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Abstract
An important step toward improving the efficiency and practi-
cality of autonomous systems is enabling the ability to contin-
uously learn and adapt to new environments while maintain-
ing performance on past environments. Traditional deep rein-
forcement learning methods utilize a complete replay buffer
for training, however, not all transitions are useful for learn-
ing a policy that minimizes catastrophic forgetting over mul-
tiple tasks. We introduce an offline replay-based approach
that employs a diverse collection of heuristics as a form of
knowledge distillation, reducing the replay buffer to a buffer
of critical transitions. Using these heuristics, we introduce
a Bayesian experience-selection strategy that actively selects
heuristics for transition selection to mitigate catastrophic for-
getting over a sequence of tasks. We applied our method to
a continual Mujoco environment, showing that Bayesian ex-
perience selection reduces catastrophic forgetting and effec-
tively distills knowledge from replay buffers.

Introduction
Deep reinforcement learning has proven to be an efficient
method for training a policy on complex environments such
as Atari (Mnih 2013) and the game of Go (Silver et al. 2016).
However, to produce effective lifelong deep reinforcement
learning agents, they must learn efficiently on new tasks
while retaining performance on previously learned tasks.

Continual reinforcement learning involves endlessly
training an agent on continually changing environments
to obtain a policy that maintains plasticity and stabil-
ity (Rolnick et al. 2019; Abel et al. 2024). More specif-
ically, the two primary challenges of continual learn-
ing are (1) avoiding plasticity loss—attaining optimal
single-task performance—and (2) mitigating catastrophic
forgetting—preventing degradation of performance on pre-
viously learned tasks. In this setting, a model is utilized
across environments, and the agent is not notified of an envi-
ronment change a priori. Previous work has proven that life-
long learning agents can operate optimally with an unlim-
ited storage or perfect memory of past experiences (Isele and
Cosgun 2018; Knoblauch, Husain, and Diethe 2020). How-
ever, in practice, this method is intractable given memory
constraints and the limitation of current algorithms’ ability
to fully utilize the information in perfect memory. There-
fore, replay-based selection methods that summarize per-
fect memory are most promising for efficient CL algorithms

Figure 1: BLAST Framework. BLAST takes a set of local
replay buffers Bl from various tasks and applies a transi-
tion selection policy f to each local replay buffer given a
set of heuristics H and a vector of learnable parameters λ
that determines the weight of each heuristic. Every transi-
tion is given an aggregated score according to the weighted
heuristics. The aggregated buffer is then sorted and pruned
according to ϕ, and the remaining transitions are concate-
nated with other processed buffers and combine into a global
replay buffer Bg that is used for offline policy optimization.

(Knoblauch, Husain, and Diethe 2020). As such, we design
memory distilled replay buffers that utilize weighted heuris-
tics for pruning transitions, best approximating the replay
buffers across tasks. This reduces memory usage in contin-
ual reinforcement learning settings and, more importantly,
reduces catastrophic forgetting by distilling critical transi-
tions from the replay buffer for effective continual learning.

We propose a Bayesian experience replay selection
framework (BLAST) illustrated in Figure 1. BLAST uti-
lizes Bayesian optimization to reduce catastrophic forgetting
over a set of tasks by distilling knowledge from their replay
buffers and learning a policy on this distilled knowledge.
Unlike previous experience selection strategies that use a



single, static heuristic across every task (Rolnick et al. 2019;
Isele and Cosgun 2018), our architecture adapts by utilizing
a Bayesian framework for prioritizing heuristics that maxi-
mize memory retention among all tasks, minimizing catas-
trophic forgetting.

Replay-based methods (Rolnick et al. 2019; Isele and
Cosgun 2018) have shown promise to mitigate catastrophic
forgetting in continuously changing environments with non-
stationary data distributions. However, prior work has not
explored applying Bayesian learning for dynamically select-
ing heuristics in replay buffer pruning. To the best of our
knowledge, this is the first work to apply Bayesian optimiza-
tion on heuristic weighted selection for continual reinforce-
ment learning, utilizing multiple heuristics for transition se-
lection.

The key advantages of BLAST are:

1. Composability – Our framework can leverage arbitrary
heuristics for selecting critical transitions.

2. Modularity – BLAST, a replay-based approach, can be
combined with regularization techniques that minimize
catastrophic forgetting to potentially improve memory
retention.

