
Revisiting ALFRED: Refining commands for evaluating language-guided task
planning

Minsu Jang
1Electronics and Telecommunications Research Institute

218 Gajeong-ro, Yuseong-gu
Daejeon-si, 34129, South Korea

minsu@etri.re.kr

Abstract

Language-guided task planning has seen significant advances
with the emergence of large language models (LLMs). This
paper presents a refinement of the ALFRED benchmark, a
widely-used dataset for evaluating embodied AI in house-
hold environments. We identify and categorize errors in the
original crowd-sourced commands and propose refined com-
mands that maintain alignment with expert demonstrations.
We further augment these commands through paraphrasing,
contextualization, and cross-lingual translation to create a
more comprehensive evaluation suite. Our experimental re-
sults across multiple LLM-based planners demonstrate that
while state-of-the-art models achieve high success rates on
base commands, performance degrades with increased lin-
guistic complexity. The refined benchmark provides a more
reliable foundation for evaluating language-guided planning
systems while introducing controlled challenges through lin-
guistic variations. Refined command sets are available at
https://github.com/zebehn/revisiting alfred.

1 Introduction
Recent trends in large language model-based task planning
have demonstrated significant improvements in the ability
of LLMs to understand and execute complex multi-step
tasks. Robotics has greatly benefited from these advance-
ments, particularly in task automation, where vast common-
sense and procedural knowledge embedded in LLMs en-
able robotic agents to generate task plans across a variety
of domains based on informal natural language commands.
This has also facilitated intuitive language-based interac-
tions between robots and users, as demonstrated in works
such as Zero-Shot Planner (Huang et al. 2022), Google Say-
Can (Ahn et al. 2022), and Google PaLM-E (Driess et al.
2023). These advancements are driven by increased model
scale, improved training data quality, and enhanced integra-
tion with perceptual modules, enabling agents to navigate,
manipulate objects, and adapt to dynamic environments. Ad-
ditionally, the shift towards incorporating contextual rea-
soning and uncertainty management has made these models
more robust in handling real-world conditions and ambigu-
ous instructions.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Simulations for embodied artificial intelligence, such as
AI2Thor (Kolve et al. 2017), VirtualHome (Puig et al. 2018),
iGibson (Li et al. 2021), and IsaacSim (NVIDIA 2023),
are increasingly employed for conducting experiments and
benchmarking the performance of LLM-based task planners.
These simulation environments provide photo-realistic and
interactive settings, enabling researchers to evaluate the ef-
fectiveness of language-guided task planning in a controlled
and repeatable manner. This systematic evaluation capabil-
ity has been a driving force in advancing LLM-based task
planners by allowing rapid iteration and development.

Several domain-specific benchmarks built on top of the
aforementioned embodied AI simulators serve as critical
tools for evaluating and advancing language model-based
task planners across different task domains. These bench-
marks are tailored to assess planners within specific types
of environments, such as household tasks (Shridhar et al.
2020; Puig et al. 2021; Nasiriany et al. 2024) and tabletop
manipulations (Zeng et al. 2021; Jiang et al. 2022), allowing
systematic evaluation and fostering improvements in both
generalization and task-specific skills.

In this paper, we examine the ALFRED benchmark, a
widely-adopted simulation framework for evaluating em-
bodied task planning in domestic environments. While AL-
FRED has become a standard testbed for language-guided
planning systems, particularly those leveraging LLMs, its
reliance on crowd-sourced commands introduces significant
challenges. Our analysis reveals that these natural language
commands often contain errors and ambiguities that com-
promise the benchmark’s effectiveness for evaluation. To
address these limitations, we conduct a systematic review
of the command dataset and propose new command sets
that more accurately align with the expert-generated task
demonstrations. These refined commands maintain the nat-
ural language characteristics desired for real-world appli-
cations while ensuring precise correspondence with the in-
tended actions, thereby enabling more reliable evaluation of
language-guided planning systems.

2 Background
2.1 Language Model-based Task Planning
Large Language Models (LLMs) have emerged as a transfor-
mative technology for task planning, offering three key ad-

vantages: natural language understanding that enables con-
versational task specification, zero-shot generalization for
handling novel scenarios without explicit training, and pre-
trained world knowledge for common-sense reasoning about
objects and actions. These capabilities significantly enhance
the flexibility and accessibility of planning systems com-
pared to traditional approaches.

The process of LLM-based task planning involves con-
ditioning a language model with contextual descriptions
to generate action sequences that accomplish goals spec-
ified in natural language. This approach has been imple-
mented through various methodologies: one-shot plan gen-
eration that produces complete plans in a single inference
step (Huang et al. 2022), iterative action selection that deter-
mines actions sequentially (Ahn et al. 2022; Hao et al. 2023),
and deliberative tree search that explores multiple action tra-
jectories (Ao et al. 2024; Hu et al.).

2.2 ALFRED Benchmark
ALFRED (Action Learning From Realistic Environments
and Directives) is a benchmark for embodied AI that evalu-
ates agents’ ability to execute household tasks based on nat-
ural language instructions (Shridhar et al. 2020). Built on the
AI2Thor simulator, ALFRED presents agents with complex
scenarios requiring object manipulation, spatial navigation,
and instruction understanding. The benchmark encompasses
six fundamental task categories: object relocation, stacking,
heating, cooling, cleaning, and examination, all of which re-
quire interpreting natural language directives and executing
appropriate actions in a 3D environment.

The benchmark’s evaluation dataset comprises 8,055 ex-
pert demonstrations derived from 2,685 unique task defi-
nitions. These definitions are systematically generated by
combining 7 task types, 58 object classes, and 26 receptacle
classes across 120 distinct scenes, creating a comprehensive
test suite for embodied task learning and execution.

