
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based
Sequence Reinforcement Learning for Model-Free Control

Devdhar Patel, Hava T. Siegelmann
1 Manning College of Information and Computer Sciences,

University of Massachusetts,
Amherst, MA 01002 USA

devdharpatel@cs.umass.edu, hava@umass.edu

Abstract

Reinforcement learning (RL) is rapidly reaching and surpass-
ing human-level control capabilities. However, state-of-the-
art RL algorithms often require timesteps and reaction times
significantly faster than human capabilities, which is imprac-
tical in real-world settings and typically necessitates special-
ized hardware. We introduce Sequence Reinforcement Learn-
ing (SRL), an RL algorithm designed to produce a sequence
of actions for a given input state, enabling effective control at
lower decision frequencies. SRL addresses the challenges of
learning action sequences by employing both a model and an
actor-critic architecture operating at different temporal scales.
We propose a ”temporal recall” mechanism, where the critic
uses the model to estimate intermediate states between prim-
itive actions, providing a learning signal for each individual
action within the sequence. Once training is complete, the ac-
tor can generate action sequences independently of the model,
achieving model-free control at a slower frequency. We evalu-
ate SRL on a suite of continuous control tasks, demonstrating
that it achieves performance comparable to state-of-the-art al-
gorithms while significantly reducing actor sample complex-
ity. To better assess performance across varying decision fre-
quencies, we introduce the Frequency-Averaged Score (FAS)
metric. Our results show that SRL significantly outperforms
traditional RL algorithms in terms of FAS, making it particu-
larly suitable for applications requiring variable decision fre-
quencies. Furthermore, we compare SRL with model-based
online planning, showing that SRL achieves comparable FAS
while leveraging the same model during training that online
planners use for planning.

Introduction
Biological and artificial agents must learn behaviors that
maximize rewards to thrive in complex environments. Re-
inforcement learning (RL), a class of algorithms inspired
by animal behavior, facilitates this learning process (Sut-
ton and Barto 2018). The connection between neuroscience
and RL is profound. The Temporal Difference (TD) error,
a key concept in RL, effectively models the firing patterns
of dopamine neurons in the midbrain (Schultz, Dayan, and
Montague 1997; Schultz 2015; Cohen et al. 2012). Further-
more, a long-standing goal of RL algorithms is to match
and surpass human performance in control tasks (OpenAI

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2019; Schrittwieser et al. 2020; Kaufmann et al. 2023b;
Wurman et al. 2022a; Vinyals et al. 2019; Mnih et al. 2015).

However, most of these successes are achieved by lever-
aging large amounts of data in simulated environments and
operating at speeds orders of magnitude faster than biologi-
cal neurons. For example, the default timestep for the Hu-
manoid task in the MuJoCo environment (Todorov, Erez,
and Tassa 2012) in OpenAI Gym (Towers et al. 2023) is 15
milliseconds. In contrast, human reaction times range from
150 milliseconds (Jain et al. 2015) to several seconds for
complex tasks (Limpert 2011). Table 1 shows the significant
gap between AI and humans in terms of timestep and reac-
tion times. When RL agents are constrained to human-like
decision frequencies, even state-of-the-art algorithms strug-
gle to perform in simple environments ((Dulac-Arnold et al.
2021), Figure 5 in the Appendix).

Environment / Task Timestep
Inverted Pendulum 40ms
Walker 2d 8ms
Hopper 8ms
Ant 50ms
Half Cheetah 50ms
Dota 2 1v1 (OpenAI et al. 2019) 67ms
Dota 2 5v5 (OpenAI et al. 2019) 80ms
GT Sophy (Wurman et al. 2022b) 23-30ms
Drone Racing (Kaufmann et al. 2023a) 10ms
Humans ≥ 150ms

Table 1: Timestep / reaction times for various benchmark
environments and popular works that pit humans vs. AI.

The primary reason for this difficulty is the implicit as-
sumption in RL that the environment and the agent operate at
a constant timestep. Consequently, in embodied agents that
implement RL algorithms, all components: sensors, com-
pute units, and actuators—are synchronized to the same fre-
quency at the algorithmic level. Typically, this frequency
is limited by the speed of computation in artificial agents
(Katz, Carlo, and Kim 2019). As a result, robots often re-
quire fast onboard computing hardware (CPU or GPU) to
achieve higher control frequencies (Margolis et al. 2024; Li
et al. 2022; Haarnoja et al. 2024).

To allow the RL agent to observe and react to changes

in the environment quickly, RL algorithms are forced to
set a high frequency. Even in completely predictable envi-
ronments, when the agent learns to walk or move, a small
timestep is required to account for the actuation frequency
required for the task, but it is not necessary to observe the
environment as often or compute new actions as frequently.
RL algorithms suffer from catastrophic failure due to miss-
ing inputs (also referred to as observational dropout). This
behavioral level gap between RL and humans can be bridged
by bridging the gap in the underlying process.

Toward that end, we propose Sequence Reinforcement
Learning (SRL), a model for action sequence learning based
on the role of the basal ganglia (BG) and the prefrontal cor-
tex (PFC). Our model learns open-loop control utilizing a
low decision frequency. Additionally, the algorithm utilizes
a simultaneously learned model of the environment during
its training but can act without it for fast and cheap infer-
ence. We demonstrate that the algorithm achieves competi-
tive performance on difficult continuous control tasks while
utilizing a fraction of observations and calls to the policy.
To our knowledge, SRL is the first to achieve this feat. To
further quantify this result and establish a benchmark for
control at slow frequencies, we introduce the Frequency Av-
eraged Score (FAS) and demonstrate that SRL achieves sig-
nificantly higher FAS than soft actor-critic (SAC) (Haarnoja
et al. 2019) and the Generative Planning Method (GPM)
(Zhang, Xu, and Yu 2022). Additionally, we demonstrate
that, in complex environments (with high state and action di-
mensions), SRL also beats model-based online planning in
FAS. Finally, in the appendix, we discuss the available ev-
idence in neuroscience that has inspired our algorithm and
also present promising initial results in the proposed future
work of generative replay in latent space.

Necessity of Sequence Learning: Frequency,
Delay and Response Time

To perform any control task, the agent requires the following
three components: Sensor, Processor/Computer, Actuator. In
the traditional RL framework, all three components act at the
same frequency due to the common timestep. However, this
is not the case in biological agents that have different sensors
of varying frequencies that are often faster than the compute
frequency or the speed at which the brain can process the
information (Borghuis et al. 2019). Additionally, in order to
afford fast and precise control, the actuator frequency is also
much faster than the compute frequency (see Figure 9 in Ap-
pendix).

Low-compute hardware faces two primary challenges for
real-time control: delay and throughput. The high inference
times associated with low-compute devices result in a de-
lay between receiving observations and performing corre-
sponding actions in the environment. Additionally, they lead
to low decision frequencies in sequential decision-making
tasks.

While many prior works have focused on addressing de-
lay by designing delay-aware algorithms (Chen et al. 2020,
2021; Derman, Dalal, and Mannor 2021), mitigating delay
alone does not resolve the performance issues caused by low

decision frequency. Adapting RL algorithms to operate ef-
fectively in low-frequency compute settings remains an open
challenge (Dulac-Arnold et al. 2021).

The Sequence Reinforcement Learning (SRL) algorithm
offers a promising solution to these low-decision frequency
scenarios. To address the complete set of challenges posed
by low-compute environments, SRL can be integrated with
delay-aware algorithms to simultaneously manage delays
while achieving higher action frequencies. Moreover, SRL
inherently addresses delays by producing sequences of ac-
tions that can bridge the gap caused by processing latency.
For example, if output arrives with a delay of n timesteps,
the first n actions of the new sequence can be ignored, as
they were already executed as part of the previous sequence.
This mechanism ensures smooth and continuous action exe-
cution despite processing delays.

Why low-frequency compute?
Recent advancements in reinforcement learning (RL) al-

gorithms, combined with high-speed computing, have led to
two common approaches for addressing the speed-accuracy
trade-off:

1. Faster hardware: The use of GPUs has become stan-
dard for enabling rapid inference in autonomous agents
(Long et al. 2024; Csomay-Shanklin, Compton, and
Ames 2024; Lazcano 2024). However, GPUs are often
impractical in many real-world applications due to their
high cost, energy demands, and large physical size. As
a result, recent research has also focused on develop-
ing specialized embedded deep learning accelerators to
address these challenges (Akkad, Mansour, and Inaty
2023).

2. Software optimization: Techniques such as quantiza-
tion (Jafarpourmarzouni et al. 2024), multi-exit networks
(Rahmath P et al. 2022), and model compression (Neill
2020) are commonly employed to reduce inference times
without requiring additional hardware.

