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Abstract

Cross-domain offline reinforcement learning (RL) seeks to
enhance sample efficiency in offline RL by utilizing additional
offline source datasets. Existing approaches address this prob-
lem by measuring domain gaps through domain classifiers,
target transition dynamics modeling, or mutual information es-
timation using contrastive loss. However, these methods often
require large target datasets, which are impractical in many
real-world scenarios. In this work, we address cross-domain
offline RL under a limited target data setting, identifying two
primary challenges: (1) Dataset imbalance, which leads to
overfitting in neural network-based domain gap estimators,
resulting in uninformative measurements; and (2) Partial do-
main overlap, where only a subset of the source data is closely
aligned with the target domain. To overcome these issues,
we propose Guided-Diffusion Cross-Domain (DnD), a novel
framework for cross-domain offline RL with limited target
samples. Specifically, DnD utilizes k-nearest neighbor (k-NN)
estimation to measure domain proximity without neural net-
work training, effectively mitigating overfitting. Furthermore,
DnD introduces a nearest-neighbor-guided diffusion model to
generate additional source samples that are better aligned with
the target domain, thus enhancing policy learning with more
effective source samples. Through theoretical analysis and
extensive experiments in diverse MuJoCo environments, we
demonstrate that DnD significantly outperforms state-of-the-
art cross-domain offline RL methods, achieving substantial
performance gains.

Introduction
Reinforcement Learning (RL) has demonstrated its ability
to solve complex real-world problems (Mnih et al. 2015;
Schrittwieser et al. 2020). However, RL typically requires
extensive trial-and-error interactions with the environment,
which can be infeasible in scenarios where data collection is
costly or safety is a concern, such as autonomous driving or
healthcare. A common solution is to train policies in a safer,
faster source environment (e.g., a simulator) while leveraging
a limited amount of real-world target data. This paradigm is
known as cross-domain RL (Eysenbach et al. 2021; Xu et al.
2023; Lyu et al. 2024b).

Previous research has tackled cross-domain RL in various
settings, including online where both domains are online (Ey-
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senbach et al. 2021; Lyu et al.), or offline target with online
source (hybrid) (Niu et al. 2022, 2023). In this work, we focus
on the cross-domain offline setting (Liu, Hongyin, and Wang
2022; Liu et al. 2024; Xue et al. 2024), where both source and
target domains are offline. This setting is crucial for enhanc-
ing the sample efficiency of offline RL methods (Kumar et al.
2020; Kostrikov, Nair, and Levine 2022). Existing works on
cross-domain offline reinforcement learning (RL) have intro-
duced various methods to measure the dynamics gap between
domains, such as training domain classifiers (Liu, Hongyin,
and Wang 2022), using conditional variational autoencoder
(CVAE) models to approximate target dynamics (Liu et al.
2024), and estimating mutual information with contrastive
loss (Wen et al. 2024). However, these approaches typically
rely on large target datasets, which are impractical in many
real-world applications, such as healthcare. To address this
limitation, we focus on cross-domain offline RL in the lim-
ited target data setting, which brings several challenges that
require novel solutions.

We begin by carefully analyzing the challenges in the cross-
domain offline RL with limited target data setting. Specif-
ically, we identify two major challenges: (1) Source-target
dataset imbalance, which can cause neural network-based
domain gap estimators to overfit or be biased toward a large
amount of source samples, leading to uninformative dynam-
ics gap measurements; and (2) Partial domain overlap, where
only a partial subset of the source data is closely aligned with
the target domain. To address the dataset imbalance challenge,
we propose a novel estimation to quantify the proximity of
source samples to the target domain via k-nearest neighbor
(k-NN) without neural network training. To tackle the par-
tial domain overlap challenge, we propose to generate more
source samples close to the target domain to enhance policy
learning. Leveraging the effectiveness and flexibility of diffu-
sion models as demonstrated in (Janner et al. 2022; Lu et al.
2023), we introduce a novel nearest-neighbor-guided diffu-
sion model. Specifically, we utilize a classifier-free guidance
diffusion model, which learns the distribution of the source
dataset conditioning with the k−NN based proximity score.
Thus, our method provides an accurate and effective sam-
pling method for generating the desired source samples. We
name our approach Guided-Diffusion Cross-Domain Offline
RL (DnD). In addition to our methodological contributions,
we provide a theoretical analysis of DnD and empirically



validate its effectiveness across various Gym-MuJoCo envi-
ronments (Todorov, Erez, and Tassa 2012; Brockman et al.
2016). Our results demonstrate that DnD significantly out-
performs state-of-the-art cross-domain offline RL methods,
achieving substantial performance improvements.

Related Works

Cross-Domain Offline RL

Cross-domain RL aims to improve sample efficiency in the
target domain by leveraging data from additional source en-
vironments. Several approaches have been proposed to ad-
dress this challenge, including system identification (Werbos
1989; Zhu et al. 2018; Chebotar et al. 2019), domain ran-
domization (Sadeghi and Levine 2017; Tobin et al. 2017;
Peng et al. 2018), and meta-RL (Finn, Abbeel, and Levine
2017; Nagabandi et al. 2018; Wu et al. 2023). However, these
methods often require environment models or domain knowl-
edge to carefully select randomized parameters. Recently,
several methods have attempted to measure dynamics discrep-
ancy for various settings, including purely online (Eysenbach
et al. 2021; Le Pham Van, The Tran, and Gupta 2024; Xu
et al. 2023), purely offline (Liu et al. 2024; Wen et al. 2024;
Xue et al. 2024), or hybrid setting (Niu et al. 2022). In this
work, we focus on the cross-domain offline setting, where
both the source and target domains are offline. Previous ap-
proaches tackle this problem through reward modification
(Liu, Hongyin, and Wang 2022), support constraints (Liu
et al. 2024), or data filtering via mutual information (Wen
et al. 2024). However, these methods require training neural
networks, which can be challenging when only limited target
data is available. To overcome this limitation, we propose
using k−NN estimation to measure the divergence between
source and target domains, avoiding the need for neural net-
work training. The concurrent work from Anonymous (2025)
introduced OTDF, which leverages optimal transport to ad-
dress neural network training challenges. While both optimal
transport and k−NN estimation avoid reliance on neural
networks, OTDF does not explicitly handle partial domain
overlap. In contrast, we employ a guided-diffusion model to
augment the source dataset with samples that are close to the
target domain. These strategies enable our method to perform
effectively, even in settings with limited target data.