2.3 LoTa-Bench
LoTa-Bench is an automated evaluation framework designed
specifically for language model-based task planners (Choi
et al. 2024). The framework provides two key components: a
standardized implementation interface for language model-
based planners and a domain abstraction layer that enables
world state querying, action execution, and goal verification
through natural language. This architecture facilitates sys-
tematic evaluation of planning capabilities across multiple
domains, currently supporting both ALFRED and Watch-
And-Help (Puig et al. 2021) environments. The benchmark’s
modular design allows for consistent assessment of different
planning approaches while abstracting domain-specific im-
plementation details.

3 Method
Our systematic approach to analyzing and refining the AL-
FRED dataset consists of four primary phases:

1. Error Analysis: Comprehensive examination of annota-
tion errors in the original ALFRED dataset to identify
patterns and categories of inconsistencies

2. Command Generation: Development of refined task
commands to create more precise and consistent natu-
ral language instructions that accurately reflect expert
demonstrations

3. Command Augmentation: Generation of four vari-
ant command sets to evaluate robustness across differ-
ent linguistic expressions: base refined commands that
strictly align with demonstrations, paraphrased variations
that maintain semantic equivalence, contextualized com-
mands incorporating additional environmental details,
and Korean-language commands enabling cross-lingual
evaluation

4. Planner Evaluation: Comparative assessment of
language-guided planners using both original and
augmented command datasets to measure performance
across different linguistic variations

For the analysis, generation, and augmentation phases
(steps 1-3), we employ OpenAI’s o1-preview model
(OpenAI 2024), leveraging its advanced reasoning capabil-
ities and robust multilingual understanding. The prompts
for these phases are presented in Appendix A.1 through
A.4. The generated and augmented commands were exam-
ined through human inspection, and errors were corrected.
The evaluation phase uses multiple state-of-the-art language
models to ensure a comprehensive assessment of planning
performance across the refined command datasets.

4 Results
4.1 Error Analysis
The ALFRED dataset’s natural language commands are
derived from crowd-sourced annotations, where workers
provided instructions based on demonstrated tasks. Each
demonstration, generated using a PDDL-compatible task
planner, was presented to crowd-sourced workers who were
tasked with inferring the demonstrated actions’ intent and
goal, then formulating appropriate commands to guide an
agent in replicating these actions.

Our analysis revealed systematic errors in the crowd-
sourced annotations, stemming from variations in workers’
reasoning capabilities and diverse interpretations of task in-
tentions. We identify three primary categories of errors that
significantly impact the dataset’s reliability:

• Object Identification Errors: These errors manifest
when annotators misidentify or incorrectly specify ob-
jects in their commands. For instance, a demonstration
showing an agent placing an egg in a microwave might
be annotated as ”Place a potato in the microwave.” Such
errors fundamentally alter the task’s objective and can
lead to incorrect training signals for learning systems.

• Spatial Reference Errors: These errors involve inaccu-
rate or ambiguous specifications of locations and recep-
tacles. A representative example is when a demonstration
showing toilet paper being placed in a toilet receives the
annotation ”Put two toilet papers on the toilet tank lid.”
These errors can result in spatial navigation failures and
incorrect object placement during task execution.

• Action Sequence Misalignment: This category encom-
passes discrepancies between the demonstrated action
sequence and the annotated command. For example, a
demonstration of placing a sliced tomato directly into
a refrigerator might receive the annotation ”Put a bowl
with a tomato in it in the fridge.” Such errors introduce
phantom steps or omit crucial actions, potentially leading
to task execution failures.

Table 1 shows the statistics of the errors in the crowd-
sourced commands in the ALFRED dataset for the valid-
seen and valid-unseen tasks. These annotation errors
present significant challenges for developing and evaluating
language-guided planning systems, as they introduce noise
into both training and evaluation processes.

Error Type Valid-Seen Valid-Unseen
No of Commands 820 821
Object Id. Errors 176 112
Space Ref. Errors 160 146
Action Seq. Misalignment 128 136

Table 1: Statistics of errors in the ALFRED dataset com-
mands for valid-seen and valid-unseen tasks.

4.2 Command Generation
The ALFRED benchmark represents each expert demonstra-
tion through a JSON document containing comprehensive
task specifications: scene descriptions with object poses and
coordinates, task type identifiers, goal state definitions, and
both high-level action sequences and low-level directives,
along with multiple natural language command annotations.
To generate refined commands, we extracted two key com-
ponents from each demonstration: the task type and the
high-level action sequence. Using OpenAI’s o1-preview
model, we provide a prompt structure combining:
• Descriptions on the command generation task
• Explanations of ALFRED task types
• Five in-context examples covering primary task cate-

gories (Pick & Place, Pick Two & Place, Stack & Place,
Heat & Place)

An illustrative in-context example from our prompt:
• Task Type: pick and place simple
• Action Sequence:

1. GotoLocation(countertop)
2. PickupObject(peppershaker)
3. GotoLocation(drawer)
4. PutObject(peppershaker,drawer)
5. Done

• Command: Put the pepper shaker to the drawer
Using this approach, we generated refined commands for
both validation splits: 251 commands for valid seen tasks
and 255 commands for valid unseen tasks, ensuring one pre-
cise command per expert demonstration.

Set Unique Words Diversity Entropy

va
lid

-s
ee

n B 129 0.060 5.172
P-1 165 0.080 5.689
P-2 171 0.083 5.734
C 521 0.065 6.974
K 144 0.123 6.137

va
lid

-u
ns

ee
n B 97 0.045 5.024

P-1 150 0.071 5.605
P-2 154 0.073 5.692
C 530 0.065 7.136
K 122 0.102 6.272

Table 2: Linguistic complexity metrics across command
variants (B: Base, P-1: Paraphrased-1, P-2: Paraphrased-2,
C: Contextual, and Korean translations). The metrics include
vocabulary size (unique words), lexical diversity, and en-
tropy.