In essence, these approaches focus on either accelerating
hardware or optimizing software. In this work, we propose
an alternative paradigm: enhancing accuracy at low operat-
ing frequencies instead of striving for high frequencies. By
advancing research in this direction, we aim to relax the de-
pendency on high-performance hardware, enabling RL algo-
rithms to operate effectively on low-compute devices while
also making ultra-high-frequency control feasible on current
hardware platforms.

Related Work
Model-Based Reinforcement Learning
Model-Based Reinforcement Learning (MBRL) algorithms
leverage a model of the environment, which can be either
learned or known, to enhance RL performance (Moerland
et al. 2023). Broadly, MBRL algorithms have been utilized
to:

1. Improve Data Efficiency: By augmenting real-world data
with model-generated data, MBRL can significantly en-
hance data efficiency (Yarats et al. 2021; Janner et al.
2019; Wang et al. 2021).

2. Enhance Exploration: MBRL aids in exploration by us-
ing models to identify potential or unexplored states
(Pathak et al. 2017; Stadie, Levine, and Abbeel 2015;
Savinov et al. 2019).

3. Boost Performance: Better learned representations from
MBRL can lead to improved asymptotic performance
(Silver et al. 2017; Levine and Koltun 2013).

4. Transfer Learning: MBRL supports transfer learning,
enabling knowledge transfer across different tasks or
environments (Zhang, Satija, and Pineau 2018; Sasso,
Sabatelli, and Wiering 2023).

5. Online Planning: Models can be used for online planning
with a single-step policy (Fickinger et al. 2021). How-
ever, this approach increases model complexity, as each
online planning step necessitates an additional call to the
model. This makes it unsuitable for applications with
limited computational budgets and strict requirements for
fast inference.

Compared to online planning, our algorithm maintains a
model complexity of zero after training, eliminating the need
for any model calls post-training for generating a sequence
of actions. This significantly reduces the computational and
energy requirements, making it more suitable for practi-
cal applications in constrained environments. Additionally,
model-based online planning is less biologically plausible
than SRL. Wiestler and Diedrichsen (2013) demonstrated
that the activations in the motor cortex reduce after skill
learning, suggesting that the brain gets more efficient at per-
forming the task after learning. In contrast, model-based on-
line planning does not reduce in the compute and model
complexity, but rather might increase in complexity as we
perform longer sequences. SRL, on the other hand, has a
model complexity of zero after training and thus is biologi-
cally plausible based on this observed phenomenon.

Model Predictive Control
Similar to model-based reinforcement learning, Model Pre-
dictive Control (MPC) utilizes a model of the system to pre-
dict and optimize future behavior. In the context of mod-
ern robotics, MPC has been effectively applied to trajectory
planning and real-time control for both ground and aerial ve-
hicles. MPC has been applied to problems like autonomous
driving (Gray et al. 2013) and bipedal control (Galliker et al.
2022). Similar to online planning, MPC often requires ac-
cess to a model of the system after training.

Additionally, similar to current RL, MPC requires very
fast operational timesteps for practical application. For ex-
ample, Galliker et al. (2022) implemented walker at 10 ms,
Farshidian et al. (2017) implemented a four-legged robot at
4 ms and Di Carlo et al. (2018) implemented the MIT Chee-
tah 3 at 33.33 ms.

Macro-Actions, Action Repetition, and
Frame-skipping
Reinforcement Learning (RL) algorithms that utilize macro-
actions demonstrate many benefits, including improved ex-
ploration and faster learning (McGovern, Sutton, and Fagg

1997). However, identifying effective macro-actions is a
challenging problem due to the curse of dimensionality,
which arises from large action spaces. To address this is-
sue, some approaches have employed genetic algorithms
(Chang et al. 2022) or relied on expert demonstrations to ex-
tract macro-actions (Kim et al. 2020). However, these meth-
ods are not scalable and lack biological plausibility. In con-
trast, our approach learns macro-actions using the principles
of RL, thus requiring little overhead while combining the
flexibility of primitive actions with the efficiency of macro-
actions.

To overcome the curse of dimensionality while gain-
ing the benefits of macro-actions, many approaches utilize
frame-skipping and action repetition, where macro-actions
are restricted to a single primitive action that is repeated.
Frame-skipping and action repetition serve as a form of par-
tial open-loop control, where the agent selects a sequence of
actions to be executed without considering the intermediate
states. Consequently, the number of actions is linear in the
number of time steps (Kalyanakrishnan et al. 2021; Srini-
vas, Sharma, and Ravindran 2017; Biedenkapp et al. 2021;
Sharma, Lakshminarayanan, and Ravindran 2017; Yu, Xu,
and Zhang 2021).

For instance, FiGaR (Sharma, Lakshminarayanan, and
Ravindran 2017) shifts the problem of macro-action learn-
ing to predicting the number of steps that the outputted ac-
tion can be repeated. TempoRL (Biedenkapp et al. 2021)
improved upon FiGaR by conditioning the number of rep-
etitions on the selected actions. However, none of these al-
gorithms can scale to continuous control tasks with multiple
action dimensions, as action repetition forces all actuators
and joints to be synchronized in their repetitions, leading to
poor performance for longer action sequences.

Temporally Correlated Exploration
Recent advancements in reinforcement learning have ex-
tended the concepts of macro-actions and action-repetition
to improve exploration by incorporating temporally corre-
lated exploration, where successive actions during explo-
ration exhibit temporal dependencies. For instance, Dab-
ney, Ostrovski, and Barreto (2021) proposed temporally ex-
tended ϵ-greedy exploration, which involves repeating ac-
tions for random durations during exploration. Building on
this foundation, subsequent works have investigated ap-
proaches such as state-dependent exploration (Raffin, Kober,
and Stulp 2022), episodic reinforcement learning (Li et al.
2024), and temporally correlated latent noise (Chiappa et al.
2024) to enhance exploration efficiency and improve the
smoothness of resulting policies. However, these methods
are limited in their adaptability to challenges such as obser-
vational dropout, low decision or observational frequency,
as the trained policy requires state input at each timestep.

To address long-horizon temporally correlated explo-
ration, Zhang, Xu, and Yu (2022) introduced the Generative
Planning Method (GPM), which employs a recurrent actor
network similar to the architecture used in SRL to generate
sequences of actions from a single state. We provide an em-
pirical comparison to GPM in the Experiments section.

Sequence Reinforcement Learning

Figure 1: The Sequence Reinforcement Learning (SRL)
model. The SRL takes inspiration from the function of the
basal ganglia (BG) (Top/Blue) and the prefrontal cortex
(PFC) (Bottom/Yellow). We train an actor with a gated re-
current unit that can produce sequences of arbitrary lengths
given a single state. This is achieved by utilizing a critic and
a model that acts at a finer temporal resolution during train-
ing/replay to provide an error signal to each primitive action
of the action sequence.

We introduce a novel reinforcement learning model ca-
pable of learning sequences of actions (macro-actions) by
replaying memories at a finer temporal resolution than the
action generation, utilizing a model of the environment dur-
ing training. We provide the neural basis for our algorithm
in the Appendix.

Components The Sequence Reinforcement Learning
(SRL) algorithm learns to plan ”in-the-mind” using a model
during training, allowing the learned action-sequences to be
executed without the need for model-based online planning.
This is achieved using an actor-critic setting where the actor
and critic operate at different frequencies, representing the
observation/computation and actuation frequencies, respec-
tively. Essentially, the critic is only used during training/re-
play and can operate at any temporal resolution, while the
actor is constrained to the temporal resolution of the slowest
component in the sensing-compute-actuation loop. Denot-
ing the actor’s timestep as t′ and the critic’s timestep as t,
our algorithm includes three components:

Model : st+1 = mϕ(st, at)

Critic : qt = qψ(st, at)
Actor : mt′:t′+J−1 = at′ , at′+t, at′+2t.. ∼ πω(st′)

(1)

We denote individual actions in the action sequence gener-
ated by the actor using the notation πω(st′)t

We denote individual actions in the action sequence
mt′:t′+J−1 = at′ , at′+t, at′+2t.. generated by the actor us-
ing the notation πω(st′)t to represent the action at′+t.

1. Model: Learns the dynamics of the environment, predict-
ing the next state st+1 given the current state st and prim-
itive action at.

2. Critic: Takes the same input as the model but predicts
the Q-value of the state-action pair.

3. Actor: Produces a sequence of actions given an obser-
vation at time t′. Observations from the environment can
occur at any timestep t or t′, where we assume t′ > t.
Specifically, in our algorithm, t′ = Jt where J > 1; J ∈
Z.