Diffusion Model in RL

Diffusion models (Ho, Jain, and Abbeel 2020; Song et al.
2021) have been successfully applied as policy models (Kang
et al. 2023; Wang, Hunt, and Zhou 2023), planners (Janner
et al. 2022; Liang et al. 2023; Li 2024), and data synthesizers
(Lu et al. 2023), showcasing their effectiveness across various
RL tasks, including offline RL (Lu et al. 2023; Wang, Kulka-
rni, and Verdú 2009), multi-task learning (He et al. 2023),
and meta RL (Ni et al. 2023). In this work, we propose a
novel nearest-neighbor-guided diffusion model tailored for
cross-domain offline RL, introducing a unique approach to
address domain adaptation challenges.

Nearest Neighbor in RL
The nearest neighbor approach has been applied to various
RL problems, such as enforcing policy constraints in offline
setting (Ran et al. 2023), quantifying uncertainty (Qiao et al.
2024), performing MixUp-based data augmentation (Sander
et al. 2022), and imitation learning (Lyu et al. 2024a). In
contrast, our paper studies the cross-domain RL with limited
target samples. Furthermore, we leverage k-NN estimation to
guide sampling from a diffusion model, enabling the genera-
tion of additional source data closely aligned with the target
domain.

Preliminaries
Reinforcement Learning
We first introduce Markov Decision Processes (MDP) which
is denoted asM = (S,A, γ, r, d0, P ), where S,A are the
state and action spaces. The parameter γ ∈ (0, 1) is the
discounted factor, r : S ×A → R is the reward function, d0
is the initial state distribution and P is the transition dynamics.
We assume the rewards are bounded, which means |r(s, a)| ≤
rmax,∀s, a. We denote a policy π : S → ∆(A) as a map from
state space S to a probability distribution over actions space
A. Given a policy π and a transition dynamics (model) P ,
we denote discounted state-action occupancy as dπP (s, a) =
(1 − γ)Eπ,P [

∑∞
t=0 γ

t1(st = s, at = a)]. Given a policy π
and the model P , we define state-action value function Qπ

P
as Qπ

P (s, a) = Eπ,P [
∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a], and
the value function V π

P as V π
P (s) = Ea∼π [Qπ

P (s, a)]. The
objective of RL is to find a policy that maximizes the expected
return JP (π) = Es∼d0 [V π

P (s)].
We address the cross-domain offline setting, where the

source domain is defined as Msrc = (S,A, γ, r, d0, Psrc)
and the target domain asMtar = (S,A, γ, r, d0, Ptar). We
assume that the two domains share the same state space S,
action space A, discount factor γ, reward function r, and
initial state distribution d0, differing only in their dynamics
models. In this setting, we have access to offline datasets
collected from both domains: Dsrc from the source domain
and Dtar from the target domain. The objective is to utilize
the additional source dataset Dsrc to improve policy learn-
ing for the target domain, using the target dataset Dtar. We
further denote the empirical MDP induced by a dataset D as
M̂ =

(
S,A, r, d0, γ, P̂

)
, where P̂ represents the empirical

transition dynamics derived from D. In the cross-domain of-
fline setting, this results in two empirical MDPs: M̂src with
transitions P̂src and M̂tar with transitions P̂tar.

Diffusion Model
Diffusion models (Ho, Jain, and Abbeel 2020) are a class
of generative models that learn to denoise and generate data
from noise iteratively. As both the diffusion model and RL
involve time steps, we use superscripts to denote diffusion
steps and subscripts for RL time steps. Specifically, diffusion
models corrupt clean data samples x0 ∼ q

(
x0
)

by progres-
sively adding Gaussian noise, following a Markov process:

q
(
x1:T | x0

)
=

T∏
t=1

q
(
xt | xt−1

)
=

T∏
t=1

N
(√

αtxt−1, βtI
)

(1)



where βt represents the noise schedule, chosen such that
q
(
xT | x0

)
≈ N (0, I). Notably, we can directly sample at an

arbitrary timestep t given data samples using q
(
xt | x0

)
=

N
(√

αtx0,
(
1− αt

)
I
)

with αt =
∏t
i=1 α

i. Then, diffu-
sion models learn to reverse the corruption process for gen-
erating data, where the reverse transition q

(
xt−1 | xt

)
is

approximated by a parameterized model pθ
(
xt−1 | xt

)
=

N (µθ (x
t) , σtI). The training objective of diffusion models

is to maximize the variational bound of log pθ(x0), resulting
in matching the parameterized model pθ

(
xt−1 | xt

)
with the

distribution q
(
xt−1 | xt, x0

)
, which is given by:

q
(
xt−1 | xt, x0

)
= N

(
1√
αt

(
xt − 1− αt√

1− αt
ϵ

)
, βtI

)
(2)

Here, ϵ represents the Gaussian noise added to x0 to form xt.
Instead of directly matching the mean of q

