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Abstract
The generation of 3D data with single-shot or few-shot meth-
ods remains an unsolved challenge. In this study, we ex-
plore and analyze the generalization capabilities of a genera-
tive 3D shape model, 3DShape2VecSet. 3DShape2VecSet is
a two-stage model in which the first stage is an autoencoder
that generates a latent embedding of the data and the second
stage is a diffusion model . We chose this model as our base-
line because the latent embeddings are produced using cross-
attentional layers, which provide flexible positional encoding
depending on the input data. Therefore, it learns representa-
tions that capture local features of objects, such as curves and
edges, making it well suited for generalization across classes.
We study generalization by training it on different sizes of
datasets. We show that by focusing on the encoding of the
learned representations, the model is able to produce more
robust and flexible latent spaces, improving its performance
when trained on limited data. Our results show that despite
training on smaller datasets, 3DShape2VecSet can effectively
generalize across shapes from different categories by exploit-
ing its ability to map shapes to meaningful latent representa-
tions. This study highlights the advantages of using learned
representations for generalization and contributes to the un-
derstanding of the role of latent space in 3D shape generation
and recognition.

1 Introduction
The generation of high-quality 3D shapes has become an im-
portant area of research in computer vision and deep learn-
ing. Despite remarkable progress in 2D image generation,
the transition to 3D remains challenging due to the inherent
complexity of generating and representing 3D data. High-
quality 3D datasets are significantly more difficult to gener-
ate and annotate than 2D images, resulting in limited avail-
ability of large-scale 3D data, which is a bottleneck for train-
ing robust and generalizable models.

Recent advances, such as 3D neural fields (e.g., Neural
Radiance Fields), have improved the quality of 3D percep-
tion and generation and show promise for rendering detailed
and realistic 3D objects. However, several key challenges
remain, such as model generalization across multiple ob-
ject classes, few-shot learning and providing consistent ren-
dering performance. In this work, we investigate the abil-
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Figure 1: Qualitative results of the multi-class model trained
on jet, armchair, couch, desk, and boat classes. One multi-
class model is able to generate samples from five different
classes.

ity of a neural field 3D latent diffusion model to generalize
across multiple classes and to learn with less data. To this
end, we aim to learn latent shape spaces that are not class-
specific in order to increase the generalization capability of
the model. We base our experiments on the 3D Shape2Vec
model, a framework that integrates an autoencoder and a dif-
fusion model, allowing us to systematically explore these
challenges. The 3DShape2Vec model’s autoencoder-based
latent space, combined with diffusion processes, provides
a suitable testbed for analyzing generalizability, especially
through its image-conditioned generation capabilities. Our
contributions are threefold:

1) Multi-class generalization: We investigate the general-
ization capabilities of the 3D Shape2Vec model for multi-
class shape generation. While existing models demonstrate
strong performance on single-class tasks, their ability to
generalize to multiple object classes without performance
degradation is underexplored. Our experiments aim to pro-
vide a comprehensive evaluation of how well this model can
handle different object categories.

2) Effect of training data size: In this work, we system-
atically investigate the effect of training data size on the



Figure 2: Architecture of Stage 1 autoencoder of 3DShape2VecSet used to create the latent representation (Figure from (Zhang
et al. 2023))

performance of the 3DShape2VecSet model, hypothesizing
that increasing data diversity, rather than sheer volume, im-
proves generalization across object classes. We evaluate the
model’s performance on different data sizes to determine
how data volume affects multi-class generation.

3) The role of latent representations: We analyze the role
of the regularizer used to learn the latent representation in
the generalization capability of the model.

Through this study, we aim to address some of the criti-
cal challenges faced by current 3D shape generation models
and provide new insights into the factors that influence their
generalizability and scalability.

2 Related Works
Implicit Shapes based 3D generation The field of 3D
shape generation has rapidly advanced, driven by deep learn-
ing techniques capable of capturing complex geometric and
structural details (Xu, Mu, and Yang 2023).