Each component of our algorithm is trained in parallel,
demonstrating competitive learning speeds.

We follow the Soft-Actor-Critic (SAC) algorithm
(Haarnoja et al. 2019) for learning the actor-critic. Explo-
ration and uncertainty are critical factors heavily influenced
by timestep size and planning horizon. Many model-free al-
gorithms like DDPG (Lillicrap et al. 2019) and TD3 (Fu-
jimoto, Hoof, and Meger 2018) explore by adding random
noise to each action during training. However, planning a
sequence of actions over a longer timestep can result in ad-
ditive noise, leading to poor performance during training and
exploration if the noise parameter is not tuned properly. The
SAC algorithm addresses this by automatically maximizing
the entropy while also maximizing the expected return, al-
lowing our algorithm to automatically tune its exploration
based on the selected sequence length parameter (J).

Learning the Model The model is trained to minimize the
Mean Squared Error of the predicted states. For a trajectory
τ = (st, at, st+1) drawn from the replay buffer D, the pre-
dicted state is taken from s̃t+1 ∼ mϕ(st, at). The loss func-
tion is:

Lϕ = Eτ∼D(s̃t+1 − st+1)
2 (2)

For this work, the model is a feed-forward neural network
with two hidden layers. In addition to the current model mϕ,
we also maintain a target model mϕ− that is the exponential
moving average of the current model.

Learning the Critic The critic is trained to predict the Q-
value of a given state-action pair q̃t = qψ(st, at) using the
target value from the modified Bellman equation:

q̂t = rt + γEat+1∼πω(st+1)0

[
qψ−(st+1, at+1)

−α log πω(at+1|st+1)
] (3)

Here, qψ− is the target critic, which is the exponential mov-
ing average of the critic and α is the temperature parame-
ter that controls the relative importance of the entropy term.
Following the SAC algorithm, we train two critics and use
the minimum of the two qψ− values to train the current crit-
ics. The loss function is:

Lψ = Eτ∼D[(q̃tk − q̂t)2]∀k ∈ 1, 2 (4)

Both critics are feed-forward neural networks with two hid-
den layers. It should be noted that while the actor utilizes the
model during training, the critic does not train on any data
generated by the model, thus the critic training is model-free
and grounded on the real environment states.

Learning the Policy The SRL policy utilizes two hid-
den layers followed by a Gated-Recurrent-Unit (GRU) (Cho
et al. 2014) that takes as input the previous action in the ac-
tion sequence, followed by two linear layers that output the
mean and standard deviation of the Gaussian distribution of

the action. This design allows the policy to produce action
sequences of arbitrary length given a single state and the last
action.

A naive approach to training a sequence of actions would
be to augment the action space to include all possible ac-
tions of the sequence length. However, this quickly leads to
the curse of dimensionality, as each sequence is considered
a unique action, dramatically increasing the policy’s com-
plexity. Additionally, such an approach ignores the tempo-
ral information of the action sequence and faces the difficult
problem of credit assignment, with only a single scalar re-
ward for the entire action sequence.

To address these problems, we use different temporal
scales for the actor and critic. The critic assigns value to
each primitive action of the action sequence, bypassing the
credit assignment problem caused by the single scalar re-
ward. However, using collected state-action transitions to
train the action sequence is impractical, as changing the first
action in the sequence would render all future states inaccu-
rate. Thus, the model populates intermediate states, which
the critic then uses to assign value to each primitive action
in the sequence.

Therefore, given a trajectory τ = (at−1, st, at, st+1), we
first produce the J-step action sequence using the policy:
m̃t:t+J−1 ∼ πω(st). We then iteratively apply the target
model to get the intermediate states s̃t+1:t+J−1. Finally, we
use the critic to calculate the loss for the actor as follows:

Lω = Eτ∼D

[
α log πω(ãt|st)− qψ(st, ãt)

+

J−1∑
j=1

α log πω(ãt+j |s̃t+j)− qψ(s̃t+j , ãt+j)
] (5)

Experiments
Overview
We evaluate our SRL approach on 11 continuous control
tasks, comparing it against SAC (Haarnoja et al. 2019) and
GPM (Zhang, Xu, and Yu 2022). We utilize the OpenAI
Gym (Brockman et al. 2016) implementation of the MuJoCo
environments (Todorov, Erez, and Tassa 2012).

Experimental Setup
We train SRL with four different action sequence lengths
(ASL), J = 2, 4, 8, 16, referred to as SRL-J . During train-
ing, SRL is evaluated based on its J value, processing states
only after every J actions. All hyperparameters are identi-
cal between SRL and SAC, except for the actor update fre-
quency: SRL updates the actor every 4 steps, while SAC
updates every step. Thus, SAC has four more actor update
steps compared to SRL. Additionally, SRL learns a model in
parallel with the actor and critic. Additionally, we also train
SAC at different step sizes that correspond to SRL, form-
ing SAC-J where J = 1, 2, 4, 8, 16. Note that we do not
provide SRL-1 since for sequences of length 1, SRL is the
same algorithm as SAC.

We provide the complete learning curves of SRL and SAC
across 11 continuous control tasks in the appendix. We find

that on all environments except Swimmer, SAC-1 demon-
strates optimal performance and often significantly outper-
forms the longer timesteps (Figure 2). Thus, the default en-
vironments are picked to maximize performance under the
standard RL setting where the observation, decision, and
the action frequency are the same. It should be noted that
the learning curves presented for SRL-J and SAC-J take in
states every J steps.

Frequency-Averaged Score
Transitioning from simulation to real-world implementation
(Sim2Real) in control systems is challenging because de-
ployment introduces computational stochasticity, leading to
variable sensor sampling rates (throughput) and inconsistent
end-to-end delays from sensing to actuation (Sandha et al.
2021). This gap is not captured by the mean reward or re-
turn that is the norm in current RL literature. To address this,
we introduce Frequency-Averaged Score (FAS) that is the
normalized area under the curve (AUC) of the performance
vs. decision frequency plot. We provide plots for all envi-
ronments in the Appendix. We note that this experimental
setup is similar to the challenge 7 introduced in by Dulac-
Arnold et al. (2021) and SRL addresses the challenge of low
throughput that is introduced in that work. The FAS cap-
tures the overall performance of the policy at different deci-
sion frequencies, timesteps or macro-action lengths. A High
FAS indicates that the policy performance generalizes across
decision frequencies, observation frequencies and timestep
sizes.

Tables 2 and 3 present the Frequency Averaged Score
(FAS) for SAC and SRL across varying action sequence
lengths. Overall, SRL-16 demonstrates strong and consis-
tent performance across most environments and a wide
range of frequencies. However, in the Walker2d-v2 and
InvertedDoublePendulum-v2 environments, SRL faces chal-
lenges when learning longer action sequences. We hypothe-
size that these difficulties stem from higher modeling errors
in these environments. Future work aimed at improving en-
vironmental models could potentially address these issues.

SAC, in contrast, performed poorly across all environ-
ments, highlighting the limitations of traditional RL meth-
ods in adapting to changes in frequency. Although training
SAC with larger timesteps (J) improves FAS, this approach
compromises performance at shorter timesteps, ultimately
reducing the overall score (see Appendix Figure 5).

An exception to this trend is the Swimmer environment,
where SAC benefits from improved exploration due to ex-
tended actions. SRL, which does not use action repetition,
does not perform as well in this specific case. However, this
limitation could be addressed by incorporating action repe-
tition or action correlation during exploration—an enhance-
ment that lies beyond the scope of the current work.

In order to further validate the utility of FAS, we test all
the policies (SAC and SRL-J) in a stochastic timestep en-
vironment. The timestep (time until next input) is randomly
chosen from a uniform distribution of integers in [1,16] af-
ter each decision. This is a more realistic setting as it tests
the performance of the policy when the frequency is not

Figure 2: Learning curves for extended action Soft-Actor Critic (SAC-J) (Haarnoja et al. 2019) over continuous control tasks
averaged over 5 trial. The default timestep J = 1 is the optimal for all environments except the swimmer and lunar lander.
Larger timesteps support better exploration but also result in worse performance.