(
xt−1 | xt, x0

)
with the mean of pθ

(
xt−1 | xt

)
, i.e., µθ (xt), a noise network

ϵθ is adopted to estimate ϵ from xt. This network is trained
by minimizing the regression loss:

min
θ

Ex0,ϵ,t

[∥∥∥ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ, t

)∥∥∥2] (3)

where x0 ∼ q(x0), ϵ ∼ N (0, I), and t ∼ U [0, T ].
Guided sampling from diffusion models generates data

conditioned on specific attributes, denoted as y. In our set-
ting, y represents a score function that quantifies the prox-
imity of a sample to the target domain. The objective is to
sample from the conditional distribution p(x|y). There are
two primary techniques: classifier-guidance and classifier-
free guidance. In this work, we consider the classifier-free
guidance approach (Ho and Salimans 2022). Classifier-free
sampling incorporates an additional conditional noise model,
ϵθ(x

t, y, t). During sampling, the noise for classifier-free
guidance is computed as:

ϵ̂w(x
t, y, t) = wϵθ(x

t, y, t) + (1− w)ϵθ′(x
t, t), (4)

where w is the guidance coefficient that controls the strength
of the conditioning. In practice, the models ϵθ(xt, y, t) and
ϵθ′(x

t, t) share the same parameters, i.e., θ = θ′, and the
unconditional model is implemented by setting y to an empty
value, i.e. y = ∅.

Cross-Domain Offline RL with Limited Target
Samples

In this section, we present the major challenges in cross-
domain offline RL with limited target samples. Due to space
limits, we defer more detailed discussions in Appendix .

Datasets Imbalanced Problem
In cross-domain offline RL, a critical challenge is effectively
quantifying the domain gap between the source and target
domains. Accurate measurement of this gap enables subse-
quent strategies to leverage source samples to enhance policy
learning for the target domain. Prior works have proposed var-
ious approaches for this purpose, including training domain

Figure 1: Predicted target domain probabilities for input
source samples using trained domain classifiers (DARA)
under the Ant environment. The predictions exhibit low di-
versity and are biased toward a value of 0.3, offering limited
information about the domain gaps.

Figure 2: Nearest Neighbor Distance histograms. Blue shows
the distance of source samples to their nearest target samples.
Pink shows the distance of target samples to their nearest
target samples.

classifiers (Liu, Hongyin, and Wang 2022), or estimating tar-
get models (Liu et al. 2024). However, these methods often
rely on training parametric models such as neural networks,
which are prone to overfitting in scenarios with limited target
data and significant dataset imbalances. As shown in Fig-
ure 1, limited target samples can cause domain classifiers to
develop biases, favoring data that appears more frequently
while failing to capture the true dynamics gaps. In addition
to the overfitting issues, the imbalance between source and
target data can bias the learned policy, potentially causing it
to overfit the source data during training.

Partial Overlapping between Domains
Leveraging source samples is critical for enhancing policy
learning and improving sample efficiency in cross-domain
offline RL. However, discrepancies in dynamics between
the source and target domains, along with potential policy
shifts during data collection processes, not all source data is
close to the target data. To investigate how the source data
is close to the target data, we compute the distances from
each source transition (s, a, s′)src to its nearest transition in
the target dataset Dtar and the distances from each target



transition (s, a, s′)tar to its nearest neighbor within Dtar.
The histograms in Figure 5 reveal only partial overlap be-
tween two histograms, highlighting that only a subset of the
source dataset is beneficial for target policy learning. Previ-
ous methods (Liu et al. 2024; Wen et al. 2024) addressed this
by filtering out source samples far from the target domain.
However, this approach reduces the number of usable source
samples, ultimately impacting the sample efficiency of the
algorithms. This raises an important question: “Can we fur-
ther improve sample efficiency in cross-domain offline RL
by generating additional source data that closely aligns with
the target domain?”

Diffusion-Guided Cross-Domain Offline RL
In this section, we introduce our proposed method, illus-
trated in Figure 3. We first present the k−NN estimation
for measuring domain gaps between the source and target.
We then leverage a guided diffusion model, conditioned on
k−NN scores, to augment the dataset with source samples
that closely resemble the target domain. Next, we formulate
a practical algorithm that integrates k−NN estimation and
guided diffusion for policy learning. Finally, we summarize
our approach, DnD, and provide its theoretical analysis.

k-NN Based Domain Gap Estimation
Training neural networks often encounter challenges caused
by the limited and imbalanced datasets, raising a critical
question: “Can we measure domain gaps between source and
target datasets without relying on neural network training?”
To address this, we propose using k-NN estimation as an
alternative approach to effectively quantify domain gaps,
bypassing the limitations of prior methods.

In the following, we denote ⊕ as the concatenation
operator, and xtar = star ⊕ atar ⊕ s′tar and xsrc =
ssrc ⊕ asrc ⊕ s′src, where star, atar, s

′
tar ∼ Dtar and

ssrc, asrc, s
′
src ∼ Dsrc. Thus we have Dsrc = {xsrc,i}i=Ni=1

and Dtar = {xtar,i}i=Mi=1 , where N,M are the sizes of the
source dataset and target dataset respectively. We denote
νk,src(i) is the Euclidean distance of the kth nearest neighbor
of xsrc,i in the source dataset Dsrc, and νk,tar(i) is the Eu-
clidean distance of the kth nearest neighbor of xsrc,i in the
target dataset Dtar. Let B(x,R) denote a closed ball around
x ∈ Rd with the radius R, and V(B(x,R)) = cRd is its vol-
ume, where c = πd/2

Γ(d/2+1) is the volume of a d-dimensional
unit ball, and Γ is the Gamma function. Following the k-NN
based density estimators (Wang, Kulkarni, and Verdú 2009;
Póczos and Schneider 2011), given a dataset D, we have the
following estimator:

PD,k(x
i) =

k/|D|
V(B(x, νk,D(x)))

=
k

|D|cνk,D(x)
, (5)

where |D| is the size of the dataset D and νk,D(x) is the
distance between x and its kth nearest neighbor in D.