3. Scalability – Utilizing distributed computing, our
method scales with respect to the number of tasks.

Related Work
Continual Supervised Learning Catastrophic forgetting, a
known challenge for connectionist networks since the 1990s
(French 1999), has been been prominent for classification
tasks. Numerous studies have proposed network architecture
modifications to combat this issue, such as Local Winner-
Take-All (LWTA) blocks that simulate locally competing
neurons (Srivastava et al. 2013). Other studies focused on
regularization-based techniques such as Elastic Weight Con-
solidation (EWC) where they slowed updates to parameters
that are important for previously learned tasks (Kirkpatrick
et al. 2016), reducing the risk of forgetting.

Multi-Task Reinforcement Learning Traditional single-
task reinforcement learning methodologies learn a policy
for a specified task and discard the policy when migrating
to a new task. However, in multi-task reinforcement learn-
ing, an agent will learn simultaneously across many tasks
(Calandriello, Lazaric, and Restelli 2014), using knowledge
learned on other tasks to learn policies that generalizes well
across all tasks. However, the agent is typically given a set of
tasks or the number of tasks prior to learning; whereas, con-
tinual reinforcement learning agents are task-agnostic, mak-
ing them more practical and scalable.

Neurobiology Prior work on mappings of brains show
that hippocampal replay within mammalian brains has been
found to assist in decision-making via simulation based on
past trajectories (Ólafsdóttir, Bush, and Barry 2018; Carr,
Jadhav, and Frank 2011; Wu et al. 2017). Further findings
suggest that the replay function is dynamic and dependent on
the current task, retrieving specific memories that is needed
for efficient task completion (Ólafsdóttir, Bush, and Barry
2018). In other instances, it has been shown that animals

replay harmful memories prior to decision-making, invok-
ing a fear memory retrieval that guides animals to avoid
averse regions (Wu et al. 2017). Inspired by this, we adopted
heuristics that simulate this type of memory retrieval by pri-
oritizing critical transitions that may be useful for distilling
knowledge from perfect memory.

Continual Reinforcement Learning A challenge of con-
tinual reinforcement learning is the ability to extract impor-
tant information from a large stream of data in the form of
an agent’s history (Khetarpal et al. 2022). Typical continual
reinforcement learning algorithms are categorized as either
replay-based approaches or regularization techniques with
the goal of minimizing catastrophic forgetting. In the contin-
ual reinforcement learning formulation, agents are generally
memory-bounded, making replay-based approaches criti-
cal for distilling information from agents’ histories. How-
ever, regularization techniques are also crucial for enhancing
memory retention given an agent’s bounded memory. For
example, PackNet (Mallya and Lazebnik 2018), a parameter
pruning and packing technique, mitigated catastrophic for-
getting on both supervised and sequential decision-making
domains such as ContinualWorld (Wołczyk et al. 2021).
Thus, combining replay-based approaches and regulariza-
tion techniques will lead to efficient and practical continual
learning algorithms.

Background
Heuristics have been developed to select transitions from
local replay buffers across tasks, demonstrating promising
results in mitigating catastrophic forgetting (Isele and Cos-
gun 2018). A local replay buffer, Bi

l , associated with task
i, aligns with the traditional concept of an experience re-
play buffer in single-task reinforcement learning, containing
transitions exclusive to that task. To improve memory effi-
ciency, the local replay buffer is typically discarded once a
task has been learned. In contrast, the global replay buffer,
BT

g , aggregates a subset of transitions from all local replay
buffers, {BT

l }T∈T , where T = {T0, . . . , TN} represents the
set of all tasks. Transitions e ∈ BT

g are referred to as critical
transitions due to their essential role in consolidating key
memories across tasks T .

Tasks and environments can be formally represented as
a Markov decision process (MDP) represented by the tuple
M = ⟨S,A, T, S0, R, γ⟩. Here, S is a set of states, A is the
set of possible actions for each state, T : S × A → [0, 1]
is the transition function such that

∑
a∈A T (s, a, s

′), S0 is
the initial state distribution, and R : S × A → R is the re-
ward function. Let π : S × A → [0, 1] be a policy, mapping
from states and actions to a conditional probability distri-
bution over actions conditioned on states. A value function
V π : S → R induced by policy π is the expected cumulative
return for a state s ∈ S while following policy π. An optimal
policy π∗ maximizes the expected cumulative return V ∗(s)
for all s ∈ S.