Environment SAC-1 SAC-2 SAC-4 SAC-8 SAC-16
Pendulum 0.44 ± 0.03 0.42 ± 0.03 0.50 ± 0.03 0.49 ± 0.04 0.33 ± 0.05
Lunar Lander 0.20 ± 0.02 0.23 ± 0.02 0.33 ± 0.02 0.45 ± 0.03 0.56 ± 0.09
Hopper 0.07 ± 0.01 0.09 ± 0.01 0.14 ± 0.03 0.14 ± 0.04 0.26 ± 0.08
Walker2d 0.07 ± 0.01 0.08 ± 0.03 0.14 ± 0.04 0.23 ± 0.07 0.15 ± 0.04
Ant -0.05 ± 0.04 0.11 ± 0.01 0.16 ± 0.02 0.16 ± 0.01 0.13 ± 0.01
HalfCheetah 0.01 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.02 ± 0.01 0.01 ± 0.01
Humanoid 0.06 ± 0.01 0.06 ± 0.01 0.08 ± 0.03 0.17 ± 0.02 0.18 ± 0.04
InvertedPendulum 0.05 ± 0.02 0.07 ± 0.00 0.14 ± 0.00 0.31 ± 0.02 0.34 ± 0.20
InvertedDPendulum 0.02 ± 0.00 0.07 ± 0.00 0.09 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
Reacher 0.65 ± 0.07 0.78 ± 0.01 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02
Swimmer 0.08 ± 0.02 0.28 ± 0.04 0.46 ± 0.03 0.53 ± 0.03 0.54 ± 0.06

Table 2: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments for SAC-J configurations
(J = 1, 2, 4, 8, 16. J is the action sequence length during training). Each value is averaged over 5 trials (rounded to two
decimals, highest value highlighted).

constant. Each policy is evaluated over 10 episodes with
stochastic timesteps.

In all tested environments, except for the Inverted Dou-
ble Pendulum, there is a strong Pearson correlation coeffi-
cient (greater than or equal to 0.82) between FAS and per-
formance in stochastic conditions. This high correlation con-
firms the effectiveness of FAS as a metric for measuring a
policy’s generalized performance across various timesteps
and frequencies. The Inverted Double Pendulum, however,
presents a unique challenge due to its requirement for high
precision at low decision frequencies, leading to signifi-
cantly lower FAS scores for all algorithms and thus it is an
outlier. Comprehensive plots for all nine environments are
included in the appendix (Figure 7).

Comparison to Model-based Online Planning
Model-based online planning is another approach that al-
lows the RL agent to reduce its observational frequency.
However, it often requires a highly accurate model of the
environment and incurs increased model complexity due to
the use of the model during control.

Since SRL incorporates a model of the environment that is
learned in parallel, we compare the performance of the SRL
actor utilizing the actor-generated action sequences against
model-based online planning, where the actor produces only

a single action between each simulated state.
Table 4 compares the FAS score SRL to online planning

using the same model in online planning versus the action
sequences generated by the SRL policy. We see that SRL can
learn action sequences and is competitive to model-based
online planning. Notably, SRL performs better in environ-
ments with larger action and state space dimensions. Such
environments are harder to model. Thus, SRL can leverage
inaccurate models to learn accurate action sequences, fur-
ther reducing the required computational complexity during
training. We hypothesize that this superior performance is
due to the fact that the actor learns a J-step action sequence
concurrently, while online planning only produces one ac-
tion at a time. Consequently, SRL is able to learn and pro-
duce long, coherent action sequences, whereas single-step
predictions tend to drift, similar to the ’hallucination’ phe-
nomenon observed in transformer-based language models.

Discussion Future Work
SRL bridges the gap between RL and real-world applica-
tions by enabling robust control at low decision frequencies.
Its ability to learn long action sequences expands the poten-
tial for deploying RL in resource-constrained environments,
such as robotics and autonomous systems. Additionally, it
shows promise for applications where obtaining observa-

Environment SRL-2 SRL-4 SRL-8 SRL-16
Pendulum 0.49 ± 0.04 0.68 ± 0.02 0.78 ± 0.04 0.88 ± 0.02
Lunar Lander 0.14 ± 0.06 0.52 ± 0.03 0.73 ± 0.04 0.84 ± 0.03
Hopper 0.10 ± 0.02 0.23 ± 0.03 0.42 ± 0.04 0.57 ± 0.02
Walker2d 0.12 ± 0.03 0.25 ± 0.06 0.28 ± 0.06 0.24 ± 0.11
Ant 0.04 ± 0.01 0.29 ± 0.09 0.45 ± 0.14 0.54 ± 0.13
HalfCheetah 0.06 ± 0.01 0.13 ± 0.02 0.22 ± 0.01 0.28 ± 0.01
Humanoid 0.07 ± 0.00 0.18 ± 0.02 0.37 ± 0.04 0.46 ± 0.04
InvPendulum 0.09 ± 0.03 0.16 ± 0.03 0.27 ± 0.02 0.44 ± 0.04
InvDPendulum 0.07 ± 0.00 0.13 ± 0.02 0.03 ± 0.02 0.02 ± 0.00
Reacher 0.90 ± 0.01 0.93 ± 0.00 0.95 ± 0.00 0.96 ± 0.00
Swimmer 0.32 ± 0.05 0.38 ± 0.17 0.31 ± 0.02 0.42 ± 0.15

Table 3: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments for SRL-J configurations
(J = 2, 4, 8, 16. J is the action sequence length during training). Each value is averaged over 5 trials (rounded to two decimals,
highest value highlighted).

Environment SRL Online Planning State Space Action Space
Lunar Lander 0.84 ± 0.03 0.79 ± 0.08 8 2
Hopper 0.57 ± 0.02 0.59 ± 0.19 11 3
Walker2d 0.28 ± 0.06 0.20 ± 0.05 17 6
Ant 0.54 ± 0.13 0.34 ± 0.08 27 8
HalfCheetah 0.28 ± 0.01 0.19 ± 0.02 17 6
Humanoid 0.46 ± 0.04 0.18 ± 0.03 376 17
InvPendulum 0.44 ± 0.04 0.63 ± 0.10 4 1
InvDPendulum 0.13 ± 0.02 0.10 ± 0.07 11 1
Reacher 0.96 ± 0.00 0.95 ± 0.00 11 2
Swimmer 0.42 ± 0.15 0.43 ± 0.14 8 2

Table 4: Comparison of the FAS of SRL and corresponding model-based online planning policies across different environments.

tions is costly, such as in medical diagnostics and treatment
planning. Future work will explore hierarchical policies and
biologically inspired attention mechanisms.

The current RL framework encourages synchrony be-
tween the environment and the components of the agent.
However, the brain utilizes components that act at different
frequencies and yet is capable of robust and accurate con-
trol. SRL provides an approach to reconcile this difference
between neuroscience and RL, while remaining competitive
on current RL benchmarks. SRL offers substantial benefits
over traditional RL algorithms, particularly in the context of
autonomous agents in constrained settings. By enabling op-
eration at slower observational frequencies and providing a
gradual decay in performance with reduced input frequency,
SRL addresses critical issues related to sensor failure and
occlusion, and energy consumption. Additionally, SRL gen-
erates long sequences of actions from a single state, which
can enhance the explainability of the policy and provide op-
portunities to override the policy early in case of safety con-
cerns.

Future Work Future work will incorporate bio-inspired
features like attention mechanisms and knowledge transfer.
Additionally, SRL can benefit from existing Model-Based
RL approaches as it naturally learns a model of the world.
In the appendix, we demonstrate preliminary results of gen-
erative replay in the latent space. We believe that this is a

promising direction to significantly improve upon the results
in the paper.

In noiseless deterministic environments, a capable agent
should achieve near-infinite horizon control for tasks like
walking and hopping from a single state with minimal er-
ror corrections. Current approaches rely on external infor-
mation at every state, which increases energy consumption
and vulnerability to adversarial or missing inputs. Truly au-
tonomous agents will need to implement multiple policies
simultaneously, and simple tasks like walking can be per-
formed with minimal input states if learned properly.

Conclusion
In this paper, we introduced Sequence Reinforcement Learn-
ing (SRL): a model-based action sequence learning algo-
rithm for model-free control. We demonstrated the improve-
ment of SRL over the existing framework by testing it over
various control frequencies. Furthermore, we introduce the
Frequency-Averaged-Score (FAS) metric to measure the ro-
bustness of a policy across different frequencies. Our work
is the first to achieve competitive results on continuous con-
trol environments at low control frequencies and serves as
a benchmark for future work in this direction. Finally, we
demonstrated directions for future work including compari-
son to model-based planning, generative replay, and connec-
tions to neuroscience.

Acknowledgments We would like to thank Dr. Terrence
Sejnowski for his valuable discussions, insightful feedback,
and guidance throughout this work. His expertise and sup-
port have been instrumental in refining the ideas presented
in this paper.