4.3 Command Augmentation
To evaluate the robustness of language model-based plan-
ners across diverse linguistic expressions, we developed four
variant sets of task commands. These variants test planners’
ability to handle semantic variations, contextual reasoning,
and cross-lingual understanding.

The first variant, Paraphrased-1, introduces verb varia-
tions while maintaining other linguistic elements constant,
testing robustness to action verb synonyms. The second vari-
ant, Paraphrased-2, incorporates alternative terms for both
objects and locations, evaluating comprehension of broader
semantic variations. The Contextual variant presents a two-
sentence structure where contextual background precedes
the actual command, assessing planners’ ability to integrate
contextual information with direct instructions, identify and
resolve uncertainties through question-answering when con-
text is absent, and reference implicit information in com-
mand execution. Finally, the Korean variant provides cross-
lingual evaluation through direct translation of base com-
mands, capturing variations in linguistic nuances and se-
mantic interpretations across languages.

Using OpenAI o1-preview model, we generated four
variant sets for each base command, resulting in 2,024 com-
mands in total (506 commands × 4 variants) across the
valid seen and valid unseen splits. Sample commands for
each variant set are illustrated below:

• Base: Put the cloth in the bathtub basin.
• Paraphrased-1: Set the cloth in the bathtub basin.
• Paraphrased-2: Place the cloth in the bathtub.
• Contextual: In our household, we usually place cloths in

the bathtub basin for soaking or washing. Once you have
the cloth ready, please ensure it’s placed in the usual spot.

• Korean:천을욕조에넣으세요.

We analyzed the linguistic complexity of the command
sets using three quantitative metrics: vocabulary size (unique
word count), lexical diversity, and entropy. As shown in Ta-
ble 2, both paraphrased and contextualized variants demon-

Command Set gpt-4o-mini gpt-4o o1-preview Llama 3.1 70B
Base 58.7 75.2 69.7 61.4

Paraphrased-1 54.1 71.5 66.9 56.9
Paraphrased-2 50.4 69.7 70.6 54.1

Contextual 39.4 58.7 57.8 58.7
Contextual(without context) 11.9 19.2 20.1 18.6

Korean 48.6 59.6 69.7 51.4

Table 3: Plan execution success rates (%) across different LLMs on the refined ALFRED valid-seen tasks: comparison over
command variants (Base, Paraphrased-1, Paraphrased-2, Contextual, and Korean)

strate increased vocabulary diversity and semantic complex-
ity compared to the base commands. This increased linguis-
tic variation introduces additional challenges for language
understanding and task planning, making these command
sets particularly valuable for evaluating LLMs’ robustness to
natural language variations. These characteristics align with
our goal of creating a more comprehensive and challenging
benchmark for language-guided planning systems.

4.4 Planner Evaluations
We conducted comprehensive evaluations of various LLM-
based planners using our refined ALFRED command sets
for valid-seen tasks through the LoTa-Bench framework1.
The evaluation follows a one-shot planning approach, where
each planner generates a complete action sequence from
a single user command. The prompt structure includes 14
carefully selected in-context examples covering all AL-
FRED task types, ensuring comprehensive coverage of pos-
sible planning scenarios.

Our experimental setup focuses exclusively on language-
based planning without visual inputs. Planners generate ac-
tion sequences solely based on the command text and a pre-
defined set of executable actions provided in the prompt.
The environment interaction is simplified by using language
identifiers for objects and locations, where the simulator
teleports the agent to the target positions based on these
identifiers. This setup enables the execution of embodied
plans without requiring visual grounding, allowing us to iso-
late and evaluate the language understanding and planning
capabilities of the models.

For each generated plan, LoTa-Bench executes the action
sequence step-by-step in the AI2-Thor simulator. A plan is
considered successful only when the final world state after
execution precisely matches the specified goal conditions for
the given command. The success rates for different models
across our command variants are presented in Table 3.

OpenAI’s o1-preview and gpt-4o models achieved
the highest success rates, while Llama 3.1 70B demon-
strated competitive performance. Notably, success rates de-
clined across all models when tested on the augmented
command sets compared to the base set, confirming that

1Due to computational constraints with the Llama 3.1 70B
model, experiments were conducted on a selected 50% subset
of the task commands while maintaining the original distribution
across task types.

these variants introduce increased linguistic complexity to
the planning task. The contextual command set presents a
particularly interesting challenge: when the contextual back-
ground sentence is excluded, planners must demonstrate so-
phisticated uncertainty reasoning to successfully complete
tasks, providing a valuable benchmark for evaluating LLMs’
ability to identify and handle ambiguous instructions.

Table 4 categorizes plan execution failures into three dis-
tinct error types. Command Misalignment (Type 1) occurs
when there is a discrepancy between the commanded action
and the target goal state. Execution Failure (Type 2) repre-
sents failures in navigation or manipulation within the envi-
ronment. Planning Failure (Type 3) refers to the generation
of action sequences that are insufficient or inappropriate for
achieving the target goal.

Analysis of the error distribution reveals that our re-
fined command set effectively eliminates command mis-
alignment, validating that the generated commands main-
tain strict alignment with their corresponding demonstrated
tasks. The remaining failures are attributed to environmental
interaction challenges and planning complexities, suggest-
ing that the performance bottleneck lies in the execution and
planning capabilities rather than command interpretation.

