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Figure 1: Overview: Using front camera RGB image as the sole input modality, Imagine-2-Drive provides a framework to combine VISTA-
Plan, VISTA based World Model with DPA, a multi-modal diffusion based policy actor. Given a trajectory output by DPA, shown in ( ) and
the corresponding predicted future observations from VISTAPlan, the DDPO tries to find an optimal policy by maximizing the cumulative
sum of rewards from future states. The proposed architecture is shown along with the gradient flow for joint end-to-end training.

Abstract

In autonomous driving with image based state space, ac-
curate prediction of future events and modeling diverse
behavioral modes are essential for safety and effec-
tive decision-making. World model-based Reinforce-
ment Learning (WMRL) approaches offers a promising
solution by simulating future states from current state
and actions. However, utility of world models is often
limited by typical RL policies being limited to deter-
ministic or single gaussian distribution. By failing to
capture the full spectrum of possible actions, reduces
their adaptability in complex, dynamic environments. In
this work, we introduce Imagine-2-Drive, a framework
that consists of two components, VISTAPlan, a high-
fidelity world model for accurate future prediction and
Diffusion Policy Actor (DPA), a diffusion based policy
to model multi-modal behaviors for trajectory predic-
tion. We use VISTAPlan to simulate and evaluate tra-
jectories from DPA and use Denoising Diffusion Policy
Optimization (DDPO) to train DPA to maximize the cu-
mulative sum of rewards over the trajectories. We ana-
lyze the benefits of each component and the framework
as a whole in CARLA with standard driving metrics. As
a consequence of our twin novelties- VISTAPlan and
DPA, we significantly outperform the state of the art
(SOTA) world models on standard driving metrics by
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15% and 20% on Route Completion and Success Rate
respectively.
Project website: https://anantagrg.github.io/Imagine-2-
Drive.github.io/

INTRODUCTION
Autonomous driving systems must operate safely and effec-
tively in complex, dynamic environments, where accurate
prediction of future events and diverse behavioral model-
ing are critical for informed decision-making. The ability to
foresee potential obstacles, navigate uncertain traffic condi-
tions, and make proactive adjustments to driving strategies
relies on robust future prediction capabilities.

World model-based Reinforcement Learning approaches
(Pan et al. 2022; Li et al. 2024) have emerged as a promising
solution to this challenge by simulating future states based
on current observations and actions. These models enable
autonomous vehicles (AVs) to internally “imagine” possi-
ble future scenarios, facilitating more efficient exploration
and reducing the risks and costs associated with real-world
interactions. However, the utility of these world models is
often limited by the nature of traditional RL policies. Most
RL policies are constrained to deterministic outputs or single
gaussian distributions, which fail to capture the full range
of possible behaviors. This undermines the adaptability of
the world models and their ability to handle the complexity



and variability found in driving environments. The signifi-
cant advantages of world models also highlights the impor-
tance of learning an accurate world model.

Current WMRL (Hafner et al. 2020, 2022, 2024; Pan et al.
2022; Deng, Jang, and Ahn 2021) approaches, model the en-
vironment dynamics in latent space using a Recurrent Neu-
ral Network (RNN) based network. A common limitation of
these approaches is their reliance on single-step transition
models, where errors accumulate over multi-step planning,
causing planned states to drift from the on-policy distribu-
tion. Prior works (Wang et al. 2023; Ding et al. 2024; Gao
et al. 2024b) leverage video diffusion (Blattmann et al. 2023)
based approaches to predict the future states in a single pass,
with VISTA (Gao et al. 2024b) being the most versatile and
accurate.

To overcome these limitations, we present Imagine-2-
Drive , a novel framework that incorporates two key innova-
tions: VISTAPlan, a high-fidelity world model designed for
precise future prediction, and DPA, a diffusion-based pol-
icy actor that models diverse behavioral modes for trajectory
planning. VISTAPlan extends upon the VISTA’s prediction
capabilities by incorporating additional modules to predict
reward and discount factors. These enhancements enable
VISTAPlan to function as a comprehensive world model, fa-
cilitating more effective planning and decision-making.