In the following subsections, we introduce heuristics h :
B × πθ → R, which assign a real-valued score to transi-
tions in the replay buffer, e ∈ B. These scores are used
within the transition selection function f to identify crit-



ical transitions for inclusion in the global replay buffer.
The BLAST framework incorporates three distinct heuris-
tics, each leveraging different aspects of the model or MDP:
value-functions (fatality), model parameters (quantization),
or observations (coverage). Critical states, a localized view
of critical transitions, have been explored in the context of
ensuring safety for autonomous agents, where taking appro-
priate actions in safety-critical states is essential to maintain
operational safety (Huang et al. 2018). Beyond safety, criti-
cal states also play a role in inverse reinforcement learning
tasks with sparse rewards, where they serve as key indicators
for identifying important agent decision points in video data
(Liu et al. 2023).

Fatality
Agents are said to encounter fatal transitions when selecting
an incorrect action results in a significant reward difference
compared to the optimal action or the average q-value action.
Following the definition proposed by (Huang et al. 2018), a
transition is classified as fatal if there is a substantial dispar-
ity between the maximum and the average q-value, Q̂, over
all actions for a given observation si in transition ei. This is
expressed as:

hfatal(ei) =

∣∣∣∣∣∣max
a′

Q̂(si, a
′)− 1

|A|
∑
a′

Q̂(si, a
′)

∣∣∣∣∣∣ .

Figure 2: Quantization heuristic applied to the LunarLander
Environment (Towers et al. 2024) over the (x, y) position
features using DQN (Mnih 2013) on 300k timesteps. Bright
red regions represent higher criticality while unmasked re-
gions were not traversed during training. Intuitively, criti-
cal regions represent states where quantization from FP32
to FP16 on the Q-network results in large differences in the
Q-value predictions.

Quantization
Building on regularization techniques for robust networks
post-training (AskariHemmat et al. 2022), we define a quan-
tized critical transition as a transition exhibiting significant
differences in q-values when the weights of a Q-network are

perturbed or pruned. Transitions that produce a high score
based on the quantization heuristic indicate that the states
in those transitions are distributed across a broader set of
neurons compared to other states. The distance function is
denoted as d, Q̂∗ represents the quantized or pruned Q-
function, and a ∈ An is a vector of actions of size n. The
heuristic is defined as:

hquantization(ei) = dist(Q̂(si,a)− Q̂∗(si,a)).

Coverage
Experience selection through coverage maximization has
shown promising results in various continual learning do-
mains (Isele and Cosgun 2018). This approach evaluates
critical states by aiming to maximize coverage of the state
space within a given environment, ensuring a diverse set of
transitions. Let d ∈ R+ denote the threshold parameter and
dist() represent a distance function. The coverage score for
a transition ei ∈ BT

l is defined as:

hcoverage(ei) = −
∣∣∣{ej | dist(ei − ej) < d,∀ej ∈ BT

l }
∣∣∣ .

Catastrophic Forgetting
An agent exhibits catastrophic forgetting if performance on
at least one previously learned task is sufficiently lost after
training on a new task. As seen in Figure 3, when transfer-
ring learning to a new environment, the agent’s policy on
the previously learned environment is nearly forgotten with
issues learning on the new task due to plasticity loss. More
formally, let Rπj

i (s) ∈ [0, 1] be the max-min normalized
return with respect to their best and worst-case returns start-
ing from state s on previous task i induced by the policy πj
from current task j. Then, catastrophic forgetting loss be-
tween two sequential tasks induced by a single policy can
be defined as

χ
i,j = R

πj

i (s)−R
πj

j (s)

and the catastrophic forgetting loss of a policy πj on all
previous tasks is

χ
j =

j−1∑
i=0

χ
i,j .

Intuitively, if χj = 0 then πj exhibits memory reten-
tion, and if χj > 0 then πj exhibits memory generalization.
Whereas, if χj < 0 then πj exhibits memory degradation or
catastrophic forgetting if χj is sufficiently negative.