We quantify the domain gaps between the source and target
domains as the k-NN estimator for the Kullback-Leibler
divergence DKL. Specifically, we measure the estimation of

DKL between source and target domains as follows:

D̂KL(Psrc||Ptar) =
1

N

N∑
i=1

(
log

Mνdk,tar(i)

(N − 1)νdk,src(i)

)

∝ 1/N

N∑
i=1

(
log(νdk,tar(i))− log(νdk,src(i))

) (6)

Thus, given a particular source data xsrc,i ∈ Dsrc, we con-
sider the discrepancy of it to the target dataset as follows:

ρk(xsrc,i)

= log(∥xsrc,i − xk,itar∥2)− log
(
∥xsrc,i − xsrc,i,k∥2

)
,

(7)

where xsrc,i,k and xtar,i,k are the k nearest neighbors of
xsrc,i in the source dataset Dsrc and the target dataset Dtar

respectively. Intuitively, ρk(xsrc,i) quantifies the discrepancy
of the source sample xsrc,i to the target dataset, and is small
if the distance from xsrc,i to its k-nearest neighbors in the
target dataset is smaller than the distance to its k-nearest
neighbors in the source dataset. The critical advantage of
k-NN estimation lies in its consistency and simplicity: it
is stable and avoids the need for neural network training,
thus mitigating the risk of overfitting when estimating the
domain gap. Furthermore, it is computationally efficient and
easy to implement, leveraging the KD-tree data structure. In
practice, we use FAISS library (Douze et al. 2024) in our
implementation and compute all scores for 1 million source
samples with 5000 target samples within 1 minute.

Nearest-Neighbor Guided Diffusion Model
To overcome the partial overlapping challenge, and bring
more sample efficiency for cross-domain offline RL, we pro-
pose to upsample the source dataset with generated samples
close to the target domain using the diffusion model. To en-
sure the generated source data is close to the target domain,
we opt to use the classifier-free guidance diffusion model
with scores computed leveraging the k-NN estimation.

Given the source dataset Dsrc, for each source transition
xsrc,i = (ssrc, asrc, s

′
src)i in Dsrc, we leverage the k-NN

estimation and compute its ρk(xsrc,i). The k-NN estimation
provides a reliable measurement of how close a source sample
is to the target domain. Notably, we train a diffusion model
on the source dataset Dsrc and the corresponding k-NN es-
timation scores as the conditional context y. We adopt the
design of EDM (Karras et al. 2022) for our diffusion model,
as it has demonstrated superior empirical performance in
data modeling compared to earlier designs (Ho, Jain, and
Abbeel 2020; Song et al. 2021). Specifically, we employ a
fixed noise schedule σmax = σT > · · · > σ1 > σ0 = 0 and
diffuse clean data samples using the transition q(xt|xsrc,i) =
N
(
xsrc,i, (σ

t)2I
)
. Then, we train a denoiser Gθ(·) to di-

rectly predict the clean samples using classifier-free training
(Ho and Salimans 2022):

min
θ

E
[∥∥xsrc,i −Gθ

(
xsrc,i + σtϵ,m · ρk(xsrc,i), σt

)∥∥2] (8)

where xsrc,i ∼ Dsrc, ϵ ∼ N (0, I), and t ∼ U [0, T ]. The
score ρk(xsrc,i) is randomly masked during training via
the null token m is sampled from the Bernoulli distribution



Figure 3: Illustration of our method. First, we use k-NN estimation to quantify the domain gap score. Next, we leverage a
diffusion model to upsample the source data, generating samples close to the target domain. The datasets are then utilized in an
offline RL framework, incorporating a regularization term to ensure the learned policy remains within the support region of the
target dataset.

with p (m = ∅) = 0.25. Notably, the trained denoiser’s out-
put can be reformulated into the noise model’s objective as

ϵ =
Gθ(xsrc,i+σ

tϵ,σt)−xt

σt . Therefore, we can use the trained
denoiser to perform guided sampling as introduced in Eq. (4)
for the conditional generation.

The training process for the diffusion model is done be-
fore the training of the RL policy. Once the diffusion model
is trained, we generate source samples that are close to the
target domain by setting the value of the conditional context
y to be higher than the top κ% of the source sample scores in
the source dataset Dsrc. Specifically, we uniformly sample a
value χ from the range [κ, 100] and set y to the χ-th quantile
of the source dataset’s score distribution. Finally, the gener-
ated samples are combined with the source dataset for later
policy learning.

Practical Algorithm
Based on the k-NN estimation as the domain gaps measure-
ment and the guided-diffusion model for upsampling source
dataset with generated samples close to the target domain, we
obtain a practical policy adaptation algorithm, named as DnD
(Guided-Diffusion Cross-Domain Offline RL). We summa-
rize our proposed algorithm in Algorithm 1. In practice, we
normalize the value of ρk to [0, 1]. Specifically, we first sub-
tract each value with the minimum value of ρk in the source
dataset Dsrc to adjust the value to the range [0,+∞], and
then scale it as follows: wk(xsrc,i) = 1/(1 + ρ̂k(xsrc,i)),
where the input ρ̂k(xsrc,i) is the adjusted non-negative value
of ρk(xsrc,i). Intuitively, the larger the wk value, the closer
the source sample xsrc,i to the target domain. We select the
source data close to the target domain to reduce the dynamics
gap while training. Specifically, we formulate our objective
function for training the value function Qϕ(s, a) as follows:

LQ = EDtar

[
(Qϕ − T Qϕ)