Similar to (Janner et al. 2022; Saha et al. 2023; Ze et al.
2024; Jiang et al. 2023; Yang et al. 2024), DPA utilizes a dif-
fusion based model to predict the trajectory (a sequence of
actions) in a single pass. Being a generative model, it allows
DPA to model multiple behavioral modes. By incorporating
the diverse behavior patterns inherent to diffusion policies,
our framework can explore a broader range of behaviors,
thereby improving its overall performance and robustness.
DPA is trained with DDPO (Black et al. 2024) using VISTA-
Plan to simulate and evaluate trajectories to maximize the
cumulative reward over the trajectories

We validate our framework in the autonomous driving do-
main in CARLA (Dosovitskiy et al. 2017) simulator, demon-
strating its superiority over existing methods. A comprehen-
sive evaluation across diverse driving scenarios highlights
the contributions of each component, and how they effec-
tively complement one another to enhance the overall per-
formance.

To summarize, our key contributions are:

1. We propose VISTAPlan, a high fidelity world model
based reinforcement learning framework for autonomous
driving, with image as the sole input modality. VISTA-
Plan extends VISTA by incorporating additional reward
and discount factor heads enabling it for effective plan-
ning and decision-making.

2. DPA, a novel diffusion based policy actor which can
model multiple behavioral modes, thereby enabling it to
explore a broader range of behaviors. It is trained using
DDPO to maximize the cumulative sum of rewards over
trajectories.

3. Thorough analysis of our approach and baselines in com-
plex CARLA driving scenarios over standard driving
metrics to understand the effectiveness of our framework

and validating each component.

RELATED WORK
World Models for Autonomous Driving
For autonomous driving, world models follow two key
paradigms: one leverages world models as neural driving
simulators, while the other unifies action prediction with
future generation. Think-2-Drive (Li et al. 2024) adapts
Dreamer-V3 (Hafner et al. 2024) for autonomous driving us-
ing BEV state-space representations.

Generative world models have been extensively explored
for future driving sequence prediction based on various in-
put modalities. Models like DriveGAN (Kim et al. 2021),
DriveDreamer (Wang et al. 2023), and MagicDrive (Gao
et al. 2024a) focus on generating future driving scenarios
using actions as inputs. GAIA-I (Hu et al. 2023) expands
this approach by incorporating text commands alongside
actions. VISTA (Gao et al. 2024b), the most versatile, ac-
cepts inputs including actions, trajectories, text commands,
and goal points, demonstrating high generalizability for se-
quence prediction.

Diffusion Policy for Planning
Following the success of Diffuser (Janner et al. 2022) on
D4RL benchmark (Fu et al. 2021), diffusion-based policies
(Chi et al. 2024; Reuss et al. 2023; Ankile et al. 2024; Wang
et al. 2024; Ze et al. 2024; Sridhar et al. 2023; Pearce et al.
2023) have been successfully applied in robotics for mo-
tion planning. Most typically, these policies are trained from
human demonstrations through a supervised objective, and
enjoy both high training stability and strong performance
in modeling complex and multi-modal trajectory distribu-
tions. In the autonomous driving domain, successful works
like (Yang et al. 2024; Jiang et al. 2023) sample trajecto-
ries using diffusion models while (Liu et al. 2024) formulate
Constrained MDP (CMDP) to incorporate constraints.

Training Diffusion Models with Reinforcement
Learning
Training diffusion models using reinforcement learning
(RL) techniques has gained traction in recent research, par-
ticularly for applications such as text-to-image generation
(Fan et al. 2023; Black et al. 2024; Clark et al. 2024; Wal-
lace et al. 2023). DDPO (Black et al. 2024) formulate the
denoising process as an MDP and apply PPO update to this
formalism. We build upon these earlier works and embed
the denoising MDP within the environmental MDP of the
dynamics of autonomous driving.

Our approach leverages VISTA’s high-fidelity predic-
tive capabilities to build a world model (VISTAPlan) com-
bined with a diffusion based policy (DPA) trained using
DDPO method which effectively captures multiple behav-
ioral modes.

METHODOLOGY
Imagine-2-Drive is a World Model based RL framework de-
signed for long-horizon trajectory planning using only front-



Figure 2: Architecture: Imagine-2-Drive comprises of a Diffusion Policy Actor (DPA) for trajectory prediction τ and VISTAPlan
as a World Model for future state and reward prediction. Based on the encoded state using current and P past observations, DPA
denoises a set of one-hot embeddings for H future discrete actions to get a trajectory τ . The context and current observations,
along with the trajectory is passed through VISTAPlan to predict future H observations along with the reward for each state and
action pair. DPA is trained using DDPO to maximize the cumulative sum of the rewards over the trajectories.

facing camera image as input. The framework aims to gen-
erate a collision-free trajectory over a prediction horizon H ,
based on a sequence of past and current observations.

