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Abstract

Deep neural networks that incorporate classic reinforcement
learning methods, such as value iteration, into their struc-
ture significantly outperform randomly structured networks
in learning and generalization. These networks however, are
mostly limited to environments with no or very low amounts
of uncertainty. Value iteration with value of information net-
work (VI2N) shows a decent performance in highly uncer-
tain environment. However, the network size grows quadrat-
ically in size of the state space, making it struggle in large
environments. Here we show how taking advantage of mixed
observability in many environments can be incorporated into
VI2N to make it significantly smaller and thus trainable in
large domains. Mixed observability refers to situations where
the state space could be divided into fully and partially ob-
servable components. We tested our network on a goal-based
navigation task where the location of the goal is unknown to
the agent. Our network significantly outperformed Q-MDP
net, the only existing competitor for decision making under
uncertainty among these types of networks.

Introduction
Deep neural networks have had tremendous success in Rein-
forcement Learning (RL) by providing an end-to-end solu-
tion from perception to action (François-Lavet et al. 2018).
While networks with random structures could be trained
based on expert policy, similar to supervised learning, incor-
poration of classic RL methods into them boosts their per-
formance significantly (Tamar et al. 2016; Karkus, Hsu, and
Lee 2017). For example, Value Iteration Networks (VINs)
use long-term planning by implementing the value itera-
tion algorithm (i.e. a sequence of Bellman updates) via con-
volutional layers (Bellman 1957; Tamar et al. 2016; Niu
et al. 2018; Zhang et al. 2020; Ishida and Henriques 2022).
Trained either by reward or through imitation of an expert’s
actions, VINs can learn to navigate in fully observable novel
environments significantly better than fully connected and
untied convolutional networks (Tamar et al. 2016).

Fully observable environments modeled by Markov Deci-
sion Processes (MDPs) are a well-explored domain in both
classic and deep reinforcement learning. This is not true for
Partially Observable Markov Decision Processes (POMDPs)
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with substantial complexity due to the inherent partial ob-
servability of the environment. Lack of full knowledge about
the current state forces the agent to work with a belief space
rather than a state space. This belief space consists of all
probability distributions over possible states, and therefore
has as many dimensions as there are states. The curse of
dimensionality results in computationally intractable solu-
tions for this exponentially growing belief space. As a re-
sult, there are significantly fewer methods and networks that
work well in partially observable environments. For exam-
ple, there are only two networks in the VIN family that
are able to perform in partially observable environments,
QMDP-Net and VI2N (Karkus, Hsu, and Lee 2017). Being
based on a very crude heuristic, i.e. QMDP, QMDP-Net can
not perform well in environments with high degree of un-
certainty. The V I2N neural network utilizes a CNN to im-
plement a POMDP solver, named the pairwise heuristic, in a
differentiable manner (Khalvati and Mackworth 2013; John-
son, Buice, and Khalvati 2022). This method surpasses the
performance of the QMDP-net, but takes significantly longer
to learn the policy of a given environment. This is because
although the dimensionality of the belief space is vastly re-
duced due to the heuristic that only considers pairs of beliefs
rather than every possible combination of beliefs, the belief
space could still be extremely large as it is quadratic in state
space size.

Mixed Observable Markov Decision Processes
(MOMDPs) are an alternative to the POMDP problem,
where certain features about the state are fully observable
while others are not (Araya-López et al. 2010). For example,
in goal-directed navigation, the agent might know its own
position but not where the goal is. Factorization of state
space into fully and partially observable components can
reduce the computational complexity of some solver’s
significance. Notably, not all POMDP solvers can benefit
from this factorization. Here, first, we show how the
pairwise heuristic can be modified for MOMDPs and take
advantage of factorization. Based on this modification, we
further show how VI2N can be adapted to solve MOMDPs
in an efficient and generalizable fashion (Johnson, Buice,
and Khalvati 2022). We show the success of our approach
in a goal-based navigation problem where the agent does
not know where the goal is and needs to reach a certain
landmark to gain that knowledge.