In the BLAST framework, a policy is trained on a concate-
nated set of environments, effectively removing the sequen-
tial nature of catastrophic forgetting as previously defined.
To address this, we introduce the forgetting loss, defined as
the difference between the optimal return and the averaged
normalized return over tasks:

χT = 1− 1

|T |
∑
t∈T

Rπ
t (s), s ∼ st0,

where st0 represents the initial state distribution for task
t ∈ T . When training policy π on a global replay buffer



Figure 3: During task transfer, the agent’s ability to retain
a near-optimal policy on the previous environment is lost.
The darker colored line represents the return on the task cur-
rently being learned. During task transfer, the gravitational
transition dynamics are changed.

constructed using BLAST with weighting coefficients λ, we
denote the catastrophic forgetting loss over the task set T as
χT (π

λ), where πλ is the policy induced by the weights λ
as depicted in Algorithm 1.

Transition Selection Policy
Let H be the function space of heuristic functions, H =
P(H) be the power set of H, Λ be the unit-n simplex △n,
B be the space of possible replay buffers, and Φ be the func-
tion space of pruning functions. A transition selection policy
f : H × Λ × B × Φ → B operates on a local replay buffer
BT

l ∈ B. Using a set of heuristics H ∈ H and a weight vec-
tor λ ∈ Λ a real-valued score is assigned to each transition
e ∈ BT

l . The scored transitions are subsequently processed
and pruned to extract critical local memories into a global
replay buffer. Let λ = ⟨λ0, . . . , λn⟩ be a vector of learnable
parameters, and let h(e) = ⟨h0(e), . . . , hn(e)⟩ be the vec-
tor of scores from n heuristics. Then, the score for transition
e ∈ BT

l is defined as

h(e) = λ0 · h0(e) + . . . λn · hn(e)
= λTh(e).

These scores are sorted then pruned with proportion ρ ∈
[0, 1] using a pruning function ϕ : [0, 1] × B → B. The re-
sulting pruned buffer is concatenated with the global buffer
BT

g where we repeat transition selection for all local replay

buffers in {Bi
l}

|T |
i=0.

Problem Formulation
Continual Reinforcement Learning (CRL) introduces a set-
ting where agents are required to continuously adapt to
new tasks without forgetting how to perform previous ones.
Formally, a CRL agent is trained on a set of N tasks,
T = {T0, . . . , TN}, each of which is represented as a MDP,

Algorithm 1: Policy Optimization, ψ

Require: Set of heuristics H, set of local replay buffers Bl,
set of tasks T , and a vector of weights λ.

1: Bg = {}
2: for all T ∈ T do
3: B = f(λ,H, BT

l )
4: Bg := Bg ∪B
5: end for
6: Train offline DRL algorithm on Bg , obtaining πλ

7: return πλ

Mi = ⟨Si, Ai, Ti, Ri, γi⟩ for all tasks i ∈ T . An optimal
policy π∗ over all tasks T , given task-specific optimal poli-
cies π∗

i for all i ∈ T , can be defined as

π∗ = argmax
π∈Π

j−1∑
i=0

Rπ
i (s)−Rπ

i+1(s), s ∼ st0

which aims to maximize the difference in the return in-
duced by π∗ and the individual returns induced by their task-
specific optimal policies π∗

t where s0 is the initial state dis-
tribution. Intuitively, π∗ minimizes catastrophic forgetting
across a set of tasks T . However, finding π∗ is intractable
from costly evaluation and large policy parameter spaces,
making search infeasible. This, instead, directs attention to
approaches that reduce the policy search space Π by adapt-
ing the network architecture or selectively choosing transi-
tions for training π∗.

In this paper, we aim to address the challenge of catas-
trophic forgetting by introducing a novel experience selec-
tion framework that employs Bayesian optimization to ac-
tively prioritize experiences based on their contribution to
catastrophic forgetting across tasks.

Proposed Method
BLAST (Algorithm 1) utilizes a transition selection func-

tion f that requires predefined heuristics H, parameters λ
that are learned via Bayesian optimization, and a pruning
function ϕ. BLAST minimizes catastrophic forgetting across
all tasks T by selecting transitions using f(λ,H, ϕ,BT

l )
from the local replay buffers, Bl = {BT

l | T ∈ T }, and
inserting them into the global replay buffer BT

g . Next, we
train an offline deep reinforcement algorithm (e.g., CQL) on
the global buffer BT

g to compute χT for each Bayesian up-
date. During Bayesian optimization we model the posterior
of χT on a set of learnable weights λ. Then, we sample for
an optimal set of weights λ∗ from the posterior, and select
transitions using f(λ∗,H,Bl) = BT

g .
By adapting multiple heuristics for experience selection,

we increase the space of possible selection strategies, per-
mitting a larger search space for finding a memory stabiliz-
ing set of heuristics compared to prior work that employed
single heuristics across tasks (Isele and Cosgun 2018).