As depicted in Fig. 2, the framework consists of three key
components:

1. State Encoder: Encodes the sequence of P past front-
view RGB camera observations, together with the cur-
rent observation, to provide contextual information for
current state.

2. VISTAPlan: A high-fidelity world model that facilitates
efficient planning by accurately predicting future obser-
vations.

3. DPA: A diffusion based policy actor to produce a trajec-
tory of actions which maximizes the cumulative sum of
rewards over the prediction horizon H .

Notation: This paper differentiates between two cate-
gories of timesteps: diffusion timesteps, indicated by super-
scripts k ∈ {1, . . . , T}, and environment timesteps, denoted
by subscripts t ∈ {1, . . . , N}.

Approximate POMDP with MDP
Using a single frame as the state in autonomous driving lacks
the necessary temporal context to capture object motion
and changes over time. This limitation makes it challeng-
ing to formulate the problem as a Markov Decision Process
(MDP), which assumes that the current state captures all
relevant information for decision-making. To address this,
we approximate an MDP by incorporating a sequence of
previous observations, thereby adding temporal information
to the state representation. This approach effectively trans-
forms the problem from a POMDP to an MDP by including

a fixed-length history, which provides a richer context for
understanding the dynamics of the driving environment.

Following ViNT (Shah et al. 2023), we use a State En-
coder which tokenize each observation image {oi}tt−P into
an embedding of size dmodel = 512 with an EfficientNet-
B0 (Tan and Le 2020) model which outputs a feature vector
ζ(oi). The individual tokens are then combined with a posi-
tional encoding and fed into a transformer backbone Fsa.
We use a decoder-only transformer with nL = 4 multi-
headed attention blocks, each with nH = 4 heads and
dFF = 2048 hidden units. The output tokens are concate-
nated and flattened, then passed through MLP layers to give
a final state embedding st ∈ R32

st = MLP (Fsa (ζ(o)t−P :t)) (1a)

VISTAPlan
We leverage VISTA’s high-fidelity prediction capabilities as
the foundation for building our world model. Given the P
past and current observations {oi}tt−P , we predict H future
observations {oi}t+H

t+1 conditioned on a action trajectory τ ∈
RH×2.

Fourier Trajectory Encoding: The trajectory is encoded
using the Fast Fourier Transform (FFT) (Mildenhall et al.
2020) which offers a compact frequency-domain represen-
tation that captures the trajectory’s underlying patterns.

τt = (at, at+1, . . . , at+H) (2a)
ct = FFT (τt) (2b)

Future State Prediction: To predict the future observa-
tions {oi}t+H

t+1 corresponding to τt, we use the Stable Video
Diffusion model (SVD) (Blattmann et al. 2023) used in



VISTA.

ot+1:t+H = SV D(ot−P :t, ct) (3a)

Using the state encoder 1a and {oi}t+H
t+1 , we can get future

states {si}t+H
t . This capability allows the model to antic-

ipate the future state of the environment dependent on the
trajectory, which is crucial for safe and effective decision
making in complex driving scenarios.

Additional Required MDP Components: To use VISTA
as a world model, we add additional sub-modules to predict
future rewards r̂t and γ̂t using st and at

r̂t ∼ pϕ (r̂t | st, at) , γ̂t ∼ pϕ (γ̂t | st, at) (4)
This provides us with all the components required for

MDP and to use VISTAPlan as a world model for planning.
Loss Function: In addition to VISTA’s loss function

LV ISTA defined in equation 6 of (Gao et al. 2024b), we
add the additional loss functions for learning reward to get a
final loss function LWM :

LWM = LV ista − Eτ∼p(τ |π)

[
H∑
t=1

ln pϕ (r̂t | st, at)+

ln pϕ (γ̂t | st, at)

]
(5)

Diffusion Policy Actor (DPA)
Given the current state st, we use a diffusion based policy
network (πθ) to predict the trajectory τt 2a. The diffusion
model captures complex, multi-modal action distributions,
enabling effective long-horizon planning essential for au-
tonomous driving.

However, unlike imitation learning, where diffusion poli-
cies are trained with fixed datasets of expert actions, our RL
setting lacks predefined targets. Instead, the policy learns to
maximize cumulative rewards through exploration and inter-
action with the environment.

The reinforcement learning (RL) objective is for the agent
to maximize JRL(π), the expected cumulative reward over
trajectories sampled from its policy.

Without losing generalizibility, we assume the current en-
vironment timestep (t) to be 0.