Of the different ways to represent 3D data such as vox-
els, point clouds, meshes, etc., implicit shape representations
(Mescheder et al. 2019; Park et al. 2019; Chen and Zhang
2019; Michalkiewicz et al. 1901) are becoming more popu-
lar due to their ability to retain complex geometry without
the loss of details and ease of modeling with deep learning.

Implicit shape-based 3D generative works like (Zheng
et al. 2022; Chen and Zhang 2019) use GAN architecture or
VAE architectures (Mescheder et al. 2019) or decoder only
architecture (Park et al. 2019). As our work focuses on gen-
erating diverse shapes, we choose an architecture based on
diffusion models. Due to the successful integration of dif-
fusion architecture with implicit representations, there has
been significant interest in this combination for 3D genera-
tive modeling (Shim, Kang, and Joo 2023; Zhang et al. 2023;
Cheng et al. 2022; Chu et al. 2023) targeting problems of
3D reconstruction, shape competition, text-guided genera-
tion, etc. However, these techniques are designed and func-
tion exclusively for a single category of objects per model.

Few-shot, Zero-Shot, and generalization over classes in
3D Shape Reconstruction Despite the progress in 3D
generative modeling, few-shot or zero-shot shape recon-

Figure 3: Quantitative results of multi-class model with
varying training size. The FID and KID scores are computed
between the generated samples by the multi-class model and
real samples of the classes used in the training set. Both met-
rics show a decreasing slope with increasing training size.

struction is identified as one of the challenges encountered
in 3D generation (Farshian et al. 2023). Works like (Wal-
lace and Hariharan 2019; Michalkiewicz et al. 2021) at-
tempted few-short learning for single-view reconstruction.
For the case of zero-shot learning, (Zhang et al. 2018) learn
priors for the reconstruction of novel categories, and (Thai
et al. 2021) exploits image information for 3D reconstruc-
tion. (Bechtold et al. 2021; Rao, Nie, and Dai 2022) use a hi-
erarchical approach to generalize over both local and global
shapes prior. (Chu et al. 2023) shows generalization on ob-
jects of unseen classes by using a hierarchical feature ag-
gregation mechanism. We hypothesize that having a latent
space that learn the best possible spatial encoding depend-
ing on the data opens up possibilities for the generalization
of the model across multiple classes and one-shot genera-
tion. Therefore, we choose 3DShape2VecSet (Zhang et al.
2023) as the baseline for our experiments.

3 Baseline: 3DShape2VecSet
We summarize the baseline3DShape2VecSet in this section.
There are two stages to this model, (i) the autoencoder that
creates latent codes of the 3D shapes and (ii) a denoising
diffusion probabilistic model that includes a forward diffu-
sion process and an inverse denoising process. We choose
this model for the following reasons: (i) 3DShape2VecSet



Figure 4: Latent space visualization of multi-class 3DShape2VecSet trained on three classes (airplane, chair, table). KL diver-
gence better preserves class information in the latent embedding. Here yellow points represent airplanes, green points represent
chairs and purple points represent tables.

introduces the encoding of 3D shapes into a set of latent
vectors that can be used in a latent diffusion model archi-
tecture to create a generative model. (ii) 3DShape2VecSet
uses neural fields for representation, providing a continuous
representation of 3D surfaces and allowing learning through
neural networks. (iii) The positional embedding used to en-
code the spatial information for the latent space is learned by
the network. This means that the netorkdoes not rely on fixed
spatial positions for its latent vectors, but instead allows the
model to learn and infer the necessary spatial information.
We hypothesize that this feature will increase flexibility and
generalization capabilities of the model.

The architecture of the stage 1 encoder is shown in Figure.
2. The stage 1 encoder pipeline starts with a 3D ground truth
surface mesh as input. A point cloud is first sampled from
this mesh and then mapped to position embeddings. These
embeddings are then encoded into a set of latent codes using
a cross-attention module. Optional compression and KL reg-
ularization steps are then applied within the latent space to
achieve structured and compact latent shape representations.
The pipeline continues to the decoder which consists of self-
attention layers to aggregate and share information within
the latent set. A cross-attention module is used to compute
the interpolation weights of query points.