References
Akkad, G.; Mansour, A.; and Inaty, E. 2023. Embedded deep
learning accelerators: A survey on recent advances. IEEE
Transactions on Artificial Intelligence.
Berns, G. S.; and Sejnowski, T. J. 1996. How the basal gan-
glia make decisions. In Neurobiology of decision-making,
101–113. Springer.
Berns, G. S.; and Sejnowski, T. J. 1998. A computational
model of how the basal ganglia produce sequences. Journal
of cognitive neuroscience, 10(1): 108–121.
Biedenkapp, A.; Rajan, R.; Hutter, F.; and Lindauer, M.
2021. TempoRL: Learning when to act. In International
Conference on Machine Learning, 914–924. PMLR.
Borghuis, B. G.; Tadin, D.; Lankheet, M. J.; Lappin, J. S.;
and van de Grind, W. A. 2019. Temporal limits of visual
motion processing: psychophysics and neurophysiology. Vi-
sion, 3(1): 5.
Boyd, L.; Edwards, J.; Siengsukon, C.; Vidoni, E.; Wessel,
B.; and Linsdell, M. 2009. Motor sequence chunking is im-
paired by basal ganglia stroke. Neurobiology of learning and
memory, 92(1): 35–44.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv:1606.01540.
Chang, Y.-H.; Chang, K.-Y.; Kuo, H.; and Lee, C.-Y. 2022.
Reusability and Transferability of Macro Actions for Re-
inforcement Learning. ACM Transactions on Evolutionary
Learning and Optimization, 2(1): 1–16.
Chen, B.; Xu, M.; Li, L.; and Zhao, D. 2021. Delay-aware
model-based reinforcement learning for continuous control.
Neurocomputing, 450: 119–128.
Chen, B.; Xu, M.; Liu, Z.; Li, L.; and Zhao, D. 2020. Delay-
Aware Multi-Agent Reinforcement Learning for Coopera-
tive and Competitive Environments. arXiv:2005.05441.
Chiappa, A. S.; Marin Vargas, A.; Huang, A.; and Mathis,
A. 2024. Latent exploration for reinforcement learning. Ad-
vances in Neural Information Processing Systems, 36.
Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. In Moschitti, A.; Pang,
B.; and Daelemans, W., eds., Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL,
1724–1734. ACL.
Cohen, J. Y.; Haesler, S.; Vong, L.; Lowell, B. B.; and
Uchida, N. 2012. Neuron-type-specific signals for reward
and punishment in the ventral tegmental area. Nature 2012
482:7383, 482: 85–88.

Csomay-Shanklin, N.; Compton, W. D.; and Ames,
A. D. 2024. Dynamically Feasible Path Planning in
Cluttered Environments via Reachable Bezier Polytopes.
arXiv:2411.13507.
Dabney, W.; Ostrovski, G.; and Barreto, A. 2021.
Temporally-Extended ϵ-Greedy Exploration. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Derman, E.; Dalal, G.; and Mannor, S. 2021. Acting in De-
layed Environments with Non-Stationary Markov Policies.
In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.
Di Carlo, J.; Wensing, P. M.; Katz, B.; Bledt, G.; and Kim,
S. 2018. Dynamic locomotion in the mit cheetah 3 through
convex model-predictive control. In 2018 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS),
1–9. IEEE.
Doupe, A. J.; Perkel, D. J.; Reiner, A.; and Stern, E. A. 2005.
Birdbrains could teach basal ganglia research a new song.
Trends in neurosciences, 28(7): 353–363.
Dulac-Arnold, G.; Levine, N.; Mankowitz, D. J.; Li, J.;
Paduraru, C.; Gowal, S.; and Hester, T. 2021. An empirical
investigation of the challenges of real-world reinforcement
learning. arXiv:2003.11881.
Farshidian, F.; Neunert, M.; Winkler, A. W.; Rey, G.; and
Buchli, J. 2017. An efficient optimal planning and control
framework for quadrupedal locomotion. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
93–100. IEEE.
Favila, N.; Gurney, K.; and Overton, P. G. 2024. Role of the
basal ganglia in innate and learned behavioural sequences.
Reviews in the Neurosciences, 35(1): 35–55.
Fickinger, A.; Hu, H.; Amos, B.; Russell, S.; and Brown,
N. 2021. Scalable online planning via reinforcement learn-
ing fine-tuning. Advances in Neural Information Processing
Systems, 34: 16951–16963.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In
International conference on machine learning, 1587–1596.
PMLR.
Galliker, M. Y.; Csomay-Shanklin, N.; Grandia, R.; Taylor,
A. J.; Farshidian, F.; Hutter, M.; and Ames, A. D. 2022.
Planar bipedal locomotion with nonlinear model predictive
control: Online gait generation using whole-body dynam-
ics. In 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids), 622–629. IEEE.
Garr, E. 2019. Contributions of the basal ganglia to action
sequence learning and performance. Neuroscience & Biobe-
havioral Reviews, 107: 279–295.
Geissler, C. F.; Frings, C.; and Moeller, B. 2021. Illuminat-
ing the prefrontal neural correlates of action sequence disas-
sembling in response–response binding. Scientific Reports,
11(1): 22856.
Gray, A.; Gao, Y.; Hedrick, J. K.; and Borrelli, F. 2013. Ro-
bust predictive control for semi-autonomous vehicles with

an uncertain driver model. In 2013 IEEE intelligent vehicles
symposium (IV), 208–213. IEEE.
Haarnoja, T.; Moran, B.; Lever, G.; Huang, S. H.; Tiru-
mala, D.; Humplik, J.; Wulfmeier, M.; Tunyasuvunakool, S.;
Siegel, N. Y.; Hafner, R.; et al. 2024. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning.
Science Robotics, 9(89): eadi8022.
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha,
S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; and
Levine, S. 2019. Soft Actor-Critic Algorithms and Applica-
tions. arXiv:1812.05905.
Immink, M. A.; Pointon, M.; Wright, D. L.; and Marino,
F. E. 2021. Prefrontal cortex activation during motor se-
quence learning under interleaved and repetitive practice: a
two-channel near-infrared spectroscopy study. Frontiers in
Human Neuroscience, 15: 644968.
Jafarpourmarzouni, R.; Luo, Y.; Lu, S.; Dong, Z.; et al. 2024.
Towards Real-Time and Efficient Perception Workflows in
Software-Defined Vehicles. IEEE Internet of Things Jour-
nal.
Jain, A.; Bansal, R.; Kumar, A.; and Singh, K. 2015. A com-
parative study of visual and auditory reaction times on the
basis of gender and physical activity levels of medical first
year students. International journal of applied and basic
medical research, 5(2): 124–127.
Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to trust your model: Model-based policy optimization. Ad-
vances in neural information processing systems, 32.
Jin, X.; and Costa, R. M. 2010. Start/stop signals emerge
in nigrostriatal circuits during sequence learning. Nature,
466(7305): 457–462.
Jin, X.; and Costa, R. M. 2015. Shaping action sequences in
basal ganglia circuits. Current opinion in neurobiology, 33:
188–196.
Jin, X.; Tecuapetla, F.; and Costa, R. M. 2014. Basal ganglia
subcircuits distinctively encode the parsing and concatena-
tion of action sequences. Nature neuroscience, 17(3): 423–
430.
Kalyanakrishnan, S.; Aravindan, S.; Bagdawat, V.; Bhatt,
V.; Goka, H.; Gupta, A.; Krishna, K.; and Piratla, V. 2021.
An Analysis of Frame-skipping in Reinforcement Learning.
arXiv:2102.03718.
Katz, B.; Carlo, J. D.; and Kim, S. 2019. Mini cheetah:
A platform for pushing the limits of dynamic quadruped
control. Proceedings - IEEE International Conference on
Robotics and Automation, 2019-May: 6295–6301.
Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.;
Koltun, V.; and Scaramuzza, D. 2023a. Champion-level
drone racing using deep reinforcement learning. Nature,
620(7976): 982–987.
Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.;
Koltun, V.; and Scaramuzza, D. 2023b. Champion-level
drone racing using deep reinforcement learning. Nature
2023 620:7976, 620: 982–987.
Kim, H.; Yamada, M.; Miyoshi, K.; Iwata, T.; and Ya-
makawa, H. 2020. Reinforcement learning in latent action