Background
Partially Observable Markov Decision Processes
The way the environment our agent operates in is repre-
sented as a Partially Observable Markov decision Process
(POMDP). This is an extension of the Markov Decision Pro-
cess (MDP) representation of an environment, which con-
tains a set of states s ∈ S, and a set of actions a ∈ A, that
connect states to each other based on a defined set of tran-
sition probabilities P (s′|s, a). Each state has an associated
reward given by the reward function R(s, a), and the agent’s
goal in this environment is to maximize the total gained re-
ward. In the partially observable case, we also have an ob-
servation function, which maps the likelihood of encounter-
ing an observation z ∈ Z to each state P (z|s). Finally, a
POMDP agent operates on a belief state rather than a given
state, which is a probability distribution over states, b(s).
The goal of the agent in a POMDP environment is to maxi-
mize the total gained reward.

Mixed Observable Markov Decision Process
A Mixed Observable Markov Decision Process (MOMDP)
represents a middle ground between POMDPs and MDPs.
In a MOMDP, certain dimensions of the state are visible,
Sv while others are hidden, Sh (Araya-López et al. 2010).
When a portion of the state is known, a factorized repre-
sentation of the belief space can be used to reduce the di-
mensionality and complexity of the problem. As a result
Bv = Sv , and any belief state can be represented as a com-
bination of (Sv, Bh) (Ong et al. 2010). The dimensionality
of B is therefore reduced from |S| to |Sh|, yielding a large
improvement in computational efficiency of some POMDP
solvers.

Value Iteration Networks
The value iteration algorithm is an MDP solver where the
optimal value of each state, which equals the expected total
reward in the future, is computed through a series of Bell-
man updates (Bellman 1957):

Vt(s) = max
a

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vt−1(s
′)

]
. (1)

When the transition function is spatially invariant, a neural
network can learn the transition (T ) and reward (R) func-
tions by implementing the above equation with a series of
convolutional layers (Tamar et al. 2016)). More specifically,
given the map of the environment presented as an image,
and the current state of the agent as the inputs and an ex-
pert’s action or reward as the output, this network, called
Value Iteration Network (VIN) learns convolutional kernels
of fR and fP representing reward and transition functions.
Value Iteration Networks (VINs), significantly outperform
networks with similar computational power (e.g., layers) in
learning to plan in novel environments (Tamar et al. 2016).
These networks have been significantly improved in terms of
applicability to domains with more complex structures over
the past years (Niu et al. 2018; Zhang et al. 2020; Ishida and

Henriques 2022). All of these improvements, however, are
still mainly limited to fully observable environments.

POMDP has an additional observation function. As long
as this function could be implemented by a network, for ex-
ample with a convolutional kernel mimicking observing the
surroundings, the network can learn it through training. The
main challenge in solving POMDPs with neural networks
is the implementation of the POMDP solver, which needs
to be differentiable. Almost none of the POMDP solvers
meet this criteria. Therefore, there are only two POMDP
network solvers in this domain. The first one is QMDP-Net,
which implements the QMDP heuristic (Karkus, Hsu, and
Lee 2017). Founded upon a very simple heuristic, QMDP-
Net fails in environments with high degree of uncertainty.
VI2N is the second network in this domain, which imple-
ments a POMDP solver named Pairwise Heuristic (Johnson,
Buice, and Khalvati 2022). Implementing a more powerful
heuristic, VI2N performs well even in challenging environ-
ments. However, as the pairwise in the name suggests, the
network size grows quadratically with state space size. This
complexity makes VI2N impractical in large domains.

Model
Our goal is to take advantage of the factorizability of
MOMDPs to design an efficient network solver for an en-
vironment with Mixed Observability. To do this, we derive
the MOMDP version of the Pairwise Heuristic and VI2N.