The latent set representation of 3DShape2VecSet uses a
cross-attention mechanism to relate the query coordinates to
the anchored features based on a data-driven latent set grid.
The grid in this context, refers to the latent set grid, which
is not a traditional grid with fixed spacing such as a regular
or irregular grid. Instead, it is determined by the data itself
or what you are trying to encode, meaning that the structure
of the grid is influenced by the underlying data features. The
grid is adaptive, meaning it adjusts its structure based on
the data you’re working with, rather than following a prede-
fined pattern. The structure of the grid and the relationships
it encodes help the model process and understand the data
efficiently.

The final step is to feed the interpolated feature vectors
into a fully connected layer for occupancy prediction. This
comprehensive pipeline integrates various attention mecha-
nisms and regularization techniques to refine the shape cod-
ing process, thereby increasing the accuracy and efficiency
of occupancy prediction. We refer to (Zhang et al. 2023) for
more details on the baseline.

Thus, a shared encoder-decoder network represents all
shapes, and each shape is represented by a latent code com-
puted by the encoder. In addition, the latent representation
does not rely on fixed spatial positions for its latent vectors,
instead allowing the model to learn and infer the necessary
spatial information. We want to investigate if this architec-
ture can be used for a data set with class diversity, i.e. the
data set is a combination of several classes of 3D shapes. We
also investigate the role of the regularizer in this multi-class
generation task and the possibility of using 3DShape2VecSet
as a few-shot and single shot 3D generation model.

4 Experiments
4.1 Data
All our experiments use data from the ShapeNet dataset
(Chang et al. 2015) (V2). The data is preprocessed according
to the steps described in (Zheng et al. 2022). The rendered
images from (Choy et al. 2016) is used in the image con-
ditioning experiments. The exact details of classes used for
the different experiments are provided in the specific exper-
iments section.

4.2 Multi-class Generation
In general, the task of 3D generation has been limited to the
extent of a model that learns from only one class. We inves-
tigate the ability of 3DShape2VecSet to generalize across
multiple classes. A few-shot or multi-shot 3D model should
be able to represent objects from different categories. To
this end, we test the performance of 3DShape2VecSet when
trained on multiple classes, and refer to the problem as



Figure 5: (Left) Qualitative results showing the effect of the size of training data in a multi-class model on seen classes. Top row
shows the input image from the seen class provided as conditioning input. The results show that sample quality increases with
training data size. (Right) Qualitative results showing the effect of the size of training data in a multi-class model on unseen
classes. The results show that 3DShape2VecSet is suitable for single shot generation when trained in a multi-class setting.

”multi-class generation”. We also see the variation in per-
formance as the number of samples per class varies.

The multi-class generation problem is trained using the
class-conditional variant of 3DShape2VecSet, where the
class label is appended as a condition to the denoising
network of 3DShape2VecSet (stage 2). The training set is
a combination of samples from the jet, armchair, couch,
desk, and boat classes of Shapenet. The training sizes are
varied as 50, 100, 200, 400, and 600 samples from each
class. we show qualitative results of the multi-class model
of 3DShape2VecSet in Figure. 1.

Figure 1 shows that a single 3DShape2VecSet model is
successful in retaining the features of the 5 different classes
it was trained on. The quality of the generated samples im-
proves as the number of training samples increase. We also
compute the FID and KID scores for the different classes,
as shown in the figure. 3.We follow [(Zhang, Nießner, and
Wonka 2022),(Shue et al. 2023),(Ibing, Lim, and Kobbelt
2021)] to adapt the Fréchet Inception Distance (FID) and
Kernel Inception Distance (KID), which are commonly used
to evaluate image generative models, to rendered images of
3D shapes. We used 150 generated samples per model versus
150 samples from the ground truth data for the FID and KID
calculations. We observe that the slope of both the FID and
KID scores have a decreasing slope as the number of sam-

ples increases. This indicates that the gain in sample quality
decreases as the sample size increases.

4.3 Latent space vs Regularizers
In our second experiment, we test the effect of the regular-
izer on the latent encodings of the samples produced by the
stage 1 autoencoder. The diffusion process is performed on
these latent embeddings. Therefore, in a multi-class setting,
it is desirable that the latent space of the data is meaning-
ful and encodes some class-based clustering of the samples,
i.e., intra-class distances are lower and inter-class distances
are higher. We also use another regularizer to check its im-
pact on the latent space distribution and the quality of the
generated samples.