sequence space. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 5497–5503.
IEEE.
Lazcano, V. 2024. Depth Map Completion Using a Spe-
cific Graph Metric and Balanced Infinity Laplacian for Au-
tonomous Vehicles. In Iberoamerican Congress on Pattern
Recognition, 187–197. Springer.
Levine, S.; and Koltun, V. 2013. Guided policy search. In
International conference on machine learning, 1–9. PMLR.
Li, G.; Zhou, H.; Roth, D.; Thilges, S.; Otto, F.; Lioutikov,
R.; and Neumann, G. 2024. Open the Black Box: Step-
based Policy Updates for Temporally-Correlated Episodic
Reinforcement Learning. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.
Li, Q.; Dong, G.; Qin, R.; Chen, J.; Xu, K.; and Ding, X.
2022. Quadruped reinforcement learning without explicit
state estimation. In 2022 IEEE International Conference on
Robotics and Biomimetics (ROBIO), 1989–1994. IEEE.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2019. Continuous con-
trol with deep reinforcement learning. arXiv:1509.02971.
Limpert, R. 2011. Brake design and safety. SAE interna-
tional.
Long, J.; Ren, J.; Shi, M.; Wang, Z.; Huang, T.; Luo, P.;
and Pang, J. 2024. Learning Humanoid Locomotion with
Perceptive Internal Model. arXiv:2411.14386.
Malerba, P.; Tsimring, K.; and Bazhenov, M. 2018.
Learning-induced sequence reactivation during sharp-wave
ripples: a computational study. In Advances in the Mathe-
matical Sciences: AWM Research Symposium, Los Angeles,
CA, April 2017, 173–204. Springer.
Margolis, G. B.; Yang, G.; Paigwar, K.; Chen, T.; and
Agrawal, P. 2024. Rapid locomotion via reinforcement
learning. International Journal of Robotics Research, 43:
572–587.
Matamales, M.; Skrbis, Z.; Bailey, M. R.; Balsam, P. D.;
Balleine, B. W.; Götz, J.; and Bertran-Gonzalez, J. 2017. A
corticostriatal deficit promotes temporal distortion of auto-
matic action in ageing. ELife, 6: e29908.
McGovern, A.; Sutton, R. S.; and Fagg, A. H. 1997. Roles
of Macro-Actions in Accelerating Reinforcement Learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 2015 518:7540, 518:
529–533.
Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M.; et al.
2023. Model-based reinforcement learning: A survey. Foun-
dations and Trends® in Machine Learning, 16(1): 1–118.
Neill, J. O. 2020. An Overview of Neural Network Com-
pression. arXiv:2006.03669.
OpenAI; :; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;

Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.; Pachocki,
J.; Petrov, M.; d. O. Pinto, H. P.; Raiman, J.; Salimans, T.;
Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.;
Wolski, F.; and Zhang, S. 2019. Dota 2 with Large Scale
Deep Reinforcement Learning. arXiv:1912.06680.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction.
In International conference on machine learning, 2778–
2787. PMLR.
Phillips, J. G.; Chiu, E.; Bradshaw, J. L.; and Iansek, R.
1995. Impaired movement sequencing in patients with Hunt-
ington’s disease: a kinematic analysis. Neuropsychologia,
33(3): 365–369.
Raffin, A.; Kober, J.; and Stulp, F. 2022. Smooth exploration
for robotic reinforcement learning. In Conference on robot
learning, 1634–1644. PMLR.
Rahmath P, H.; Srivastava, V.; Chaurasia, K.; Pacheco,
R. G.; and Couto, R. S. 2022. Early-Exit Deep Neural
Network-A Comprehensive Survey. ACM Computing Sur-
veys.
Rubin, D. B.; Hosman, T.; Kelemen, J. N.; Kapitonava, A.;
Willett, F. R.; Coughlin, B. F.; Halgren, E.; Kimchi, E. Y.;
Williams, Z. M.; Simeral, J. D.; et al. 2022. Learned motor
patterns are replayed in human motor cortex during sleep.
Journal of Neuroscience, 42(25): 5007–5020.
Sandha, S. S.; Garcia, L.; Balaji, B.; Anwar, F.; and Srivas-
tava, M. 2021. Sim2real transfer for deep reinforcement
learning with stochastic state transition delays. In Confer-
ence on Robot Learning, 1066–1083. PMLR.
Sasso, R.; Sabatelli, M.; and Wiering, M. A. 2023. Multi-
Source Transfer Learning for Deep Model-Based Reinforce-
ment Learning. Transactions on Machine Learning Re-
search.
Savinov, N.; Raichuk, A.; Vincent, D.; Marinier, R.; Polle-
feys, M.; Lillicrap, T. P.; and Gelly, S. 2019. Episodic
Curiosity through Reachability. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model.
Nature 2020 588:7839, 588: 604–609.
Schultz, W. 2015. Neuronal reward and decision signals:
From theories to data. Physiological Reviews, 95: 853–951.
Schultz, W.; Dayan, P.; and Montague, P. R. 1997. A neu-
ral substrate of prediction and reward. Science, 275: 1593–
1599.
Shahnazian, D.; Senoussi, M.; Krebs, R. M.; Verguts, T.; and
Holroyd, C. B. 2022. Neural representations of task context
and temporal order during action sequence execution. Topics
in Cognitive Science, 14(2): 223–240.
Sharma, S.; Lakshminarayanan, A. S.; and Ravindran, B.
2017. Learning to Repeat: Fine Grained Action Repetition
for Deep Reinforcement Learning. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. nature, 550(7676): 354–359.
Srinivas, A.; Sharma, S.; and Ravindran, B. 2017. Dynamic
Action Repetition for Deep Reinforcement Learning. In
AAAI.
Stadie, B. C.; Levine, S.; and Abbeel, P. 2015. Incentivizing
Exploration In Reinforcement Learning With Deep Predic-
tive Models. arXiv:1507.00814.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
5026–5033. IEEE.
Towers, M.; Terry, J. K.; Kwiatkowski, A.; Balis, J. U.; Cola,
G. d.; Deleu, T.; Goulão, M.; Kallinteris, A.; KG, A.; Krim-
mel, M.; Perez-Vicente, R.; Pierré, A.; Schulhoff, S.; Tai,
J. J.; Shen, A. T. J.; and Younis, O. G. 2023. Gymnasium.
Van de Ven, G. M.; Siegelmann, H. T.; and Tolias, A. S.
2020. Brain-inspired replay for continual learning with arti-
ficial neural networks. Nature communications, 11(1): 4069.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wünsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 2019 575:7782, 575: 350–
354.
Wang, J.; Li, W.; Jiang, H.; Zhu, G.; Li, S.; and Zhang, C.
2021. Offline reinforcement learning with reverse model-
based imagination. Advances in Neural Information Pro-
cessing Systems, 34: 29420–29432.
Wiestler, T.; and Diedrichsen, J. 2013. Skill learning
strengthens cortical representations of motor sequences.
Elife, 2: e00801.
Wurman, P. R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.;
Subramanian, K.; Walsh, T. J.; Capobianco, R.; Devlic, A.;
Eckert, F.; Fuchs, F.; Gilpin, L.; Khandelwal, P.; Kompella,
V.; Lin, H. C.; MacAlpine, P.; Oller, D.; Seno, T.; Sherstan,
C.; Thomure, M. D.; Aghabozorgi, H.; Barrett, L.; Douglas,
R.; Whitehead, D.; Dürr, P.; Stone, P.; Spranger, M.; and Ki-
tano, H. 2022a. Outracing champion Gran Turismo drivers
with deep reinforcement learning. Nature 2022 602:7896,
602: 223–228.
Wurman, P. R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.;
Subramanian, K.; Walsh, T. J.; Capobianco, R.; Devlic, A.;
Eckert, F.; Fuchs, F.; et al. 2022b. Outracing champion Gran

Turismo drivers with deep reinforcement learning. Nature,
602(7896): 223–228.
Wymbs, N. F.; and Grafton, S. T. 2015. The human mo-
tor system supports sequence-specific representations over
multiple training-dependent timescales. Cerebral cortex,
25(11): 4213–4225.
Yarats, D.; and Kostrikov, I. 2020. Soft Actor-Critic (SAC)
implementation in PyTorch. https://github.com/denisyarats/
pytorch sac.
Yarats, D.; Zhang, A.; Kostrikov, I.; Amos, B.; Pineau, J.;
and Fergus, R. 2021. Improving sample efficiency in model-
free reinforcement learning from images. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
10674–10681.
Yu, H.; Xu, W.; and Zhang, H. 2021. Taac: Temporally ab-
stract actor-critic for continuous control. Advances in Neural
Information Processing Systems, 34: 29021–29033.
Zhang, A.; Satija, H.; and Pineau, J. 2018. Decoupling Dy-
namics and Reward for Transfer Learning. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop
Track Proceedings. OpenReview.net.
Zhang, H.; Xu, W.; and Yu, H. 2022. Generative Planning
for Temporally Coordinated Exploration in Reinforcement
Learning. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.
Zhao, Y.; Zhao, W.; Boney, R.; Kannala, J.; and Pajarinen, J.
2023. Simplified temporal consistency reinforcement learn-
ing. In International Conference on Machine Learning,
42227–42246. PMLR.
Zielinski, M. C.; Tang, W.; and Jadhav, S. P. 2020. The role
of replay and theta sequences in mediating hippocampal-
prefrontal interactions for memory and cognition. Hip-
pocampus, 30(1): 60–72.