Factorized Pairwise Heuristic
The main idea of the pairwise heuristic is to use solutions
of the smallest sub-problems that still consider the uncer-
tainty about the true hypothesis/state, which would be pairs
(sets of 2) of hypotheses/states (Golovin, Krause, and Ray
2010; Khalvati and Mackworth 2012, 2013). In a POMDP,
this would be the set of |S|(|S| − 1)/2 optimal policies in
each of which the belief is .5 for two states (Khalvati and
Mackworth 2013). By factorizing out the portion of the be-
lief space that is fully observable, this can be decreased to
|Sv||Sb|(|Sb| − 1)/2, which combines the visible state sub-
space with the pairwise combination of the hidden state sub-
space. The pairwise heuristic is easily factorizable because
the state space of the pairwise function can be easily re-
duced, unlike in other algorithms like QMDP, where there
is no reducible state.

When looking at the paired states, the expected total re-
ward of each of these policies is the value of the pair, shown
by V (s, s′), for s, s′ ∈ S. When factorizing S into Sv and
Sh, only the Sh component contains possible ambiguity, so
the pairwise value can be expressed as V (sv, sh, s

′
h), de-

creasing the total possible values that need to be calculated
for the model. Finding the optimal solution when the uncer-
tainty is about two states is still computationally expensive.
As a result, the Pairwise Heuristic further simplifies its pol-
icy by prioritizing resolving uncertainty when calculating
V (sv, sh, s

′
h), before exploiting the reward. Resolving un-

certainty is not always necessary to gain the optimal reward.
However, it produces a good enough solution.

The Pairwise Heuristic defines a pair of states as distin-
guishable if there is a high probability that different obser-



vations are recorded in the two states. Since our factorized
MOMDP implies that the a portion of the state is already
known, the distinguishabilty of that dimension of the states
does not need to be calculated. Therefore, we only have to
determine the pairwise distinguishabilty of hidden dimen-
sion, keeping the visible dimension constant across pairs.
Formally, for each visible factor sv , (sv, sh) and (sv, s

′
h)

are distinguishable if and only if:∑
o

∑
sh,s′h

p(o|(sv, sh))(1−p(o|(sv, s′h)))+p(o|(sv, s′h))(1−p(o|(sv, sh))) ≥ 2λ

(2)
λ is a constant that is specified by a domain expert. If

there is no noise in observations, this value is 1. Otherwise,
this threshold is set to a value close to but less than 1.

The pairwise value (V (sv, sh, s
′
h)) of distinguishable

pairs is simply the average of the value function of each
of the states in the underlying MDP model of the environ-
ment (assuming full observability in the environment), i.e.,
.5(V (sv, sh) + V (sv, s

′
h)). To find the value function of the

indistinguishable pairs, we use a value iteration algorithm in
an MDP where the states are pairs of states of our original
problem. This requires a pairwise transition function, which
is determined by the joint transition probability of the states
in the pair. The reward of each pair is the average reward of
the two states in the original problem:

∀sv : R(sv, sh, s
′
h) = 0.5(R(sv, sh) +R(sv, s

′
h)) (3)

Therefore, the Bellman equation of our pairwise value it-
eration algorithm is as follows:

Vk(sv, sh, s
′
h) = max

a
[R(sv, sh, s

′
h)+γ

∑
s′v,s

′′
h
,s′′′

h

T (sv, sh, s
′
h, a, s

′
v, s

′′
h, s

′′′
h )Vk−1(s

′
v, s

′′
h, s

′′′
h )]

(4)
Initial pairwise values, i.e., V0(sv, sh, s

′
h), in the above

equation, is .5(V (sv, sh) + V (sv, s
′
h)) for distinguishable

pairs and the minimum possible reward for indistinguishable
ones.

To select an action, the Pairwise Heuristic POMDP-solver
maximizes the expected value of pairs using the joint belief
state, i.e., b(sv, sh, s′h) = b(sv, sh)b(sv, s

′
h):

∀sv : a∗k = argmax
a

∑
(sh,s′h)

b(sv, sh, s
′
h)Q((sv, sh, s

′
h), a)

(5)
If the probabilities of all states, except the most likely one,
become negligible, the selected action would be the optimal
action of the underlying MDP for that most likely state.