For this experiment, we train the 3DShape2VecSet model
with a multi-class dataset containing samples from 3
classes (airplane, chair, table). We train the multi-class
model with two regularizers, i.e., KL divergence (used in
3DShape2VecSet) and Hellinger distance, by varying the
beta parameters for both (β parameter, i.e., the weight of
the regularizer loss, takes values of 0.001, 0.01, 0.1, 1,
10). Hellinger distance(Hyun, Choi, and Kwak 2019) helps
align embeddings from different classes into a unified latent
space, reducing overfitting and promoting class-agnostic
generalization. It preserves diversity, prevents mode col-



lapse, and ensures smooth transitions in the latent space,
allowing for better interpolation and generation. This im-
proves the ability of the latent diffusion model to handle
diverse inputs while maintaining a meaningful representa-
tion. We adjust KL divergence as given in 3DShape2VecSet,
which can be given as follows:
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where, µp and σp are the mean and standard deviation of our
data distribution P , and µq = 0 and σq = 1 are the mean
and standard deviation of distribution Q.

We visualize the latent encoding of 600 random samples
using T-SNE(Van der Maaten and Hinton 2008) Visualiza-
tion of the latent embedding, 2D T-SNE projections shown
in Fig. 4) show that, in general, the KL divergence is bet-
ter at clustering samples from the same class together for
each of the values of the β parameter. The samples from dif-
ferent classes appear to be evenly or randomly distributed
in the latent space generated by the Hellinger distance. The
highest class-based clustering occurs for KL β = 1, while
β values of 1e-1 and 1e-2 also show decreasing degrees of
class-based clustering. We also provide qualitative results
in 7 (left) to test the effect of the regularizer on the la-
tent space for the image-conditioned multi-class model of
3DShape2VecSet in section. 4.3.

i. Effect of training data size We train the multi-class
models with data from 5 leaf node classes of the Shapenet
taxonomy. These leaf classes are chosen to minimize the
variation within each class. The training dataset consists of
the classes jet, armchair, couch, desk, and boat, which are
child classes of the parent classes airplane, chair, sofa table,
and watercraft, respectively.

Figure 5 (left) shows representative examples of results
generated by a multi-class version of an image-conditioned
3DShape2VecSet model for varying class size of the train-
ing set. We can see from Figure. 5 (left) that multi-class
3DShape2VecSet is successful in producing good 3D shape
results from the 5 classes it was trained with. We also see that
the sample quality improves with increasing training size for
all classes.

Next, we use the same model that was trained on the leaf
classes (jet, chair, couch, desk, and boat) to generate results
given images of unseen classes (classes not used in the train-
ing dataset). The figure. 5 (right) shows representative exam-
ples of results for image inputs from unseen classes with the
different class sizes of the training data.

Figure 6: Quantitative metrics of F-score and Chamfer dis-
tance of the multi-class model for seen and unseen classes.

We believe that local and global features from differ-
ent classes of the training data are mixed and matched to
produce results closer to the input image of the unseen
class. For example, the leftmost image in Figure. 5 (right)
is from the bench class. The multiclass image-conditioned
3DShape2VecSet model combines features from the chair,
desk, and couch leaf classes present in the training dataset to
generate the shape of the bench sample. The second column
shows the results of an input image from the cabinet class
of ShapeNet and the multi-class 3DShape2VecSet combines
features of the couch and desk leaf classes present in the
training set to match the input condition at test time. The
third column has an input image of the car (unseen class),
which is generated by the model by using the leaf class, boat,
to give the structure of the car and the 4 legs features of the
couch, armchair, and desk leaf classes to form the wheels
(can be seen in the 200 training size model). Thus, train-
ing with multiple classes has enabled the generation of good
quality 3D samples that match input images from unseen
classes.