2
]
+ EDsrc

[
ω(s, a, s′)(Qϕ − T Qϕ)

2
]
,

(9)
where T is the Bellman operator, ω(s, a, s′) := wk1(wk ≥
wk,ξ%), 1 is the indicator function, and wk,ξ% denotes the
top ξ-quantile score used for source data selection. Eq (9)
ensures the policy adaptively emphasizes source data close
to the target domain, improving adaptation performance. As
we mentioned, the imbalanced dataset could bias the policy
to source samples. Thus, we employ a policy regularization

to ensure the learned policy is close to the support areas of
the target dataset. Similar to Wu et al. (2022), we learn a
CVAE, denoted as π̂btar(a|s), to model the behavior target
policy. Thus, we optimize the policy as follows:

Lreg
π = Lπ − λEs∼Dsrc

⋃
Dtar

[
log π̂btar (π(.|s)|s)

]
, (10)

where Lπ is the policy loss of the offline RL method, λ is the
coefficient controlling the strength of the additional policy
regularization. We note that DnD can be integrated with any
offline RL method. In our implementation, we choose IQL
(Kostrikov, Nair, and Levine 2022) as our backbone of DnD.

Theoretical Analysis
We provide a theoretical guarantee for using the source
dataset to improve the performance in the target domain
under the cross-domain offline RL setting. Specifically, we
have the following performance bound for any policy π:
Theorem 0.1. Denote Dsrc as the offline source dataset from
source domainMsrc and Dtar as the offline target dataset
from target domain Mtar. Let the empirical policy in the

offline target dataset Dtar be πDtar
=

∑
Dtar

1(s,a)∑
Dtar

1(s) . Given
a policy π, we have the following:

JPtar (π)− J P̂src(π)

≥ − 2rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar [DTV (π(.|s′)||πDtar (.|s′))]

− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

,s′∼Ptar
[DTV (π(.|s′)||πDtar (.|s′))]

− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

[√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a))

]
.

(11)

We provide detailed proof in Appendix . The first and
the second terms of the divergence in Eq. (11) measure the
deviation between the current learned policy and the target
behavior policy; the third term measures the dynamics mis-
match between the actual target dynamics model and the
estimated source dynamics model. Our proposed method
aims to reduce the third term by effectively measuring the
dynamics gaps between two domains and generating more
source samples close to the target domain. Specifically, our
k-NN estimation ρk estimates the KL divergence between
the source dynamics and the target dynamics as shown in
Eq. (6). Additionally, we select the nearest source samples



to update the Q-function (Eq. 9, Figure 3), further reducing
the dynamics gap. Furthermore, our algorithm incorporates a
policy regularization to address policy deviation between the
learned policy and the target behavior policy.

Algorithm 1: Guided-Diffusion Cross-Domain Offline RL –
DnD

1: Input: Offline source Dsrc, offline target Dtar datasets.
2: Initialize: Value function Q, policy π, diffusion model

Gθ, k NN value, coefficient λ, source score buffer SB.
3: for each source sample xsrc,i ∈ Dsrc do
4: Compute its k-NN score ρk(xsrc,i) via Eq. (7).
5: SB ← SB

⋃
{ρk(xsrc,i)}.

6: end for
7: Train Gθ with Dsrc and SB via Eq. (8).
8: Generate samples from the diffusion model and add to

the source dataset Dsrc and source score buffer SB.
9: for each iteration do

10: Sample a batch bsrc = {s, a, s′, r} and the corre-
sponding score batch wsrc from Dsrc and SB.

11: Sample a batch btar = {s, a, s′, r} from Dtar.
12: Update Q using bsrc, wsrc and btar via Eq. (9).
13: Update π using bsrc and btar via Eq. (10).
14: end for
15: return Q, π.

Experiments
In this section, we present empirical evaluations of our
method, focusing on the following questions: (1) Does DnD
improve sample efficiency for the base method and outper-
form strong baselines in cross-domain offline RL under lim-
ited target data settings? (2) How does k-NN estimation im-
pact DnD’s performance? (3) How does the guided diffusion
model influence DnD’s performance? Furthermore, we con-
duct parameter studies to provide deeper insights into the
behavior and effectiveness of DnD. We defer more experi-
ment results in Appendix due to space limits.

Tasks and Baselines
To evaluate the policy adaptation performance, we conducted
experiments on four environments from the Gym-Mujoco
framework (Brockman et al. 2016; Todorov, Erez, and Tassa
2012)(Ant, Halfcheetah, Hopper, Walker) and consider the
gravity and kinematic shifts as the dynamics shifts between
the source and the target environments. Specifically, we mod-
ify gravity strength to induce the gravity shift and restrict the
rotation range of certain joints to create the kinematic shift.
For offline source datasets, we use D4RL (Fu et al. 2020) and
consider target datasets of varying quality—medium, medium-
expert, and expert—following D4RL standards. Each target
dataset contains 5000 transitions to enforce a limited target
data setting. Please see Appendix for more details about the
environment settings.

We evaluate our method DnD against the state-of-the-art
cross-domain offline RL methods: DARA (Liu, Hongyin, and
Wang 2022), which trains the domain classifiers to measure

domain gaps; BOSA (Liu et al. 2024), which uses support-
constrained regularization to ensure the value function and
policy are optimized using in-support samples; IGDF (Wen
et al. 2024), which quantifies domain gaps using a mutual
information score function; SRPO (Xue et al. 2024) that does
reward modification via the stationary state distribution; and
OTDF (Anonymous 2025) that leverages optimal transport
to estimate the domain gaps. We also compare DnD with the
state-of-the-art offline RL algorithm, IQL (Kostrikov, Nair,
and Levine 2022), trained on a mixture of the source and
target datasets. Details of baselines are provided in Appendix
. We evaluate the performance on the target domain in of-
fline settings using the normalized score. All methods are
trained for 1 million steps across 5 random seeds. Table 1
shows the performance of DnD and other baselines under the
gravity shift setting. Due to space constraints, results for the
kinematic shift setting are included in Table 9 in Appendix .