Command Set # Type 1 # Type 2 # Type 3
ALFRED(original) 27 49 24
Base 0 66 34
Paraphrased-1&2 0 65 35
Contextual 0 56 44
Korean 9 52 39

Table 4: Rates(%) of errors according to the types

5 Conclusions
In this work, we presented a systematic approach to refin-
ing and augmenting the ALFRED benchmark dataset for
language-guided planning. Our analysis revealed significant
inconsistencies in the original crowd-sourced commands,
which we addressed through LLM-based command gener-
ation and augmentation. The refined command sets not only
eliminate semantic misalignments present in the original
dataset but also introduce controlled variations in linguis-
tic complexity through paraphrasing, contextualization, and
cross-lingual translation.

Our evaluation results demonstrate that while state-of-
the-art LLMs achieve promising success rates on the base
command set, their performance degrades with increased
linguistic complexity in the augmented variants. This per-
formance gap, particularly evident in contextual and cross-
lingual scenarios, highlights important challenges in devel-
oping robust language-guided planning systems. The refined
ALFRED benchmark, with its diverse command variants,
provides a more reliable and comprehensive framework for
evaluating future advances in language-guided planning sys-
tems.

Acknowledgements
This work was supported by Institute of Information
& communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (No.
RS-2022- II220951, Development of Uncertainty-Aware
Agents Learning by Asking Questions, 50%, No. RS-2024-
00336738, Development of Complex Task Planning Tech-
nologies for Autonomous Agents, 50%).

References
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; et al. 2022. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691.
Ao, J.; Wu, F.; Wu, Y.; Swikir, A.; and Haddadin, S.
2024. LLM as BT-Planner: Leveraging LLMs for Behav-
ior Tree Generation in Robot Task Planning. arXiv preprint
arXiv:2409.10444.
Choi, J.-W.; Yoon, Y.; Ong, H.; Kim, J.; and Jang, M. 2024.
LoTa-Bench: Benchmarking Language-oriented Task Plan-
ners for Embodied Agents. In The Twelfth International
Conference on Learning Representations.
Driess, D.; Xia, F.; Sajjadi, M. S.; Lynch, C.; Chowdhery, A.;
Ichter, B.; Wahid, A.; Tompson, J.; Vuong, Q.; Yu, T.; et al.
2023. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378.
Hao, S.; Gu, Y.; Ma, H.; Hong, J.; Wang, Z.; Wang, D.; and
Hu, Z. 2023. Reasoning with Language Model is Planning
with World Model. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 8154–8173.
Hu, M.; Mu, Y.; Yu, X. C.; Ding, M.; Wu, S.; Shao, W.;
Chen, Q.; Wang, B.; Qiao, Y.; and Luo, P. ???? Tree-Planner:
Efficient Close-loop Task Planning with Large Language
Models. In The Twelfth International Conference on Learn-
ing Representations.
Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International con-
ference on machine learning, 9118–9147. PMLR.
Jiang, Y.; Gupta, A.; Zhang, Z.; Wang, G.; Dou, Y.; Chen,
Y.; Fei-Fei, L.; Anandkumar, A.; Zhu, Y.; and Fan, L.
2022. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3): 6.

Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.;
Herrasti, A.; Deitke, M.; Ehsani, K.; Gordon, D.; Zhu, Y.;
et al. 2017. Ai2-thor: An interactive 3d environment for vi-
sual ai. arXiv preprint arXiv:1712.05474.
Li, C.; Xia, F.; Martı́n-Martı́n, R.; Lingelbach, M.; Srivas-
tava, S.; Shen, B.; Vainio, K.; Gokmen, C.; Dharan, G.; Jain,
T.; et al. 2021. igibson 2.0: Object-centric simulation for
robot learning of everyday household tasks. arXiv preprint
arXiv:2108.03272.
Nasiriany, S.; Maddukuri, A.; Zhang, L.; Parikh, A.; Lo, A.;
Joshi, A.; Mandlekar, A.; and Zhu, Y. 2024. RoboCasa:
Large-Scale Simulation of Everyday Tasks for Generalist
Robots. arXiv preprint arXiv:2406.02523.
NVIDIA. 2023. NVIDIA Isaac Sim.
OpenAI. 2024. Introducing OpenAI o1-preview.
Puig, X.; Ra, K.; Boben, M.; Li, J.; Wang, T.; Fidler, S.; and
Torralba, A. 2018. Virtualhome: Simulating household ac-
tivities via programs. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 8494–8502.
Puig, X.; Shu, T.; Li, S.; Wang, Z.; Liao, Y.-H.; Tenenbaum,
J. B.; Fidler, S.; and Torralba, A. 2021. Watch-And-Help: A
Challenge for Social Perception and Human-AI Collabora-
tion. In International Conference on Learning Representa-
tions.
Shridhar, M.; Thomason, J.; Gordon, D.; Bisk, Y.; Han, W.;
Mottaghi, R.; Zettlemoyer, L.; and Fox, D. 2020. Alfred: A
benchmark for interpreting grounded instructions for every-
day tasks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 10740–10749.
Zeng, A.; Florence, P.; Tompson, J.; Welker, S.; Chien, J.;
Attarian, M.; Armstrong, T.; Krasin, I.; Duong, D.; Sind-
hwani, V.; et al. 2021. Transporter networks: Rearranging
the visual world for robotic manipulation. In Conference on
Robot Learning, 726–747. PMLR.

A Prompts
A.1 Error Analysis

You are a reasoning agent specialized in analyzing an intent of a
user command and its alignment with the action sequence. The
given action sequence is **the ground truth of the task**, so you
need to **find alignment problems only in the commands**.
Suppose you operate a robotic agent with the capability to
perform the following seven classes of tasks:
1. Pick and Place, 2. Stack and Place, 3. Pick Two and Place, 4.
Clean and Place, 5. Heat and Place, 6. Cool and Place, 7. Examine
in Light.