We also ask whether a smaller number of classes in a
multi-class training paradigm is better at preserving details
in the geometry. Generated samples from the cabinet and
bench input images (Figure. 5(right part) , first and second
column) show finer geometry (the intended line at the junc-
tion of the backrest and seat surface of the first image and the
surface indentation for the cabinet door) retained in the out-
put of models trained with 100 and 200 samples than in 400
and 600, which lack these details. Increasing the class size
produces smoother surfaces that are more consistent with the
overall topology and global shape of the object in the input
image. This suggests that training with fewer samples in a
multi-class setting results in more robust learning of local
features in a single-shot setting.



Figure 7: (Left) Qualitative result showing the effect of different regularizers with different β values on the sample generation
for seen classes by the model. (Right) Qualitative result showing the effect of different regularizers with different β values on
the sample generation for unseen classes by the model.

We compute quantitative metrics of chamfer distance and
F-score (Mescheder et al. 2019) on all the meshes in the
test set using our multi-class image conditioned models Fig-
ure. 6, for the seen classes and unseen classes. Similar to
3DShape2VecSet, Chamfer distance and F-score are calcu-
lated between two sampled point clouds, each consisting of
50k points, taken from the reconstructed and ground truth
surfaces, respectively. Lower values for Chamfer and higher
values for F-score are desirable. The arm chair class has the
highest variance in the both the chamfer distance and F-
score The chamfer distance of jet, couch, and boat classes
in the seen set and the cabinet and car classes decreases with
increasing training data size. We observe that both F-score
for all 3 unseen classes are within the range of F-scores of
the seen class test set and also shows little variation from
mean values compared to that of seen classes. While the F-
score of seen classes increases with increasing data size of
the model, the rate of increase in the unseen classes is lower

Comparison to singleton models: We compare the per-
formance of our image conditioned models against models
trained on only one class. We choose the classes of couch
and arm chair for this comparison as representatives of best
and worst scores for the F-score and chamfer distance metric

(Figure. 6). We consider the couch class as the simpler class
to learn and the armchair class as the more difficult class to
learn among the 5 classes used in the multi-class image con-
dition experiments dues to their F-score and Chamfer val-
ues in Figure 6. The F-score and chamfer distance metrics
are compared between multi-class and single-class versions
of models in Figure. 8. The chamfer distance and F-score
metric plots for the couch class shows that the single and
multi-class versions show similar trends as the data size in-
creases. The variance in single-class couch model for both
Chamfer and F-score is greater than multiclass indicating
more robustness in the multi-class results. It is also interest-
ing to note that in the few shot regime (100 - 200 training
data size), the multi-class mean metrics are better (F-score)
or at par (Chamfer distance) with the single class metric.

ii. Effect of Regularizer We train the multi-class models
with data from 3 classes of the Shapenet taxonomy to see
the generalization of the multi-class 3DShape2VecSet to un-
seen classes with different regularizer settings. The training
dataset consisting of the airplane, chair, and table classes and
the experiment are run for the KL and Hellinger regularizers
with β parameter values of 0.001, 0.01, 0.1, 1, 10.



Figure. 7(left) shows representative examples of qualita-
tive results generated by the multi-class version of an image-
conditioned 3DShape2VecSet model for varying weight of
the regularizer in the total loss of the autoencoder. These are
examples taken from the test set of the classes used to train
the models. We can see from Figure. 7(left) that multi-class
3DShape2VecSet is successful in generating 3D shapes that
match the input image for all beta values except β = 10
for both KL and Hellinger models. The pattern generated
by models with β set to 0.001 is noisier, and the pattern
quality improves as we move to higher values of β for both
Hellinger and KL, up to β = 1. We can also see that finer
details (local features) are preserved for β values of 0.01 and
0.1 (the lower part of the chair is missing as the β value in-
creases, details of the wing in the aircraft class). More quan-
titative results are needed to conclude whether Hellinger or
KL is more suitable for multi-class 3D generation.

Figure. 7(Right) shows representative examples of quali-
tative results on unseen classes generated by a multi-class
version of an image-conditioned 3DShape2VecSet model
for different settings of the regularizer. We observe that at
higher values of β, i.e. (1 and 10 for KL and 1 for Hellinger,
the results get closer to the local and global features of the
training data set, while at lower values of β, such as 0.001,
0.01, and 0.1, the model is more flexible and tries to shape
the pre-learned local features according to the input image.