Adaptation Performance Evaluation
Answering question 1): Table 1 and Table 9 in Appendix
demonstrate that DnD consistently outperforms IQL, winning
in 36 out of 36 tasks under the gravity shift and 35 out of
36 tasks under the kinematic shift. Notably, DnD achieves
a 97.9% improvement in target normalized scores under
gravity shift tasks and a 59.4% improvement under kinematic
shift tasks. Compared to other baselines, DnD achieves a
significant performance gain. Under the gravity shift, DnD
outperforms in 33 out of 36 tasks, attaining a total normalized
score of 1632.7, surpassing the second-best baseline, OTDF,
by 40.7%. Under the kinematic shift, DnD excels in 29 out
of 36 tasks, achieving a total normalized score of 1902.2,
compared to 1547.6 for OTDF. These results validate the
effectiveness of our approach.

We observe that cross-domain methods relying on neu-
ral network-based dynamics gap estimation (IGDF, BOSA,
DARA) perform similarly to IQL across many tasks, indi-
cating their limitations in effective offline policy adaptation.
This is likely due to challenges in training neural networks
on imbalanced datasets with limited target data, as discussed
in Section and Appendix . In contrast, DnD employs k−NN
estimation that does not require training neural networks.
While OTDF leverages optimal transport to mitigate issues
arising from limited target data and shows improvements
over other baselines, it does not augment the dataset. DnD
further enhances sample efficiency by leveraging a diffusion
model to generate target-aligned data, leading to improved
performance in the target domain.

Ablation Studies
DnD with other domain gaps measurement Answering
question 2): To assess the importance of k−NN estimation
in DnD, we replace the k−NN score with the score computed
via the score estimated by domain classifiers as in DARA. We
compare DnD with this variant on medium source datasets
of Ant and Walker under gravity shifts. Table 2 shows that
this modification leads to a notable performance drop, sug-
gesting that domain classifiers struggle to accurately estimate
domain gaps. These results highlight the effectiveness of
k−NN estimation in DnD.



Table 1: Results in gravity shift tasks. We report normalized scores and their standard deviations in the target domain, averaged
over five random seeds. The best score is bold. Half=Halfcheetah, Hopp=Hopper, m=medium, me=medium-expert, mr=medium-
replay, e=expert.

Source Target IQL DARA BOSA SRPO IGDF OTDF DnD

Ant-m m 10.2±1.8 9.4±0.9 12.4±2.0 11.7±1.0 11.3±1.3 45.1±12.4 56.9±2.2
Ant-m me 9.4±1.2 10.0±0.9 11.6±1.3 10.2±1.2 9.4±1.4 33.9±5.4 47.5±3.9
Ant-m e 10.2±0.3 9.8±0.6 11.8±0.4 9.5±0.6 9.7±1.6 33.2±9.0 36.1±7.8
Ant-me m 9.8±2.4 8.1±1.8 8.1±3.0 8.4±2.1 8.9±1.5 18.6±11.9 55.7±8.1
Ant-me me 9.0±0.8 6.4±1.4 6.2±1.5 6.1±3.5 7.2±2.9 34.0±9.4 46.3±4.9
Ant-me e 9.1±2.6 10.4±2.9 4.2±3.9 8.8±1.0 9.2±1.5 23.2±2.9 42.7±13.0
Ant-mr m 18.9±2.6 21.7±2.1 13.9±1.5 18.7±1.7 19.6±1.0 29.6±10.7 41.8±4.7
Ant-mr me 19.1±3.0 18.3±2.1 15.9±2.7 18.7±1.8 20.3±1.6 25.4±2.1 27.6±0.1
Ant-mr e 18.5±0.9 20.0±1.3 14.5±1.7 19.9±2.1 18.8±2.1 24.5±2.8 28.0±0.3
Half-m m 39.6±3.3 41.2±3.9 38.9±4.0 36.9±4.5 36.6±5.5 40.7±7.7 48.0±0.6
Half-m me 39.6±3.7 40.7±2.8 40.4±3.0 40.7±2.3 38.7±6.2 28.6±3.2 48.9±0.7
Half-m e 42.4±3.8 39.8±4.4 40.5±3.9 39.4±1.6 39.6±4.6 36.1±5.3 48.8±1.0
Half-me m 38.6±6.0 37.8±3.3 41.8±5.1 42.5±2.3 37.7±7.3 39.5±3.5 49.9±1.4
Half-me me 39.6±3.0 39.4±4.4 38.7±3.7 43.3±2.7 40.7±3.2 32.4±5.5 48.1±1.9
Half-me e 43.4±0.9 45.3±1.3 39.9±2.7 43.3±3.0 41.1±4.1 26.5±9.1 51.0±0.8
Half-mr m 20.1±5.0 17.6±6.2 20.0±4.9 17.5±5.2 14.4±2.2 21.5±6.5 32.2±0.8
Half-mr me 17.2±1.6 20.2±5.2 16.7±4.2 16.3±1.7 10.0±2.5 14.7±4.1 30.3±5.1
Half-mr e 20.7±5.5 22.4±1.7 15.4±4.2 23.1±4.0 15.3±3.7 11.4±1.9 32.7±2.6
Hopp-m m 11.2±1.1 17.3±3.8 15.2±3.3 12.4±1.0 15.3±3.5 32.4±8.0 30.6±5.5
Hopp-m me 14.7±3.6 15.4±2.5 21.1±9.3 14.2±1.8 15.1±3.6 24.2±3.6 35.7±1.4
Hopp-m e 12.5±1.6 19.3±10.5 12.7±1.7 11.8±0.9 14.8±4.0 33.7±7.8 51.3±10.6
Hopp-me m 19.1±6.6 18.5±12.3 15.9±5.9 19.7±8.5 22.3±5.4 26.4±10.1 52.2±6.6
Hopp-me me 16.8±2.7 16.0±6.1 17.3±2.5 15.8±3.3 16.6±7.7 28.3±6.7 50.4±11.3
Hopp-me e 20.9±4.1 23.9±14.8 23.2±7.9 21.4±1.9 26.0±9.2 44.9±10.6 52.8±10.3
Hopp-mr m 13.9±2.9 10.7±4.3 3.3±1.9 14.0±2.6 15.3±4.4 31.1±13.4 35.4±0.7
Hopp-mr me 13.3±6.3 12.5±5.6 4.6±1.7 14.4±4.2 15.4±5.5 24.2±6.1 41.0±2.0
Hopp-mr e 11.0±2.6 14.3±6.0 3.2±0.8 16.4±5.0 16.1±4.0 31.0±9.8 29.9±7.8
Walker-m m 28.1±12.9 28.4±13.7 38.0±11.2 21.4±7.0 22.1±8.4 36.6±2.3 52.5±2.0
Walker-m me 35.7±4.7 30.7±9.7 40.9±7.2 34.0±9.9 35.4±9.1 44.8±7.5 59.2±2.7
Walker-m e 37.3±8.0 36.0±7.0 41.3±8.6 39.5±3.8 36.2±13.6 44.0±4.0 63.8±2.7
Walker-me m 39.9±13.1 41.6±13.0 32.3±7.2 46.4±3.5 33.8±3.1 30.2±9.8 57.5±3.3
Walker-me me 49.1±6.9 45.8±9.4 40.1±4.5 36.4±3.4 44.7±2.9 53.3±7.1 67.8±4.0
Walker-me e 40.4±11.9 56.4±3.5 43.7±4.4 45.8±8.0 45.3±10.4 61.1±3.4 67.1±4.8
Walker-mr m 14.6±2.5 14.1±6.1 7.6±5.8 17.9±3.8 11.6±4.6 32.7±7.0 42.2±5.9
Walker-mr me 15.3±1.9 15.9±5.8 4.8±5.8 15.3±4.5 13.9±6.5 31.6±6.1 31.5±5.2
Walker-mr e 15.8±7.2 15.7±4.5 7.1±4.6 13.7±8.1 15.2±5.3 31.3±5.3 39.3±6.2
Total Score 825.0 851.0 763.2 825.5 803.6 1160.7 1632.7