Environment
To demonstrate the factorized VI2N architecture, we de-
velop an environment with mixed observability that consists
of the visible state variables (the agent x and y coordinate
locations), and a hidden variable that indicates the true dis-
tribution of rewards out of the possible goal locations indi-
cated on the map. We can manipulate the number of possible
goal locations displayed on the map, G, increasing the un-
certainty of the environment by adding more possible goal

locations. The maps are all squares, with a side length of
n and states S of size |S| = n ∗ n ∗ G. Our environment
contains one informational landmark that reveals the actual
location of the goal, although a more complex observation
function could be used and still yield a factorizable envi-
ronment. Since the agent’s x and y coordinate location is
known, this landmark is the only relevant observation. The
size of our observation space is |G + 1|, as the observation
can reveal the true state that designates one rewarding loca-
tion out of G, or nothing. The landmark observation is akin
to an oracle revealing the actual state of the world. The agent
could rely on the oracle for information or act purely on its
own priors. In our environment, the observational cues are
few but dense.

The agent is able to take the actions right, up, down, and
left, moving itself one cell in the direction specified by the
name and also action stay. Taking more actions leads to a
reduced reward, as each a discount is applied to each re-
ward based on how long each sequence of actions took to
get there. Additionally, there is a positive reward when the
agent finds the true goal, while there is a large negative re-
ward when the agent reaches any of the false goals. This
reward set up encourages the agent to quickly and correctly
identify the true goal.

Factorized VI2N Architecture
In general, the fundamentals of (factorized) VI2N architec-
ture remain the same across different types of problems.
Only minor implementations, such as transition kernel, are
different.

All of the pairwise heuristic POMDP solver processes
have a straightforward differentiable implementation. The
central part of this solver is the pairwise value iteration (Eq.
4), which uses the pairwise transition, and the pairwise re-
ward functions (Eq. 3). Moreover, the initial pairwise values
are determined by the value of states (V (s)) in the underly-
ing MDP (Eq. 1) and the distinguishability of each pair of
states (Eq. 2). The network implementation of these compo-
nents is demonstrated in Figure 1.

Starting from the value iteration algorithm implemented
by a VI module, the network learns fP and fR, determining
T (s, a, s′) and R(s) of the environment, in addition to the
value of single states, V (s). From this point, the objective
becomes converting elements of the environment to a pair-
space representation to allow for the VI2 module implemen-
tation. Specifically, we must convert R(s) into R(sv, sh, s

′
h)

for all sh, s′h ∈ Sh × Sh. Because of mixed observabil-
ity, we only have to calculate the reward for the pairs of sh
for a given sv , instead of calculating every combination of
(sv, s

′
v) and (sh, s

′
h), as shown in Figure 1. Since the under-

lying model of our environment structures the goal states as
giving a small reward or large penalty, the pairwise reward is
negative, encouraging the agent to determine the true value
of the goal state before reaching it.

In our environment, the hidden states (sh) are fully dis-
connected. Therefore, the transition function T is used as the
kernel in the VI Module (fP ) and is only applied on Sv . This
allows us to simplify our transition function to, T (sv, a, s′v),



applying this uniform transition function on all pairs of sh
instead of creating a separate pairwise transition function.

Initial pairwise values, V (sv, sh, s
′
h) or Vpair, are set

as Rmin for the indistinguishable states. This assumes the
worst case scenario and uses it as the default value for
each pair of states. As the pairwise heuristic dictates, for
all states in sv where aspects of the hidden variable can be
distinguished through observation, the initial value is set to
0.5[R(sv, sh)+R(sv, s

′
h)+V (sv, sh)+V (sv, s

′
h)], for all of

the pairs that can be distinguished in that sv , in an attempt
to approximate the true value of that state. The transition
kernel is then recursively applied to Vpair + Rpair in order
to perform value iteration and propagate the values of the
distinguishable pairs to the rest of the state space.