Sometimes tasks involve slicing objects like apples. In this world,
actions like HeatObject, CoolObject, SliceObject, CleanObject
assume that you have already picked up the object after the
actions. Sometimes the task involves putting something into a
movable receptacle like a bowl and then placing the receptacle in
a specific location. If heating, cooling, cleaning, or slicing action
is involved in the process, it should be mentioned in the command
.

In this world, the robot perceives the world and performs actions
purely through a language and symbolic world model and
reasoning. The integrity check needs to consider that the robot
cannot find an object with visual descriptions like color, shape, etc
., because the robot cannot actually perceive visual features of the
space and objects. But if an object property specified in the
command is achieved in the action sequence, it is consistent. For
example, given a command ”Put a clean knife on the countertop.”
and an action sequence involving cleanobject(knife), the
command is consistent with the action sequence.

Integrity errors can be categorized into the following three types:

1. Type 1: Spatial Interpretation Errors
− Explanation: Problems with correctly interpreting or
locating specified spatial instructions.
− Example 1:

− Command: Put a plate on the counter left of the sink.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(plate), 3. GotoLocation(countertop), 4.
PutObject(plate,countertop), 5. Done.
− Issue: The command mistakenly specifies the position
relative to the sink but the action sequence places the plate
simply on the countertop.

− Example 2:
− Command: Put a spray bottle on the toilet tank lid.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(spraybottle), 3. GotoLocation(toilet), 4.
PutObject(spraybottle,toilet), 5. Done.
− Issue: The command mistakenly directs to put a spray
bottle on the toilet tank lid but the action sequence places it
simply in the toilet.

2. Type 2: Object Specification Errors
− Explanation: Instances where the robot substitutes the
intended object with a different one, either due to perception
limitations or task misinterpretation.
− Example 1:

− Command: Place a potato in the microwave.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(egg), 3. GotoLocation(microwave), 4.
PutObject(egg,microwave), 5. Done.
− Issue: The command mistakenly directs to put a potato in
the microwave but the action sequence puts an egg instead.

− Example 2:
− Command: Move a bottle of lotion into a drawer.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(soapbottle), 3. GotoLocation(drawer), 4.
PutObject(soapbottle,drawer), 5. Done.
− Issue: The command mistakenly directs to move a lotion
bottle into a drawer but the action sequence involves a soap
bottle instead.

− Example 3:
− Command: Put a yellow−handled knife into a drawer.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(knife), 3. GotoLocation(drawer), 4. PutObject
(knife,drawer), 5. Done.
− Issue: The command directs to find a yellow−handled
knife, but the robot cannot perceive the color and cannot
fulfill the task based on the command.

3. Type 3: Action Sequence Completeness Issues
− Explanation: Key actions or details are omitted, leading to
incomplete task fulfillment.
− Example 1:

− Command: Put a plate in a fridge.
− Action Sequence: 1. GotoLocation(countertop), 2.
PickupObject(plate), 3. GotoLocation(sinkbasin), 4.
CleanObject(plate), 5. GotoLocation(fridge), 6. PutObject(
plate,fridge), 7. Done.
− Issue: The command mistakenly directs to put a plate in a
fridge but the action sequence includes washing the plate.

− Example 2:
− Command: Put a bowl with a tomato in it in the fridge.
− Action Sequence: 1. GotoLocation(diningtable), 2.
PickupObject(butterknife), 3. GotoLocation(tomato), 4.
SliceObject(tomato), 5. PutObject(butterknife,countertop),
6. PickupObject(tomato), 7. GotoLocation(bowl), 8.
PutObject(tomato,bowl), 9. PickupObject(bowl), 10.
GotoLocation(fridge), 11. PutObject(bowl,fridge), 12. Done.
− Issue: The command mistakenly directs to put a bowl with
a tomato in it in the fridge but the action sequence includes

slicing the tomato.

4. Type 4: Other Errors
− Explanation: Other errors that do not fit into the above
categories.

5. Type 5: No Error
− Explanation: The command is consistent with the action
sequence.

You will be given a Query consisting of a command and a
sequence of actions that accomplish the command. You check the
integral correspondence between the command and the action
sequence and decide whether the robot can accomplish the goal of
the command under the perceptual constraints.

Answer only in JSON format, without any compartments like ”‘‘‘
json” or ”‘‘‘”.

Here are some samples:

Query:
− Task Type: pick and place simple
− Action Sequence: 1. GotoLocation(countertop), 2. PickupObject
(peppershaker), 3. GotoLocation(drawer), 4. PutObject(
peppershaker,drawer), 5. Done.
− Command: Put the pepper shaker to the drawer.
Answer:
{”Integrity”: true, ”Reason”: ”The command is consistent with
the action sequence.”, ”Type”: 5}

Query:
− Task Type: pick two obj and place
− Action Sequence: 1. GotoLocation(garbagecan), 2.
PickupObject(toiletpaper), 3. GotoLocation(cabinet), 4. PutObject
(toiletpaper,cabinet), 5. GotoLocation(countertop), 6.
PickupObject(toiletpaper), 7. GotoLocation(cabinet), 8. PutObject
(toiletpaper,cabinet), 9. Done.
− Command: Put two toilet papers on the yellow table.
Answer:
{”Integrity”: false, ”Reason”: ”The command mistakenly
specifies to put two toilet papers on the yellow table, but the
action sequence places the toilet paper in the cabinet.”, ”Type”: 1}

Now, answer the following query.

Query:
− Task Type: {task type}

− Action Sequence: {action sequence}
− Command: {command}

Answer:

A.2 Command Generation

You are a reaoning agent specialized in intent prediction.
There are seven types of tasks that can be commanded:
1. Pick and Place, 2. Stack and Place, 3. Pick Two and Place, 4.
Clean and Place, 5. Heat and Place, 6. Cool and Place, 7. Examine
in Light.