JRL(π) = Eτ∼pθ(τ |π)

[ H∑
t=1

γ̂tr̂ϕ(st, at)

]
(6)

Following DDPO (Black et al. 2024), we formulate the
policy denoising process as an MDP itself and use policy
gradients method to train the DPA.

We begin with a randomly initialized diffusion policy net-
work. Sampling from the policy network begins with a noisy
trajectory sample drawn from a isotropic gaussian distribu-
tion, τT ∼ N (0, σ2I). The reverse process is defined by
a learned distribution pθ(τ

k−1|τk, s0), which progressively
“denoises” the action sequence to produce a sequence of tra-
jectories {τT , τT−1, . . . , τ0} ending with the sample τ0.

After getting the final denoised trajectory τ0, given cur-
rent state st, we query our world model to get future states
{si}Ht=1 using 3a and 1a.

Denoising as a multi-step MDP: In our formulation, the
denoising process itself is viewed as an MDP where:

skDDPO = (τk, s0) (7a)

akDDPO = τk−1 (7b)

rkDDPO =

{∑H
t=1 γ̂tr̂ϕ(st, at) if k = 0

0 otherwise
(7c)

πDDPO(a
k
DDPO | skDDPO) = pθ(τ

k−1|τk, s0) (7d)

Denoising Diffusion RL Objective: The objective for
this MDP JDDRL(θ) is to maximize the reward signal
rDDPO.

JDDRL(θ) = Es0∼p(s0),τ0∼pθ(τ0|s0)

[
pθ(r

0
DDPO | τ0)

]
(8)

This formulation further enables the estimation of policy
gradients. With access to both likelihood and gradients of
likelihood, we follow the formulation in (Black et al. 2024;
Fan and Lee 2023) to make direct Monte Carlo estimates
of ∇θJDDRL, by sampling, and then performing param-
eter update. We adopt the importance sampling estimator
(Kakade and Langford 2002) and substitute the per-step re-
turn with the final reward r0DDPO.

∇θJDDRL = E

[
T∑

k=0

pθ(τ
k−1|τk, s0)

pθold
(τk−1|τk, s0)

×∇θ log pθ(τ
k−1|τk, s0) r0DDPO

] (9)

in which the expectation is taken over the trajectories sam-
pled with pθold , i.e., the previous sampler. The estimator be-
comes less accurate if pθold deviates too much from pθ. We
adopt the trust region (Schulman et al. 2017a) for regulariz-
ing the change of θ w.r.t θold, which in practice we adopt the
clipping proposed in proximal policy optimization (Schul-
man et al. 2017b).

This procedure effectively trains the diffusion policy net-
work to generate high reward action-sequences (τ) that
maximize cumulative rewards, improving autonomous driv-
ing performance.

EXPERIMENTS AND RESULTS
Experimental Setup
We consider the task of navigation along pre-defined routes
in Town04 of CARLA (Dosovitskiy et al. 2017) version
0.9.11 running at 20 Hz. We utilize the predefined routes
from the CARLA Leaderboard. We randomly spawn sce-
narios at several locations along each route. Each scenario
presents unique environmental and lighting conditions, with
varying number of lanes. Each scenario has a maximum
length of upto 500 meters with a maximum of 20 traffic ve-
hicles. Each dynamic traffic vehicle is assigned a velocity



Figure 3: Multi-Modal Nature of DPA: The top-view visualization illustrates the multi-modal nature of the Diffusion-based
Policy Actor (DPA). Starting from the same initial state, the agent follows two distinct trajectories: BlueLeft (in blue) and
RedRight (in red), generated using different random seeds. The corresponding predicted future sequences for both trajectories
are shown in their respective colors, highlighting DPA’s ability to model diverse behavioral modes and predict multiple plausible
futures from a single state.

Figure 4: VISTAPlan Future Prediction: Future observa-
tion predictions from the VISTAPlan World Model, condi-
tioned on the input trajectory (shown in black) and current
observations. Demonstrates the VISTAPlan’s ability to ac-
curately predict future observations based on the provided
context, highlighting its robust trajectory prediction capabil-
ities.

between 1 and 5 km/hr. An episode is terminated upon col-
lision with any traffic vehicle or going out-of-lane bounds.
We assign our ego-agent a constant velocity of 7 km/hr and
use the default PID controller to follow the output waypoint
trajectory. We train and evaluate our model and the baselines
on a subset of 10 scenarios.