Table 2: Performance comparison between DnD and its vari-
ant using classifiers score to measure the domain gaps.

Source Target Classifier score k-NN score (DnD)

Ant-m m 31.5±5.3 56.9±2.2
Ant-m me 15.0±0.8 47.5±3.9
Ant-m e 19.2±1.9 36.1±7.8
Walker-m m 52.1±3.5 52.5±2.0
Walker-m me 59.2±2.7 52.9±2.7
Walker-m e 61.9±2.6 63.8±2.7

Effect of Guided-Diffusion Model Answering question
3): We compare DnD against three variants: (1) DnD without
upsampling via the diffusion model (w/o diffusion), (2) DnD
where the target dataset is upsampled using a diffusion model
(upsample target), and (3) DnD with naive diffusion-based
generation without guidance (w/o guidance). We conduct
experiments on Ant medium source dataset under gravity
shift and present results in Table 3. We observe that upsam-
ple target slightly improves performance over w/o diffusion.
However, the w/o guidance variant, which naively upsam-



Table 3: Performance comparison between DnD and its vari-
ants on using the diffusion model. We bold the highest
scores.m=medium, e=expert, me=medium-expert.

Method m-m m-me m-e

w/o diffusion 23.6±2.9 14.4±0.8 19.7±1.4
upsample target 25.4±3.1 23.7±3.7 24.2±2.7
w/o guidance 46.8±11.5 31.6±11.5 22.43.6
w guidance (DnD) 56.9±2.2 47.5±3.9 36.1±7.8

Table 4: Performance comparison with different values of
k-NN.

Source Target k-Nearest Neighbor

1 5 10

Half-gravity-m me 48.8±0.7 48.9±0.7 48.5±0.5
Half-gravity-m e 49.1±0.6 48.8±1 49.0±0.3
Half-kinematic-m me 19.2±5 19.1±1 14.6±1.5
Half-kinematic-m e 13.4±1.2 13.1±0.8 13.5±0.9
Hopp-gravity-m me 36.9±12 40.6±5.5 44.6±10.5
Hopp-gravity-m e 40.2±8 51.3±10.6 34.4±9.8
Hopp-kinematic-m me 73.6±3.1 78.2±5.1 76.6±4.2
Hopp-kinematic-m e 57.9±11.7 59.8±21.8 61.9±17.5

ples the source dataset, achieves significantly better results
than upsample target. We hypothesize that the limited target
data setting hinders the training diffusion model in the tar-
get domain, thus affecting adaptation performance. Among
all variants, DnD achieves the highest performance, demon-
strating the effectiveness of our proposed method of using a
guided-diffusion model to upsample the source dataset with
generated data close to the target domain.

Nearest Neighbor k We evaluate the impact of k in DnD
by testing different values (k = 1, 5, 10). As shown in Ta-
ble 4, DnD remains robust across varying k values. In our
experiments, we set k = 5 by default and do not tune it.