Sometimes tasks involve slicing objects like apples.
In this world, when you put down something in the fridge and
then pick it up again, it is assumed that the object is cooled.
As such, when you put down something in the microwave and
then pick it up again, it is assumed that the object is heated.
Also, when you put down something in the sink and open a facet
and then close it, it is assumed that the object is cleaned.
When you want to put something into a receptacle, you should
open it first and then close it after you put the object in.
Sometimes the task involves to put something into a movable
receptacle like a bowl and then place the receptacle in a specific
location.
If heating, cooling, cleaning, or slicing action is involved in the
process, it should be mentioned in the command.
You will be given with a Query consisted of a sequence of actions
that accomplishes an unknown task.
You infer the goal of the action sequence and answer with a
natural language command that properly addresses the goal.
Answer with only the command without any additional rationle or
explanation.

Here are some samples.
Query:
− Task Type: pick and place simple
− Action Sequence: 1. GotoLocation(countertop), 2. PickupObject
(peppershaker), 3. GotoLocation(drawer), 4. PutObject(
peppershaker,drawer), 5. Done.
Answer: Put the pepper shaker to the drawer.
Query:
− Task Type: pick two obj and place
− Action Sequence: 1. GotoLocation(garbagecan), 2.
PickupObject(toiletpaper), 3. GotoLocation(cabinet), 4. PutObject
(toiletpaper,cabinet), 5. GotoLocation(countertop), 6.
PickupObject(toiletpaper), 7. GotoLocation(cabinet), 8. PutObject
(toiletpaper,cabinet), 9. Done.
Answer: Put two toilet paper to the cabinet.
Query:
− Task Type: pick and place with movable recep
− Action Sequence: 1. GotoLocation(diningtable), 2.
PickupObject(knife), 3. SliceObject(tomato), 4. GotoLocation(
diningtable), 5. PutObject(knife,diningtable), 6. GotoLocation(
diningtable), 7. PickupObject(tomato), 8. GotoLocation(pot), 9.
PutObject(tomato,pot), 10. PickupObject(pot), 11. GotoLocation(
fridge), 12. PutObject(pot,fridge), 13. Done.
Answer: Put a sliced tomato in the pot and then put the pot in the
fridge.
Query:
− Task Type: pick and place with movable recep
− Action Sequence: 1. GotoLocation(microwave), 2.
PickupObject(cup), 3. GotoLocation(sinkbasin), 4. PutObject(cup,
sinkbasin), 5. PickupObject(butterknife), 6. PutObject(butterknife,
cup), 7. Done.
Answer: Put a cup containing a butter knife in it to the sink.
Query:

− Task Type: pick heat then place in recep
− Action Sequence: 1. GotoLocation(sinkbasin), 2. PickupObject(
butterknife), 3. SliceObject(tomato), 4. GotoLocation(microwave)
, 5. PutObject(butterknife,microwave), 6. GotoLocation(sinkbasin
), 7. PickupObject(tomato), 8. GotoLocation(microwave), 9.
HeatObject(tomato), 10. GotoLocation(sinkbasin), 11. PutObject(
tomato,sinkbasin)
Answer: Put a slice of heated tomato in the sink.
Now, answer to the following query.

Query:
− Task Type: {task type}\
− Action Sequence: {action sequence}\

Answer:

A.3 Command Augmentation

Listing 1: Prompt for Rephrased-1
Please rephrase each of the following commands. Use everyday
conversational expressions. The nouns need to be retained, but
verbs, adjectives, adverbs and countable expressions can be
paraphrased. The meaning of the original commands should be
retained! Please punctuate each sentence with a new line. And
good deal of diversity is welcomed, e.g. variations on ’cooled’, ’
cleaned’ etc. with different synonyms.

{commands}

Listing 2: Prompt for Rephrased-2
Please rephrase each the following commands. Use everyday
conversational expressions. The nouns referring to objects and
locations can be paraphrased. The meaning of the original
commands should be retained! Please punctuate each sentence
with a new line. And good deal of diversity is welcomed.

{commands}

Listing 3: Prompt for Contextual commands
The original commands are somewhat direct in that it directly
indicates what to do. Let’s make it somewhat indirect so that an
agent needs to do more elaborate reasoning to accomplish the task
.
First, provide context information rich enough to make an agent
able to come up with a concrete task plan. Second, give an
indirect command that is clearly meaningful under the given
context. An example:
− Original Command: ”Put the spray bottle in the toilet.”
− Altered Command: ”In our house, cleaning supplies like spray
bottles are always kept in the bathroom. Thank you for
completing your task with the spray bottle. Please be sure to
return it to its usual spot.”

{commands}

Listing 4: Prompt for Korean commands
Please translate the following commands in plain and clear
Korean.

{commands}

{commands} is replaced with a list of commands, each
separated by a newline.

A.4 Failure Analysis
The following prompt is designed to analyze planning logs
in order to identify and categorize failure cases.

The following is a log of a session for task execution consisted of
action steps and its outcome indicating the success or failure of
the execution.
When an action fails, a clue message or two are provided.
Please analyze the log and let me know which step has failed on
which reason.
And finally, please provide the type of the failure which is
categorized as follows:
1. Misleading Command: The command directed the robot to
perform an action, but the target goal was different from the
command.
2. Action Failure: The robot failed to perform the action due to
navigation or manipulation errors in the given environment.
3. Plan Failure: The steps are not appropriate to achieve the target
goal.

Sometimes there could be two error types observed in the log.
For example, the command is misleading based on the target goal,
and some step of the execution fails due to navigation or
manipulation errors in the environment.
In this case, you should indicate the two error types in the Failure
Type field.

