := ⟨k=1⟩, i.e. only learn on
the simplest instance of the MDP as depicted in Figure 2a.

Example 4 For our running example in Example 1, we only
consider one base instance. Thus, our data is given by the
function σ1 for all reachable non-goal states in the MDP.
Concretely, we have pairs of state (0, 0) with action a, then
(1, 0) also with a, and (1, 1) with b.

Generalization. The key innovation in our work lies in
recognizing and utilizing the structural regularities in pa-
rameterized MDPs. While numerical values across different
parameterized instances may vary, the decision patterns of-
ten remain consistent. By learning these patterns from small,
manageable instances, we encode them into decision trees
that generalize effectively to arbitrarily large parameterized
models. This process reduces the computational cost signifi-
cantly while ensuring that the synthesized policies maintain
their quality and scalability.

Example 5 For our example data set D constructed in Ex-
ample 4, the result of the DT learning is the DT depicted in
Figure 2b. This policy is in fact optimal for all k; see Exam-
ple 2 for an explanation of this. In addition to being optimal,
it is also small and perfectly explainable.

In contrast, if we are interested in a huge instance of this
model, e.g., setting k = 1015, already storing the resulting
MDP in the memory in order to compute an optimal pol-
icy is challenging or even infeasible for a large enough k.



Additionally, the policy produced by state-of-the-art model
checkers is represented as a lookup table with as many rows
as there are states.

The experimentation on standard benchmarks demon-
strate its ability to produce near-optimal policies for large-
scale models. The results show that policies synthesized
using our method perform consistently well across a wide
range of parameterized instances, often achieving perfor-
mance comparable to optimal policies computed for smaller
instances. The decision tree representation further enhances
scalability and interpretability, making our approach practi-
cal for real-world applications.

Our method offers a simple yet powerful framework for
tackling the state-space explosion problem in large parame-
terized MDPs. By integrating learning-based synthesis with
structural generalization, we provide a scalable solution that
sets a new standard for policy synthesis in probabilistic mod-
els. This work not only addresses current limitations in the
field but also opens avenues for further research in scalable
policy generalization.

3.1 Core contributions
Scalability. The framework leverages parameterized
MDPs, where the state space grows with the parameter
values. By generalizing from small instances, 1-2-3-Go!
avoids the computationally prohibitive task of explicitly
exploring the state space for larger instances.

Decision-tree-based representation. Decision trees pro-
vide a compact, interpretable, and generalizable representa-
tion of policies. Instead of storing explicit state-action map-
pings, decision trees use predicates over state variables to
represent policies symbolically.

Robust generalization. Policies learned from small in-
stances often capture structural regularities that extend to
larger instances. This makes 1-2-3-Go! particularly effec-
tive for parameterized MDPs where the dynamics scale pre-
dictably with the parameters.

4 Counterexample Guided Policy
Improvement

Counterexample Guided Policy Improvement (CEGPI) of-
fers a scalable and robust methodology for synthesizing
policies in Markov Decision Processes (MDPs) to ensure
qualitative properties like almost-sure reachability.

Policy initialization. The process begins by using the 1-2-
3-Go! approach to compute “good” / “robust” initial policies
for small parameterized instances, which are then general-
ized using decision tree representations. These trees provide
both scalability and interpretability, but the initial policies
may fail on larger or more complex instances due to the lim-
itations of learning from simplified scenarios.

Counterexample detection and usage. To address these
failures, counterexamples are generated during verification
to identify traces where the policy does not satisfy the de-
sired qualitative guarantees. Such counterexamples often

arise from issues like loops / failure to progress toward the
goal state and reaching bad states. These failures highlight
critical shortcomings in the learned policy and guide tar-
geted improvements. The refinement process involves incor-
porating additional data derived from failed traces and sim-
ulations, ensuring that the policy captures the nuances of the
system dynamics. For example, if a counterexample reveals
a loop caused by a specific decision, the policy is modified
to prioritize progress-inducing actions, informed by domain-
specific heuristics or local simulations.

Iterative policy refinement. Decision trees are updated
with new data while preserving consistency with previously
learned behaviors. Local simulations help evaluate alterna-
tive actions, preferring those that guarantee progress toward
the goal. The refined policy is then tested on larger in-
stances, ensuring it generalizes effectively. If further coun-
terexamples are identified, the process repeats until the pol-
icy achieves the desired qualitative properties across the
huge intance under consideration.

Benefits of the extension. By leveraging systematic learn-
ing and robust generalization policies, the approach ensures
scalability with added completeness for qualitative verifica-
tion. Initialization using 1-2-3-Go! retains the scalability by
focusing refinements on critical parts of the policy. This en-
sures that the generalized policies satisfy qualitative proper-
ties across all instances.

5 Conclusion
The combination of counterexample-guided policy improve-
ment with the 1–2–3–Go! approach provides a scalable and
robust solution for synthesizing policies in parameterized
MDPs. By leveraging the generalizability of decision-tree-
based learning to generate effective initial policies and it-
eratively refining these policies using counterexamples, this
approach ensures the satisfaction of qualitative properties.
Through this work, we address key limitations in scalability
and correctness, which can provide the way for more effec-
tive applications in real-world decision-making systems.
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