Training Details and Architectural Details
For world model, we initialize the VISTAPlan model with
pre-trained weights trained on approximately 1700 hours of
driving videos. For faster convergence, we first give a warm-
start to the World Model by training it for 5K steps with data
collected using the randomly initialized diffusion policy ac-
tor. We use 4 A100s to train VISTAPlan for about 28 hours.
Similar to VISTA, we accumulate gradients of 4 steps, giv-
ing an effective batch size of 16. We train all methods on

each scenario for 1M timesteps.
For DPA, we use a UNet similar to (Janner et al. 2022).

We use sampling strategy from DDIM (Song, Meng, and Er-
mon 2022) and use T = 50 denoising steps.

For training Iso-Dreamer (Pan et al. 2022) and Dreamer-
V3 (Hafner et al. 2024), we use the default training hyper-
parameters.

Implementation Details
Action Space Waypoint trajectory is represented in the X-
Y cartesian space. To predict the trajectory effectively, we
simplify the action space by predicting the incremental ∆X
and ∆Y .

at = (∆X,∆Y ) (10)
Simplifying ∆X: To reduce action space dimensionality and
ensure forward progress, we fix ∆X = 1, allowing the
model to focus on lateral adjustments.

Discretizing ∆Y : lateral movement ∆Y is defined within
(0.5, 0.5) meters, divided into 11 equal bins representing
specific lateral deviations.

Action Encoding: Each discrete action, representing ∆Y ,
is encoded using a one-hot embedding.

Reward Function The reward function for lane-keeping
and collision avoidance is defined as:

rt = υT
egoûh ·∆t− ξ1 ·

∣∣Collision Cost
∣∣− ξ2 ·

∣∣∆Y
∣∣+ c
(11)

Here υego is the agent’s velocity projected onto the highway
direction ûh, normalized and scaled by ∆t = 0.05 to mea-
sure highway progression in meters. The Collision cost =
10 penalizes collisions, and ∆Y penalizes large trajectory
changes. The constant c = 1 encourages longer episodes,
with ξ1 and ξ2 set to 1.

Horizon and Context Length We set prediction horizon
length H = 9 and context length P = 5.

Baselines
We focus on world model-based approaches using front
camera images as the sole input modality and compare with



the following methods:

1. Dreamer-V3 (Hafner et al. 2024): The third generation in
the Dreamer series (Hafner et al. 2020, 2022), incorpo-
rating robustness and normalization techniques for stable
training.

2. Iso-Dreamer (Pan et al. 2022): which focuses on de-
composing scenes into action controllable and non-
controllable branches.

3. DQN (Mnih et al. 2013) and PPO (Schulman et al.
2017b): Standard Model-free algorithms.

Metrics
Success Rate (SR %) as the percentage of runs where the
ego-agent is able to achieve at-least 90% route completion
(RC %) with zero instances of Infractions which include the
instances of going out-of-lane bounds and collisions with
other traffic actors.

Episodic Return is defined as the cumulative sum of the
reward function defined in eq. 11.

Results
Driving Scores and Episodic Returns In table 1, we
compare the different RL experts on standard driving met-
rics across all the scenarios. Our model Imagine-2-Drive
outperforms all the other experts across all the metrics sig-
nificantly, with 20% and 14.6% gain in SR and RC met-
rics respectively. Infraction/km also reduced by about 50%
This clearly highlights the superior combined performance
of the DPA and VISTAPlan. All world model based methods
outperform the model-free methods, being able to explicitly
learn a model of the environment, allowing them to simulate
future states and plan actions more efficiently. Dreamer-V3,
which combines robustness and normalization techniques
for stable training outperforms Iso-Dreamer. PPO outper-
forms DQN by directly optimizing the policy with stable
updates, making it more suitable for both continuous and
discrete action spaces while improving exploration through
stochastic policies. Fig. 5 further supports these observa-
tions which shows the higher episodic returns for Imagine-
2-Drive during training with 1M timesteps averaged over the
scenarios.

Table 1: Driving Metrics Comparison: We compare the
Imagine-2-Drive and the baselines on standard driving met-
rics across all the scenarios. We run each model on all sce-
narios with 3 random seeds.