Appendix
SRL Algorithm

Algorithm 1: Sequence Reinforcement Learning
Input: ϕ, ψ1, ψ2, ω. Initial parameters

1 ϕ̄← ϕ, ψ̄1 ← ψ1, ψ̄2 ← ψ2 ; // Initialize target network weights
2 D ← ∅ ; // Initialize an empty replay pool
3 for each iteration do
4 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action sequence from the policy
5 for each action at in the sequence do
6 st+1 ∼ p(st+1|st, at) ; // Sample transition from the environment
7 D ← D ∪ {(st, at, r(st, at), st+1)} ; // Store transition in the replay pool
8 end
9 for each gradient step do

10 ϕ← ϕ− λm∇ϕLϕ ; // Update the model parameters
11 for i ∈ {1, 2} do
12 ψi ← ψi − λQ∇ψiLψi ; // Update the Q-function parameters
13 end
14 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action sequence from the

policy
15 if iteration mod actor update frequency == 0 then
16 for j ∈ {1, . . . , J} do
17 sj+1 ∼ mϕ̄(sj+1|sj , aj) ; // Sample transition from the target model
18 end
19 ϕ← ω − λπ∇ωLω ; // Update policy weights
20 end
21 α← α− λ∇α̂L(α) ; // Adjust temperature
22 for i ∈ {1, 2} do
23 ψ̄i ← τψi + (1− τ)ψ̄i ; // Update target network weights
24 end
25 ϕ̄← τϕ+ (1− τ)ϕ̄ ; // Update target model weights
26 end
27 end

Output: ϕ, ψ1, ψ2, ω; // Optimized parameters

Hyperparameters
The table below lists the hyperparameters that are common between every environment used for all our experiments for the
SAC and SRL algorithms:

Implementation Details
Due to its added complexity during training, SRL requires longer wall clock time for training when compared to SAC. We
performed a minimal hyperparameter search over the actor update frequency parameter on the Hopper environment (tested
values: 1, 2, 4, 8, 16). All the other hyperparameters were picked to be equal to the SAC implementation. We also did not
perform a hyperparameter search over the size of GRU for the actor. It was picked to have the same size as the hidden layers of
the feed forward network of the actor in SAC. The neural network for the model was also picked to have the same architecture
as the actor from SAC, thus it has two hidden layers with 256 neurons. Similarly, the encoder for the latent SRL implementation
was also picked to have the same architecture. For the latent SRL implementation, we also add an additional replay buffer to
store transitions of length 5, to implement the temporal consistency training for the model. This was done for simplicity of the
implementation, and it can be removed since it is redundant to save memory.

All experiments were performed on a GPU cluster the Nvidia 1080ti GPUs. Each run was performed using a single GPU,
utilizing 8 CPU cores of Intel(R) Xeon(R) Silver 4116 (24 core) and 16GB of memory.

We utilize the pytorch implementation of SAC (https://github.com/denisyarats/pytorch sac) (Yarats and Kostrikov 2020). Our
code is attached in the supplementary material.

Practical Considerations on Low-Compute Hardware
In this work, we utilize a GRU for action generation. However, we did not test the performance of other recurrent architectures
or transformers. Depending on the hardware constraints and the application, a more complicated or simple architecture could

Hyperparameter Value description
Hidden Layer Size 256 Size of the hidden layers in the feed forward

networks of Actor, Critic, Model and Encoder
networks

Updates per step 1 Number of learning updates per one step in the
environment

Target Update Interval 1 Inverval between each target update
γ 0.99 Discount Factor
τ 0.005 Update rate for the target networks (Critic and

Model)
Learning Rate 0.0003 Learning rate for all neural networks
Replay Buffer Size 106 Size of the replay buffer
Batch Size 256 Batch size for learning
Start Time-steps 10000 Initial number of steps where random policy is

followed

Table 5: List of Common hyperparameters

Environment max Timestep Eval frequency
LunarLanderContinuous-v2 500000 2500
Hopper-v2 1000000 5000
Walker2d-v2 1000000 5000
Ant-v2 5000000 5000
HalfCheetah-v2 5000000 5000
Humanoid-v2 10000000 5000

Table 6: List of environment-specific hyperparameters

be utilized. Furthermore, we also leave the exploration of actor complexity to generalization to larger action sequences to future
work.

Autonomous agents often have observation processing before it is fed into the RL algorithm. It should be noted that obser-
vation processing often forms a significant portion of the latency, while the recurrent portion of the actor for SRL governs the
actuation frequency. Furthermore, as mentioned before, SRL can also inherently handle delays by acting in a predictive manner,
where the sequence of actions is performed in anticipation of the next state that is being processed. Furthermore, in such cases,
where there is an overlap between two consecutive action sequences, additional MSE loss can be utilized to align two action
sequences. We also leave this exploration to future work.

Learning Curves
Plots for Frequency Averaged Scores
Figure 6 shows the plots for FAS. The ASL of 1 in the figure represents the performance of each policy in the standard
reinforcement learning setting. We can see that SRL is competitive with SAC on ASL of 1 in all environments tested. Larger H
results in better robustness at longer ASLs, but it often comes at the cost of lower performance at shorter ASLs.

Additionally, as the FAS reflects, SRL is also significantly more robust across different frequencies than standard RL (SAC).

Figure 3: Learning curves for extended action Soft-Actor Critic (SAC-J) (Haarnoja et al. 2019) over continuous control tasks.
The default timestep J = 1 is the optimal for all environments except the swimmer and lunar lander. Larger timesteps support
better exploration but also result in worse performance. These results demonstrate that on all environments except swimmer and
lunar-lander, the default timestep is picked to optimize for the sweet-spot between better exploration and better performance.

Figure 4: Learning curves of SRL-J (Haarnoja et al. 2019) over continuous control tasks. During evaluation, SRL receives
input after J primitive actions. All curves are averaged over 5 trials, with shaded regions representing standard deviation.

Figure 5: Performance of SAC-J at different Action Sequence Lengths (ASL). SAC repeats the same action for the duration.
All policies were tested on ASL of 1, 2, 4, 8 ... 30. All markers are averaged over 5 trials, with the error bars representing
standard error.

Figure 6: Performance of SRL-J at different Action Sequence Lengths (ASL). All policies were tested on ASL of 1, 2, 4, 8 ...
30. All markers are averaged over 5 trials, with the error bars representing standard error.

Plots for FAS vs. Stochastic Timestep Performance
In Figure 7, we present the plots for FAS vs performance for all environments. For all environments except
InvertedDoublePendulum-v2, we see a high correlation. InvertedDoublePendulum-v2 is a difficult problem at slow frequency
and demonstrates poor performance of less than 200; thus, it does not correlate to FAS.

Figure 7: Performance vs. FAS of different policies (SAC, SRL-2, SRL-4, SRL-8, SRL-16). For each algorithm, we test 5
policies over 10 episodes.

Generative Replay in Latent Space

Figure 8: Left: Learning curve of SRL with latent state-space on the Walker2d-v2 environment. Right: Performance of latent
SRL-16 on different ASL, compared to SAC and TempoRL. Utilizing a latent representation for state space is especially
beneficial for the Walker2d environment so that it outperforms SAC even when training upto sequence lengths of J = 16.

Previous studies have shown that generative replay benefits greatly from latent representations (Van de Ven, Siegelmann, and
Tolias 2020). Recently, Simplified Temporal Consistency Reinforcement Learning (TCRL) (Zhao et al. 2023) demonstrated
that learning a latent state-space improves not only model-based planning but also model-free RL algorithms. Building on this
insight, we introduced an encoder to encode the observations in our algorithm.

Following the TCRL implementation, we use two encoders: an online encoder eθ and a target encoder eθ− , which is the
exponential moving average of the online encoder:

Encoder : et = eθ(st) (6)

Thus, the model predicts the next state in the latent space. Additionally, we introduce multi-step model prediction for temporal
consistency. Following the TCRL work, we use a cosine loss for model prediction. The model itself predicts only a single step
forward, but we enforce temporal consistency by rolling out the model H-steps forward to predict ẽt+1:t+1+H .