We use the observation function to determine which states
are able to be distinguished from each other. Since we al-
ready know that sv is fully observable, the distinguisha-
bilty matrix dictates which states in sv also have information
about sh, reducing the representation from |S| to |(sv, sb)|.
Our observation function is derived from the landmark layer
of the map, since the landmark block, (xl, yl), is the only in-
formative position. Because of that property of the environ-
ment, the only pairs that are distinguishable are pairs where
sv = (xl, yl)

The pairwise value initialization (V0(sv, sh, s
′
h)) is done

using matrix multiplication of D, the distinguishabilty ma-
trix, and .5(V (sv, sh)+V (sv, s

′
h)) (for distinguished pairs)

in addition to multiplication of (1−D) and minR(S) in the
shape of an |Sv| × |Sv| matrix (for indistinguishable pairs).
With the pairwise reward and transition function calculated,
the pairwise value iteration (Eq. 4) is just another VI module,
which we call V I2 module since it is in the pairwise space.
Finally, the action selection (Eq. 5) is done by multiplying
the pairwise belief state (outer product of belief by itself)
with pairwise Q values and taking the sum of the weighted
Q values.

Results
We compared our factorized VI2N model with the other
POMDP network solver, QMDP-net. We trained and tested
these two models on various grid worlds that have the envi-
ronmental attributes described earlier. The size and number
of possible goals were manipulated in these grid worlds to
investigate the generalizability of our architecture and the
effect of increasing uncertainty on the results. We kept the
observation and action function constant among the environ-
ments to have a systematic comparison in terms of uncer-
tainty and complexity of the decision-making. Finally, we
used the same belief update mechanism for both methods
(QMDP-Net and factorized VI2N) to have a fair comparison
between the two policy modules.

The two neural networks were trained on the same
datasets with a set of Pairwise Heuristic expert solutions.
Networks were trained only on successful trials (less than
50 steps needed to reach the goal) to resemble positive re-
inforcement, although the failure rate was very low, under
1%. The training set contained 1000 independently gen-
erated environments, each containing 10 solution paths to

Figure 1: Factorized VI2N architecture and comparison of
network size with or without factorization.

yield 9000-10000 action labels when accounting for the un-
successful solutions. Training performance was evaluated
through 90% − 10% train-validation process, and the result
reported is the average success rate of 5 training sequences
for each environment. The test success rate was then cal-
culated by running the generated model on 1,000 novel en-
vironments of the same type, defining a success as a trial
where the agent reaches the goal by solely following the pol-
icy in less than 50 steps. The initial belief state for the tests
was always uniform among all aspects of Sh.

Our results are displayed in Table 1. We first tested the
models on our benchmark environment, a 10×10 grid world
with two possible goals. In this case, the pairwise solver
reached the goal far more often than the QMDP-net, prov-
ing its superiority in the most basic environment. We then
moved on to more complex environments to show how the
pairwise net maintains its advantage over the QMDP-net de-
spite increasing complexity.

The first variable that we manipulated was the amount of
possible goal states in each environment. When increasing
the amount of goals from 2 to 3, the performance of QMDP-
net increases, going from a 28% success rate to a 32% suc-
cess rate. This is odd but is explained by a switch in strategy
as the number of goals increases to a strategy that chooses
one goal to navigate to regardless of the actual underlying



Table 1: Success Rate of network solvers over various envi-
ronments.

Side Length No. Goal Places VI2N QMDP-net
10 2 0.98 ± 0.01 0.28 ± 0.01
10 3 0.97 ± 0.01 0.32 ± 0.02
10 4 0.96 ± 0.01 0.22 ± 0.02
15 2 0.96 ± 0.01 0.14 ± 0.02

state, leading to a success rate of about 1/|G|. When the
number of goals is further increased to 4 goals, that trend is
followed, with a success rate of 22%. For the pairwise solver,
an increased number of goals slightly degraded the perfor-
mance of the model, but the VI2N solver still consistently
performed far better than QMDP-Net.