Please provide the type of the failure which is categorized as
follows:

You will be given a log with a tag <LOG>, and you provide the
analysis with a tag <ANALYSIS>.
<ANALYSIS> should be in the following JSON format:
{

”Command”: ”The command”,
”Steps”: [

{”action”: ”The action”, ”succeeded”: true or false},
{”action”: ”The action”, ”succeeded”: true or false},
...

],
”succeeded”: true or false,
”Analysis”: ”The analysis”,
”Failure Types”: [1, 2] # a list of failure types, 1 is misleading
command, 2 is action failure, 3 is plan failure

}

Here are some samples:

<LOG>
{’repeat idx’: 0, ’task’: ’pick and place simple−SoapBar−None−
Cart−401/trial T20190907 054906 608944’}Evaluating (1/208):
alfred/data/json 2.1.0/pick and place simple−SoapBar−None−
Cart−401/trial T20190907 054906 608944
Task: To place the soap on the rack.
#####################Whole Sequence mode
HTTP Request: POST https://api.openai.com/v1/chat/completions
”HTTP/1.1 200 OK”

[]
1. find a soap bar
object navigation (SoapBar)
Last action succeeded

2. pick up the soap bar
pick SoapBar|−02.39|+01.30|+03.92
Last action succeeded
3. find a rack
object navigation (Rack)
Last action succeeded
4. put down the soap bar
Last action succeeded
5. done
target goal: {”object”: ”SoapBar”, ”parent”: ”Cart”, ”toggle”: ””,
”mrecep”: ””}
success: False
</LOG>

<ANALYSIS>
{ ”Command”: ”To place the soap on the rack.”,

”Task ID”: ”pick cool then place in recep−Plate−None−
Cabinet−27/trial T20190906 173120 350651”,
”Steps”: [
{”action”: ”Find a soap bar”, ”succeeded”: true},
{”action”: ”Pick up the soap bar”, ”succeeded”: true},
{”action”: ”Find a rack”, ”succeeded”: true},
{”action”: ”Put down the soap bar”, ”succeeded”: true},
{”action”: ”Done”, ”succeeded”: true}

],
”succeeded”: false,
”Analysis”: ”The command directed the robot to place the soap
bar on the rack, but the target goal was to place the soap bar on
the cart. The task command is misleading which led to the
failure. The command and the target goal are mismatched.”,
”Failure Types”: [1]

}
</ANALYSIS>

<LOG>
{’repeat idx’: 5, ’task’: ’pick cool then place in recep−Plate−
None−Cabinet−27/trial T20190906 173120 350651’}Evaluating
(2/208): alfred/data/json 2.1.0/pick cool then place in recep−
Plate−None−Cabinet−27/trial T20190906 173120 350651
Task: Put a plate in a cabinet.
#####################Whole Sequence mode
HTTP Request: POST https://api.openai.com/v1/chat/completions
”HTTP/1.1 200 OK”

1. find a plate
object navigation (Plate)
Last action succeeded
2. pick up the plate
pick Plate|−00.31|+00.78|+00.41
Last action succeeded
3. find a cabinet
object navigation (Cabinet)
Last action succeeded
4. open the cabinet
open Cabinet
OpenObject action failed: object not found: Cabinet
|+01.76|+00.39|+00.87, moving backward and trying again...
Last action succeeded
5. put down the plate
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,

trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+00.13|+00.39|+01.77
PutObject action failed: No valid Receptacle found, trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+02.04|+01.81|+00.28
PutObject action failed: No valid Receptacle found, trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
put Plate|−00.31|+00.78|+00.41 on Cabinet
|+01.76|+00.39|+00.87
PutObject action failed: No valid positions to place object found,
trying again...
drop
llm skill interact failed
errorMessage:
returned msg: put down failed
6. close the cabinet
close Cabinet
Last action succeeded
7. done
target goal: {”object”: ”Plate”, ”parent”: ”Cabinet”, ”toggle”: ””,
”mrecep”: ””}
success: False
</LOG>

<ANALYSIS>
{ ”Command”: ”Put a plate in a cabinet.”,

”Task ID”: ”pick cool then place in recep−Plate−None−
Cabinet−27/trial T20190906 173120 350651”,
”Steps”: [

{”action”: ”Find a plate”, ”succeeded”: true},
{”action”: ”Pick up the plate”, ”succeeded”: true},
{”action”: ”Find a cabinet”, ”succeeded”: true},
{”action”: ”Open the cabinet”, ”succeeded”: true},
{”action”: ”Put down the plate”, ”succeeded”: false},
{”action”: ”Close the cabinet”, ”succeeded”: true},
{”action”: ”Done”, ”succeeded”: false}],

”succeeded”: false,
”Analysis”: ”The robot failed at step 5 while attempting to put
down the plate into the cabinet. Multiple ’PutObject’ action
failures occurred with warnings such as ’No valid positions to
place object found’ and ’No valid Receptacle found’. This
indicates manipulation errors in the environment prevented the
robot from completing the action.”,
”Failure Types”: [2]

}
</ANALYSIS>

<LOG>
{’repeat idx’: 2, ’task’: ’pick clean then place in recep−
DishSponge−None−Cart−401/trial T20190907 024634 972453’}
Evaluating (4/208): alfred/data/json 2.1.0/
pick clean then place in recep−DishSponge−None−Cart−401/
trial T20190907 024634 972453
Task: Put a clean sponge on a metal rack.
#####################Whole Sequence mode
HTTP Request: POST https://api.openai.com/v1/chat/completions
”HTTP/1.1 200 OK”