Model SR(%) ↑ Infraction/Km ↓ RC(%) ↑
DQN 0.0 6.27 27.63
PPO 16.66 4.61 50.02
Iso-Dreamer 56.66 1.65 60.33
Dreamer-V3 63.33 1.52 67.53
Imagine-2-Drive 83.33 0.70 82.13

Prediction Fidelity Table 3 shows a quantitative compar-
ison of world models prediction fidelity. Imagine-2-Drive
outperforms in temporal consistency and fidelity metrics by

Figure 5: Episodic return of Imagine-2-Drive (Ours) and
other different RL agents averaged over the scenarios. A
moving average with a window size of 50 is applied

Table 2: Driving Metrics Comparison for Ablations: We
compare the Imagine-2-Drive and the baselines, along with
combining (DPA) with other world-model based methods
on standard driving metrics across all the scenarios. We run
each model on all scenarios with 3 random seeds.

Model SR(%) ↑ Infraction/Km ↓ RC(%) ↑
Iso-Dreamer 56.66 1.65 60.33
Dreamer-V3 63.33 1.52 67.53
DPA + Iso-
Dreamer

73.33 1.17 70.87

DPA + Dreamer-
V3

83.33 0.97 75.09

Imagine-2-Drive 83.33 0.70 82.13

72 and 290 in FID and FVD scores respectively. Unlike auto-
regressive models, which degrade over time, SVD models
enhance temporal consistency by incorporating temporal at-
tention. Fig. 4 qualitatively highlights the high fidelity pre-
diction of our world model conditioned on an input trajec-
tory.

Table 3: Comparison of prediction fidelity scores of different
world models over CARLA driving sequences

World Model FID ↓ FVD ↓
DriveGAN 67.1 281.9
Iso-Dreamer 102.24 421.56
Dreamer-V3 89.29 324.07
VISTAPlan 17.09 130.39

ABLATION STUDIES
DPA analysis
Table 2 evaluates the DPA within the Iso-Dreamer and
Dreamer-V3 frameworks by comparing performance with
and without the actor (rows 1 vs. 3) and (rows 2 vs. 4). DPA
coupled models outperform by atleast 10% and 8% on SR
and RC metrics. This analysis underscores the influence of
the DPA on trajectory prediction and demonstrates its ef-
fectiveness across different world model architectures. The
results demonstrate that the diffusion policy actor enhances



the ability to model complex, multi-modal action distribu-
tions, improving trajectory prediction accuracy across dif-
ferent world model architectures. This underscores the ac-
tor’s adaptability and potential for broader applications in
reinforcement learning and decision-making tasks.

VISTAPlan analysis
Table 2 assesses prediction fidelity and environmental dy-
namics across various world models, using our diffusion pol-
icy actor consistently across all models. This isolates the
impact of each world model and allows for a focused as-
sessment of each world model’s ability to capture underly-
ing environmental dynamics and its influence on trajectory
prediction performance. Results in (rows 2, 3 and 4) high-
light the VISTAPlan’s superior performance with a 20% and
14.6% gain in SR and RC metrics respectively, underscoring
the importance of accurate future state predictions and val-
idating VISTA’s role as the foundation for our world model
framework.

Context Length analysis
To analyze the effect of POMDP approximation with MDP
using the State Encoder, Fig. 6 compares the episodic re-
turns of Imagine-2-Drive using different context lengths
(CL) for the State Encoder, with P = 5 fixed for VISTA. The
performance drops with CL = 1, compared to CL = 3 and
5. This can be attributed to shorter CLs which provide insuf-
ficient historical data, limiting the model’s ability to infer the
current state in partially observable environments. In con-
trast, longer context lengths (CL = 3, 5) capture more tem-
poral information, improving state estimation and decision-
making, and resulting in better performance.

Figure 6: Episodic return of Imagine-2-Drive (Ours with
CL=5) with different Context Length (CL) averaged over the
scenarios. A moving average with a window size of 50 is ap-
plied.

CONCLUSION & FUTURE WORK
Conclusion: In this work, we introduced Imagine-2-Drive
, a high-fidelity world model leveraging the VISTA frame-
work for long-horizon trajectory planning in autonomous
driving. By incorporating a diffusion-based prediction
model, we overcame the limitations of single-step transition
models, enabling simultaneous trajectory generation and en-
hanced temporal consistency. DPA, a diffusion based policy

improves exploration and robustness by effectively captur-
ing multimodal action distributions. Our empirical results in
CARLA demonstrate significant gains in trajectory predic-
tion and planning accuracy, showcasing the superiority of
our approach over SOTA world model and model-free meth-
ods.

Future Work: We intend to extend Imagine-2-Drive to
other domains such as robotic manipulation, where accurate
long-horizon planning and multimodal prediction are cru-
cial. Expanding the versatility of our approach across do-
mains will further validate its generalizability and adaptabil-
ity.
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