Bayesian Learning
Our objective is to maximize memory retention χT (π) on
all tasks T by optimally selecting a vector of weights λ ∈ Λ



Algorithm 2: Bayesian Optimization

Require: Bayesian updatesm, number of initial samples n,
set of heuristics H, set of local replay buffers Bl, set of
tasks T .

1: D = {}
2: while j < n do
3: λ ∼ N (µ,Σ)
4: πλ = ψ(H,Bl, T ,λ)
5: y = χT (π

λ)
6: D := D ∪ {(λ, y)}
7: j := j + 1
8: end while
9: while i ≤ m do

10: Update posterior distribution for χT using D
11: Compute maximizer of the acquisition function, λ∗

12: πλ∗
= ψ(H,Bl, T ,λ∗)

13: y = χT (π
λ∗

)
14: D := D ∪ {(λ∗, y)}
15: i := i+ 1
16: end while
17: return πλ∗

that will affect policy optimization on πλ,

max
λ∈Λ

χT (π
λ). (1)

Here, χT (π
λ) is difficult to compute since a deep rein-

forcement learning policy needs to be trained on a global re-
play buffer which is the concatenation of pruned local replay
buffers that need to be selected using a transition selection
function f across all tasks T . Moreover, after training, the
learned policy is evaluated on N tasks where the test-time
returns can then compute χT (λ). In the proceeding section,
we discuss how we scale the computation of χT (λ) with
respect to N , improving computational efficiency.

Now, we define the Bayesian optimization setup in Al-
gorithm 2 to approximately solve 1, given a dataset D =
{(λi, χT (λi))

n
i=0} where χT (λi) ∈ [0, 1], we define the

Bayesian update rule as P (λ | D) ∝ P (D | λ)P (λ). The
likelihood is defined as P (D | λ) = eβ(

χT (λi)−1), where
β ∈ [0,∞) is a static parameter andN is the total number of
tasks. This likelihood function applies higher likelihood to
instances of λ that preserve memory and promote memory
generalization. Additionally, we represent the prior distribu-
tion, P (λ), as a multivariate Gaussian distribution N (µ,Σ)
where µ is the mean vector and Σ is the covariance matrix
of the prior distribution.

We model the acquisition function using the Gaussian
Process Upper Confidence Bound (GP-UCB) algorithm
(Srinivas et al. 2009) that leverages a hyperparameter βt ∈
[0,∞) to balance between exploration and exploitation
within the search space:

λt = argmax
λ∈Λ

µt−1(λ) +
√
βtσt−1(λ)

where µt−1(λ) and σt−1(λ) represent the predicted
mean and uncertainty of the model, respectively. When

updating the posterior distribution, P (λ | D), we append
(λt, χT (π

λ)) to the dataset D, allowing for continuous im-
provement of the model over m iterations.

Given the significant computation for evaluating the for-
getting loss, χT (π

λ), leveraging multiple machines for par-
allel objective function evaluation can accelerate Bayesian
optimization. In addition, computing h(e) can be precom-
puted for all transitions in each local replay buffer, requiring
only a dot product calculation and the application of ϕ for
computing transition selection function f .

Online Reinforcement Learning
In online reinforcement learning, a stream of tasks is given
to an agent sequentially. In this setting, the agent will learn
a local policy πl for each task, resetting the local policy af-
ter each task change. For on-policy algorithms that tend to
have small replay buffers, we use the trained policy πl to
generate an offline dataset of trajectories, forming a local
replay buffer BT

l for task T . In the off-policy setting that
tends to have larger replay buffers, this buffer used for train-
ing can directly be used as the local replay-buffer for prun-
ing. Next, BLAST can be applied to prune the local replay
buffer and concatenate the pruned buffer to the global replay
buffer. Furthermore, during online reinforcement learning,
the memory-preserving policy trained on the global buffer
can be learned on-demand, when needed, to minimize com-
putation or as tasks change to maintain a read-to-use policy.