As seen in Figure 4, the combination of regularizer and β
that produces clear class clustering (e.g., KL with β = 1)
reduces the fidelity of the representation of the input image
features. For example, in Figure 7 (right, row 2, KL with
β = 1 ) generates legs for an image that lacks them. Sim-
ilarly, Hellinger with higher β values emphasizes learned
features over input fidelity. On the other hand, smaller β val-
ues (e.g., β < 0.1) cause overlap in the latent space due to
shared local features (e.g.table and chair classes both have
legs). In Figure 7(right, row 3), KL with β < 1 mixes air-
plane and table features to reconstruct the frontal structure of
the input, consistent with their overlapping clusters in latent
space. However, KL with β = 1, which has distinct clusters,
fail to produce the same.

5 Conclusion
This study demonstrates that generative models with learned
latent space can be used effectively in a multi-class problem.
It also sheds light on the role of regularization and training
size in achieving class-agnostic representations with the 3D
latent generative models. Our experiments show that while
increasing the weight of the regularizer can promote a more
uniform latent space, it can also lead to a decrease in gen-
eralization ability. Additionally, varying the training size re-
vealed the ability of the model to maintain class-agnostic
properties. Here, a smaller training size per class leads to
the retention of finer details in the generation. Comparing
quanitative metric sof Chamfer distance and F-score indi-
cated that multi-class models performed better in the few-
shot regime than their single-shot counter parts. Future work
can explore alternative regularization techniques and larger
and more diverse datasets to further improve class-agnostic
capabilities in 3D shape modeling. We believe that as VR,

AR, and gaming become more popular, efficiently creating
3D content with less training data and for new categories is
essential to making these technologies scalable and accessi-
ble. This study provides valuable insights into understanding
3D content creation in the face of these challenges.
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Figure 8: Quantitative comparison of the couch (highest F-
score and lowest Chamfer distance among the 5 classes in
Figure 7) and arm-chair (lowest F-score, highest Chamfer
in Figure 7) classes in the multi-class model against their
singleton versions with varying training data size.

Supplementary
Comparison to singleton models: We compare the per-
formance of our image conditioned models against models
trained on only one class. We choose the classes of couch
and arm chair for this comparison as representatives of best
and worst scores for the F-score and chamfer distance metric
(Figure. 7). We consider the couch class as the simpler class
to learn and the armchair class as the more difficult class to
learn among the 5 classes used in the multi-class image con-
dition experiments dues to their F-score and Chamfer val-
ues in Figure 7. The F-score and chamfer distance metrics
are compared between multi-class and single-class versions
of models in Figure. 8. The chamfer distance and F-score
metric plots for the couch class shows that the single and
multi-class versions show similar trends as the data size in-
creases. The variance in single-class couch model for both
Chamfer and F-score is greater than multiclass indicating
more robustness in the multi-class results. It is also interest-
ing to note that in the few shot regime (100 - 200 training
data size), the multi-class mean metrics are better (F-score)
or at par (Chamfer distance) with the single class metric.

In the case of the Armchair (class with lower metric scores
in the 5 classes used for training, or the more difficult class),
the mean value of both metrics of single and multi- mod-
els follow similar trend and have almost equal values for the
models of training data size higher that 200. The higher vari-
ance in the multi-class could be attributed to the niche details
of geometry like wheels, rounded seats and varying topology
(holes introduced by the arm-rest), that are present in only
the archair class and not the other 4 classes of the multi-class
model and is missed by the model. This implies that the sin-
gleton model that is trained on just one class is able to pick
up these details better. However, we see again in the difficult

Figure 9: Chamfer Distance and Fscore for the seen and un-
seen Classes with varying β values of the KL.

class of arm-chair, the same observation as the couch class
that the multi-class versions are performing better in the few
short regime than the singleton models. Between the easy
couch class and the more difficult arm chair class, a notice-
able difference is that the variance in arm-chair metrics is
consistently much higher for the multi-class model than for
the single-class model.