1. find a sponge
object navigation (Sponge)
Last action succeeded
2. pick up the sponge
pick None
Last action succeeded
3. find a sink
object navigation (Sink)
Last action succeeded
4. put down the sponge
drop
llm skill interact failed
errorMessage: nothing in hand to drop!
returned msg: Robot is not holding any object
5. find a faucet
object navigation (Faucet)
Object is already visible
llm skill interact failed
errorMessage: nothing in hand to drop!
returned msg:
6. turn on the faucet
toggle on Faucet
Last action succeeded
7. turn off the faucet
toggle off Faucet
Last action succeeded
8. find a sponge
object navigation (Sponge)
Last action succeeded
9. pick up the sponge
pick None
Last action succeeded
10. find a metal rack
object navigation (MetalRack)
Last action succeeded
11. put down the sponge
drop

llm skill interact failed
errorMessage: nothing in hand to drop!
returned msg: Robot is not holding any object
12. done
target goal: {”object”: ”DishSponge”, ”parent”: ”Cart”, ”toggle”:
””, ”mrecep”: ””}
success: False
</LOG>

<ANALYSIS>
{ ”Command”: ”Put a clean sponge on a metal rack.”,

”Task ID”: ”pick clean then place in recep−DishSponge−None
−Cart−401/trial T20190907 024634 972453”,
”Steps”: [
{”action”: ”Find a sponge”, ”succeeded”: true},
{”action”: ”Pick up the sponge”, ”succeeded”: false},
{”action”: ”Find a sink”, ”succeeded”: true},
{”action”: ”Put down the sponge”, ”succeeded”: false},
{”action”: ”Find a faucet”, ”succeeded”: false},
{”action”: ”Turn on the faucet”, ”succeeded”: true},
{”action”: ”Turn off the faucet”, ”succeeded”: true},
{”action”: ”Find a sponge”, ”succeeded”: true},
{”action”: ”Pick up the sponge”, ”succeeded”: false},
{”action”: ”Find a metal rack”, ”succeeded”: true},
{”action”: ”Put down the sponge”, ”succeeded”: false},
{”action”: ”Done”, ”succeeded”: false}],

”succeeded”: false,
”Analysis”: ”The robot was instructed to ’Put a clean sponge on
a metal rack,’ but the target goal was to place the ’DishSponge’
on the ’Cart’. This mismatch between the command and the
target goal led to the failure. Additionally, in steps 2 and 9, the
robot attempted to ’pick None,’ indicating it did not correctly
pick up the sponge.”,
”Failure Types”: [1, 2]

}
</ANALYSIS>

<LOG>
{’repeat idx’: 1, ’task’: ’pick cool then place in recep−
BreadSliced−None−DiningTable−27/
trial T20190908 075813 148407’}Evaluating (5/208): alfred/data
/json 2.1.0/pick cool then place in recep−BreadSliced−None−
DiningTable−27/trial T20190908 075813 148407
Task: Slice bread, chill it in the fridge and put it on the dining
table.
#####################Whole Sequence mode
HTTP Request: POST https://api.openai.com/v1/chat/completions
”HTTP/1.1 200 OK”

1. find a bread
object navigation (Bread)
Last action succeeded
2. pick up the bread
pick Bread|−00.20|+00.82|+00.81
Last action succeeded
3. slice the bread
slice Bread
llm skill interact failed
errorMessage: target object cannot be sliced if it is in the agent’s
hand
returned msg: Slice action failed
4. put down the bread
drop
Last action succeeded
5. find a fridge
object navigation (Fridge)

Last action succeeded
6. open the fridge
open Fridge
Last action succeeded
7. pick up the bread
pick Bread|−00.20|+00.82|+00.81
llm skill interact failed
errorMessage: Bread|−00.20|+00.82|+00.81 is not visible.
returned msg: Robot is not holding any object
8. put down the bread
drop
drop
llm skill interact failed
errorMessage: nothing in hand to drop!
returned msg: Robot is not holding any object
9. close the fridge
close Fridge
Last action succeeded
10. done
target goal: {”object”: ”BreadSliced”, ”parent”: ”DiningTable”, ”
toggle”: ””, ”mrecep”: ””}
success: False
</LOG>

<ANALYSIS>
{ ”Command”: ”Slice bread, chill it in the fridge and put it on the
dining table.”,

”Task ID”: ”pick cool then place in recep−BreadSliced−None
−DiningTable−27/trial T20190908 075813 148407”,
”Steps”:
[
{”action”: ”Find a bread”, ”succeeded”: true},
{”action”: ”Pick up the bread”, ”succeeded”: true},
{”action”: ”Slice the bread”, ”succeeded”: false},
{”action”: ”Put down the bread”, ”succeeded”: true},
{”action”: ”Find a fridge”, ”succeeded”: true},
{”action”: ”Open the fridge”, ”succeeded”: true},
{”action”: ”Pick up the bread”, ”succeeded”: false},
{”action”: ”Put down the bread”, ”succeeded”: false},
{”action”: ”Close the fridge”, ”succeeded”: true},
{”action”: ”Done”, ”succeeded”: false}

],
”succeeded”: false,
”Analysis”: ”The robot failed at step 3 by attempting to slice
the bread while holding it, which is not permitted (’target object
cannot be sliced if it is in the agent’s hand’). Additionally, after
placing the bread down, the robot did not attempt to slice it
again. At step 7, the robot failed to pick up the bread because it
was not visible, indicating a navigation or perception error. The
plan did not account for slicing the bread while it was on a
surface, leading to a failure in task planning and execution.”,
”Failure Types”: [2, 3]

}
</ANALYSIS>

<LOG>
{session log}
</LOG>

<ANALYSIS>

{session log} is replaced with a log from a plan eval-
uation session generated by Lota-Bench (Choi et al. 2024).