After testing the network’s performance on the environ-
ment with more goals, we also tested the two networks on
a larger environment. We expected the performance of both
networks to decrease on a larger network, but hypothesized
that the use of factorization in the VI2N would allow it
to handle an increase in the observable state space better
than the QMDP-net model. We trained both models on a
new set of 15x15 grid world environments, with two possi-
ble goals for each environment. As predicted, the VI2N-net
model performed slightly less well on the larger environ-
ment, but still solved most cases, whereas the QMDP-net’s
performance decreased dramatically.

Interpretability and the emergence of code for
informative locations

Overall, we found that the factorized VI2N model was able
to successfully learn the proper representations for the envi-
ronment dynamics and reward function. Furthermore, look-
ing at the value maps that our model generated for each en-
vironment, we found mappings that followed our intuitions
about information seeking and value exploitation (Figure 2).
In uncertain environments, where pairwise values are con-
sidered, the agent prioritizes information acquisition and lo-
calization, assigning the landmark state greater value. After
the agent has cleared the ambiguity and determined the true
goal state, the agent assigns increasing value to the state the
true goal is in, avoiding the red herring states.

When looking at the navigation strategy of VI2N, the
model consistently reaches the landmark to determine where
the goal is and subsequently navigates to the goal. Irrespec-
tive of the number of potential goals or size of the environ-
ment, the VI2N navigated to the landmark first in about 95%
of the total trials. On the other hand, QMDP-net was shown
to go to the landmark in about 30% - 50% of the test trials
in all cases and generally does not usefully incorporate this
information into its navigation strategy.

These observed differences in performance and behavior
imply that the VI2N model is better at solving MOMDP
problems. The structure of the VI2N encourages the agent
to decrease ambiguity before exploiting high-value actions.
This yields good results in the MOMDP environment be-
cause the hidden variable is resolved, and then value is ex-
ploited according to the optimal action mapping based on

the known state. Especially because the hidden state is fac-
torized, resolving uncertainty for the MOMDP is not too
computationally expensive, making it reasonable to priori-
tize information gain. In contrast, QMDP-net does not have
a structure that inherently prioritizes information seeking,
which makes finding the reward less reliable because the
state information frequently remains ambiguous throughout
the navigation process.

Figure 2: S(left), V (s)(top), V (s, s′)(bottom) for three
possible places of the goal.

Discussion

We have introduced the factorized VI2N as a deep learning
architecture for decision making under mixed observabil-
ity, modeled after the fully differentiable Pairwise Heuris-
tic. The VI2N architecture demonstrates the ability for long-
term planning for resolving uncertainty which exceeds the
capacity of previously proposed network architectures seen
in the VIN and the QMDP-Net. As shown in Figure 2, in ad-
dition to reward value maps, it generates information value
maps, highlighting the informative areas in respect to the re-
ward (goal). Taking advantage of the factorizability of the
heuristic, which was the main focus of our paper, allows us
to compute value functions for complex environments far
more efficiently.

In all of our tasks, the agent had full observability of their
own location while being presented with a set of potential
locations for the goal, where only one was the actual goal.
We were able to manipulate this task to account for vary-
ing levels of uncertainty but kept the basic structure of the
task the same. We have yet to explore varying the size and
scope of the landmark structures or changing the dynamics
that dictate where the reward is located. Additionally, formu-
lating other environments with mixed observability, such as
grasping, where the cartesian location of the arm is known,
but maybe its height is obscured, would contribute to our re-
sults’ reliability. However, designing scalable, challenging,
and intuitive setups for other tasks is, unfortunately, com-
plicated. For example, as shown in the QMDP-Net paper,
the available grasping environment is relatively easy for the
classic QMDP algorithm with more than 98 percent success
rate (Karkus, Hsu, and Lee 2017).
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