Experiments
We analyze our approach on the Mujoco (Todorov, Erez,
and Tassa 2012) Hopper environment with comparisons to a
random uniform transition selector. In the following experi-
ment, we aim to answer the the following question: what are
the effects of weighted, heuristic-based transition selection
on forgetting loss?

Environments
The Mujoco suite of physics-based environments (Todorov,
Erez, and Tassa 2012) utilizes continuous observations and
continuous actions with constant reward throughout each
episode. In our experiments, we used the D4RL (Fu et al.
2020) dataset for Hopper-medium-v0 on 100k observations
which we name Hopper-Earth. In addition, we created an
alternate Hopper environment, Hopper-Moon, where we
changed the transitional dynamics by changing the gravita-
tional constant to that of the Moon.

Offline Reinforcement Learning
In these experiments, we utilize an offline dataset of 100k
trajectories produced by medium-level1 agents for Hopper-
Earth and Hopper-Moon. To enable the computation of
scores for each transition required by the heuristics Quan-
tization and Fatality, we first trained a CQL agent and ex-
tracted its Q-functions. We then applied transition selec-
tion to efficiently prune 50% to 99% of the buffer for each

1The policy generated an approximate average return of 2260
on each environment



Figure 4: BLAST minimizes catastrophic forgetting on the
continual Hopper environment using the last 300 samples
during Bayesian optimization for the gradient-based pruning
technique compared to uniform random sampling.

Bayesian sample using fatality, quantization, and coverage
as heuristics. We used a gradient-based transition selection
strategy that removes transitions based on the distribution
of the scores, h(e). More specifically, we pruned transitions
with smaller gradients, prioritizing the removal of plateaus
in the score distribution which maintains a diverse collection
of transitions.

We utilized the Conservative Q-Learning (CQL) algo-
rithm (Kumar et al. 2020) for training on the global
buffer, however, other offline algorithms such as Implicit Q-
Learning (IQL) (Kostrikov, Nair, and Levine 2021) or Deci-
sion Transformers (Chen et al. 2021) may also be employed,
depending on the problem setting. During training, we uti-
lized a batch size of 512 and a maximum step size of 40k
with 2k step checkpoints, using the model checkpoint with
highest online return for evaluation on 100 episodes.

During Bayesian optimization over Λ to minimize forget-
ting loss as seen in Figure 5, we observed instability in CQL
training, leading to significant variance in forgetting loss for
each λ ∈ Λ. However, increasing the number of samples is
expected to reduce this variance, enabling the optimization
process to more accurately reflect the true relationship be-
tween forgetting loss and the sampled hyperparameters. De-
spite this, we found that collections of heuristics were able
to reduce forgetting without the potential improvement from
Bayesian optimization.

In Figure 4, we deploy BLAST on both Hopper-Earth
and Hopper-Moon, showing its potential to distill knowl-
edge from the local replay buffers and reducing catastrophic
forgetting when compared to the baseline, uniform random
pruner. However, when pruning 99% of the local buffer, we
found their to be no difference in performance between ran-
dom and gradient-based pruning. We also found the pruning

Figure 5: Bayesian Optimization over Λ with pruning frac-
tion of ρ = .9 and gradient-based pruning.

function ϕ to significantly effect forgetting loss, motivating
directions in finding efficient pruning functions.

Conclusion
We present a novel Bayesian optimization framework for re-
ducing catastrophic forgetting by actively selecting heuris-
tics to build pruned replay buffers of critical transitions for
specific tasks, then concatenating these critical transitions
into a global replay buffer for training a multi-task policy.
To scale with respect to the number of tasks, BLAST uti-
lizes distributed computing across task instances and eval-
uations, making computation practical in real-world sce-
narios. Beyond continual reinforcement learning, heuristics
may reduce memory requirements for offline reinforcement
learning datasets by distilling knowledge from local replay
buffers. For future work, we aim to extend the application
of BLAST to other continual learning environments, such as
HomeGrid (Lin et al. 2023) and ContinualWorld (Wołczyk
et al. 2021), to further evaluate its generalizability. Addi-
tionally, we plan to integrate both offline and online rein-
forcement learning evaluations, demonstrating its applica-
bility across diverse learning paradigms. To address chal-
lenges arising from noisy evaluation functions, we intend to
enhance the Bayesian optimization framework by incorpo-
rating techniques from noise-aware Bayesian optimization
and leveraging Bayesian neural networks for more robust
and reliable optimization.
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