Specifically, for an H-step trajectory τ = (zt, at, zt+1)t:t+H drawn from the replay buffer D, we use the online encoder to
get the first latent state et = eθ(ot). Then conditioning on the sequence of actions at:t+H , the model is applied iteratively to
predict the latent states ẽt+1 = mϕ(ẽt, at). Finally, we use the target encoder to calculate the target latent states êt+1:t+H+1 =
eθ−(ot+1:t+1+H). The loss function is defined as:

Lθ,ϕ = Eτ∼D

[H∑
h=0

−γh
(

ẽt+h
||ẽt+h||2

)T(
êt+h
||êt+h||2

)]
(7)

We setH = 5 for our experiments. Both the encoder and the model are feed-forward neural networks with two hidden layers.
We provide preliminary results for the Walker environment. Utilizing the latent space for generative replay significantly

improved performance, making it competitive even at 16 steps (128 ms) (Figure 8).
We also provide the TempoRL (Biedenkapp et al. 2021) algorithm as a benchmark as it is an algorithm that successfully

reduces the number of decisions per episode. TempoRL is designed to dynamically pick the best frameskip (for performance);
therefore, we report the avg. action sequence length for TempoRL.

Neural Basis for Sequence Learning
Unlike artificial RL agents, learning in the brain does not stop once an optimal solution has been found. During initial task
learning, brain activity increases as expected, reflecting neural recruitment. However, after training and repetition, activity
decreases as the brain develops more efficient representations of the action sequence, commonly referred to as muscle memory
(Wiestler and Diedrichsen 2013). This phenomenon is further supported by findings that sequence-specific activity in motor

regions evolves based on the amount of training, demonstrating skill-specific efficiency and specialization over time (Wymbs
and Grafton 2015).

The neural basis for action sequence learning involves a sophisticated interconnection of different brain regions, each making
a distinct contribution:

1. Basal ganglia (BG): Action chunking is a cognitive process by which individual actions are grouped into larger, more man-
ageable units or ”chunks,” facilitating more efficient storage, retrieval, and execution with reduced cognitive load (Favila,
Gurney, and Overton 2024). Importantly, this mechanism allows the brain to perform extremely fast and precise sequences of
actions that would be impossible if produced individually. The BG plays a crucial role in chunking, encoding entire behav-
ioral action sequences as a single action (Jin, Tecuapetla, and Costa 2014; Favila, Gurney, and Overton 2024; Jin and Costa
2015; Berns and Sejnowski 1996, 1998; Garr 2019). Dysfunction in the BG is associated with deficits in action sequences
and chunking in both animals (Doupe et al. 2005; Jin and Costa 2010; Matamales et al. 2017) and humans (Phillips et al.
1995; Boyd et al. 2009; Favila, Gurney, and Overton 2024). However, the neural basis for the compression of individual
actions into sequences remains poorly understood.

2. Prefrontal cortex (PFC): The PFC is critical for the active unbinding and dismantling of action sequences to ensure behav-
ioral flexibility and adaptability (Geissler, Frings, and Moeller 2021). This suggests that action sequences are not merely
learned through repetition; the PFC modifies these sequences based on context and task requirements. Recent research
indicates that the PFC supports memory elaboration (Immink et al. 2021) and maintains temporal context information
(Shahnazian et al. 2022) in action sequences. The prefrontal cortex receives inputs from the hippocampus.

3. Hippocampus (HC) replays neuronal activations of tasks during subsequent sleep at speeds six to seven times faster. This
memory replay may explain the compression of slow actions into fast chunks. The replayed trajectories from the HC are
consolidated into long-term cortical memories (Zielinski, Tang, and Jadhav 2020; Malerba, Tsimring, and Bazhenov 2018).
This phenomenon extends to the motor cortex, which replays motor patterns at accelerated speeds during sleep (Rubin et al.
2022).

Clarification Figure

Figure 9: Illustration of the control process in an RL agent, comprising three key components: observation, computation, and
actuation. In a standard RL framework, these components typically operate at the same frequency, with each observation leading
to a single action after a computation pass. However, the sequence learner can achieve faster actuation by generating multiple
primitive actions per observation. It’s important to note that during training, the observation frequency must be at least equal to
the actuation frequency and, after training, must match the computation frequency.

Learning Curves by J

Figure 10: Learning curve of SRL-2 and SAC-2.

Figure 11: Learning curve of SRL-4 and SAC-4.

Figure 12: Learning curve of SRL-8 and SAC-8.

Figure 13: Learning curve of SRL-16 and SAC-16.

Randomized frame-skipping
As shown, SAC trained on a constant timestep cannot adapt to different timesteps. For a fairer comparison, we also present
results on randomized frame-skipping implemented on SAC during training.

Figure 14: Performance of SAC and randomized SAC (SAC-R).

Figure 14 compares the performance of randomized SAC (SAC-R) to SAC at J = 16. Surprisingly, we find that randomized
frame-skipping during training improves the performance at shorter action sequence lengths (ASL) for simple environments
like pendulum and lunar lander. However, for Hopper, SAC-R performs worse than SAC. This is most probably due to the
stochasticity introduced due to the randomized frame-skipping. Even with randomized frame-skipping, SAC fails to achieve
performance similar to SRL on simple environments, thus further reinforcing the results presented in this paper.

Results on TempoRL
To further provide provide context for the contribution of this work in comparison to previous work, we provide further com-
parison to TempoRL (Biedenkapp et al. 2021) and also discuss performance compared to recent work on observational dropout.

Environment Avg. Reward Avg. Sequence Length Max sequence Length
Pendulum -149.38 ±31.26 71.74ms 6
Hopper 2607.86 ±342.23 22.4ms 9
Walker2d 4581.69 ±561.95 25.54ms 7
Ant 3507.85 ±579.95 62.66ms 3
HalfCheetah 6627.73 ±2500.77 56.20ms 3
Inv Pendulum 984.21 ±47.37 73.92ms 10
InvD Pendulum 9352.61 ±2.2 58.76ms 5

Table 7: Results of running TempoRL on Mujoco Tasks. All results are averaged over 10 seeds.

TempoRL cannot be adapted to the FAS setting since after each action is picked, it further picks the duration for the amount
of time the action will be performed. Yet, since it promotes action repetiton, it results in lower decision frequency and longer
action sequence lengths than standard algorithms like TD3 and SAC.

Table 7 demonstrates the results of training TempoRL algorithm on some of the benchmarks presented in this paper. We did
a quick hyperparameter search over the max sequence length parameter and pick the highest number over 3 that did not result
in a significant drop in performance. We find that while TempoRL achieve optimal performance on environments with single
dimensions like pendulums, it demonstrates significant drop in performance on environments with multiple dimensions like
Ant and HalfCheetah. Furthermore, on all environments, it maintains a relatively short action sequence length and even though
it is given the option of picking long action sequences, it rarely does so. This result further demonstrates the contribution of
SRL at maintaining performance at really long sequence lengths in environments with high action dimensions.

Comparison to Generative Planning Method
The Generative Planning Method (GPM) (Zhang, Xu, and Yu 2022) introduced a recurrent actor, similar to SRL, to generate
a sequence of actions aimed at improving exploration. However, GPM was designed for a different context and, in its original
work, was evaluated under the standard RL setting. Notably, GPM optimizes all actions in its generated plan to maximize the

Figure 15: Comparison of SAC and SRL to GPM. Top: Learning curves. Bottom: Performance of the trained policies at different
action sequence lengths. The action sequences for SRL and GPM are generated using the recurrent actor while SAC utilizes
action repetition. GPM achieves FAS of 0.41, 0.04, 0.04, 0.04 on the environments from left to right respectively.

Q-value, suggesting that it could potentially achieve a higher FAS score than SAC. To test this hypothesis, we compare SRL
and GPM across four environments.

In the original study, GPM was primarily trained with a plan length of 3 for most environments—a concept comparable to the
J parameter used in our work. While shorter plan lengths may limit generalization to longer sequences, GPM has been shown
to be robust to variations in plan length. To ensure a fair comparison, we use plan lengths that correspond to the best-performing
J values for SRL in each environment.

Figure 15 shows the learning curves and FAS evaluation plots for GPM compared to SAC and SRL. While GPM generates a
plan by optimizing a sequence of actions, it achieves optimal performance only at sequence lengths of one. As a result, its FAS
score is even lower than that of SAC-J .

Notably, on the InvertedDoublePendulum-v2 environment, both SAC and SRL exhibit high performance at action sequence
lengths (ASL) of 4, which aligns with their training at J = 4. However, their performance decreases at shorter ASLs. In
contrast, GPM shows a similar FAS profile to SAC-1, indicating that its performance does not generalize well to longer action
sequences.

We hypothesize that this limitation arises because GPM lacks mechanisms to address challenges associated with training
on sequences of actions. For instance, altering the first action in a sequence can disrupt the optimality of subsequent actions,
affecting the value function of deeper states and potentially causing deeper actions to diverge. SRL, on the other hand, mitigates
this issue by incorporating a model and the ”temporal recall” mechanism, which help maintain consistency across the action
sequence.