Conclusion

In this paper, we tackle the challenge of cross-domain offline
RL in scenarios with limited target data, which is widely en-
countered in many real-world applications. We systematically
analyze the limitations of existing methods under this setting,
identifying key shortcomings. Building on these insights, we
propose DnD, a novel algorithm that leverages k-NN estima-
tion to effectively quantify domain gaps and uses this score
in a guided diffusion model to generate source samples closer
to the target domain. Our approach is compatible with any
offline RL method, offering broad applicability. Extensive
experiments demonstrate the superior performance of DnD
across various benchmarks. A limitation of DnD is that it only
adopts a diffusion model for the single-step dynamics model.
Extending it to model full trajectory distributions presents an
exciting avenue for further exploration and in-depth study.
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Missing Theoretical Proofs
In this section, we provide formal proofs omitted from the main paper.

Useful Lemmas
Lemma .2. [Extended telescoping lemma.] LetM1 = (S,A, P1, r, γ) andM2 = (S,A, P2, r, γ) be two MDPs with different
transition dynamics P1 and P2. Given two policies π1 and π2, we have the following:

JP1(π1)− JP2(π2) =
γ

1− γ
Es,a∼dπ1

P1

[
Es′∼P1,a′∼π1

[
Qπ2

P2
(s′, a′)

]
− Es′∼P2,a′∼π2

[
Qπ2

P2
(s′, a′)

]]
. (12)

This lemma is Lemma C.2 in (Xu et al. 2023) and is the extended version of the telescoping lemma in (Luo et al. 2018). Here,
we provide the brief proof.

Proof. We define Wj as the expected return when follow the policy π1 inM1 for the first j steps, then switching to the policy
π1 andM2 for the remainder. We have:

Wj :=

∞∑
t=0

γtEt<j:st,at∼P1,π1
t≥j:st,at∼P2,π2

[r (st, at)] = Et<j:st,at∼P1,π1
t≥j:st,at∼P2,π2

[ ∞∑
t=0

γtr (st, at)

]
. (13)

Note that we have:
W0 = Es,a∼dπ2

P2

[r(st, at)] = JP2(π2),

and W∞ = Es,a∼dπ1
P1

[r(st, at)] = JP1(π1).
(14)

We then have the following:

JP1(π1)− JP2(π2) =

∞∑
j=0

(Wj+1 −Wj). (15)

Write Wj and Wj+1 as the following:

Wj = Rj + Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P2,π2

[
γj+1Qπ2

P2
(sj+1, aj+1)

]]
,

Wj+1 = Rj + Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P1,π1

[
γj+1Qπ2

P2
(sj+1, aj+1)

]] (16)

Thus, we have:

JP1(π1)− JP2(π2) =

∞∑
j=0

(Wj+1 −Wj)

=

∞∑
j=0

γj+1Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P1,π1

[
Qπ2

P2
(sj+1, aj+1)

]
− Esj+1,aj+1∼P2,π2

[
Qπ2

P2
(sj+1, aj+1)

]]
=

γ

1− γ
Esj ,aj∼P1,π1

[
Esj+1,aj+1∼P1,π1

[
Qπ2

P2
(sj+1, aj+1)

]
− Esj+1,aj+1∼P2,π2

[
Qπ2

P2
(sj+1, aj+1)

]]
,

(17)
which concludes the proof.

Lemma .3. LetM = (S,A, P, r, γ) be the MDP. Given two policies π1 and π2, we have the following:

JP (π1)− JP (π2) =
γ

1− γ
Es,a∼dπ1,P ,s′∼P [Ea′∼π1 [Q

π2

P (s′, a′)]− Ea′∼π2 [Q
π2

P (s′, a′)]] . (18)

This is Lemma B.3 in (Lyu et al.). We provide the brief proof here.
Proof. Using Lemma .2 and replace P1 and P2 by P , we have the following:

JP (π1)− JP (π2) =
γ

1− γ
Esj ,aj∼P,π1

[
Esj+1,aj+1∼P,π1

[Qπ2

P (sj+1, aj+1)]− Esj+1,aj+1∼P,π2
[Qπ2

P (sj+1, aj+1)]
]
, (19)

which completes the proof.



Proof of Theorems 0.1
Theorem .4 (Performance Bound). Denote Dsrc as the offline source dataset from source domainMsrc and Dtar as the offline

target dataset from target domainMtar. Let the empirical policy in the offline target dataset Dtar be πDtar =
∑

Dtar
1(s,a)∑

Dtar
1(s) .

Given a policy π, we have the following:

JPtar (π)− J P̂src(π)

≥ − 2rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar
[DTV (π(.|s′)||πDtar

(.|s′))]− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

,s′∼Ptar
[DTV (π(.|s′)||πDtar

(.|s′))]

− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

[√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a))

]
,

(20)
Proof. We start by converting the performance difference in the following form:

JPtar (π)− J P̂src(π) =
(
JPtar (π)− JPtar (πDtar

)
)︸ ︷︷ ︸

(a)

+
(
JPtar (πDtar

)− J P̂src(π)
)

︸ ︷︷ ︸
(b)

.
(21)

For term (a) in the RHS, based on Lemma .3, we have:

JPtar (π)− JPtar (πDtar
) =

γ

1− γ
Es,a∼dπPtar

,s′∼Ptar

[
Ea′∼π

[
Q
πDtar

Ptar
(s′, a′)

]
− Ea′∼πDtar

[
Q
πDtar

Ptar
(s′, a′)

]]
≥ − γ

1− γ
Es,a∼dπPtar

,s′∼Ptar

∣∣Ea′∼π [QπDtar

Ptar
(s′, a′)

]
− Ea′∼πDtar

[
Q
πDtar

Ptar
(s′, a′)

]∣∣
= − γ

1− γ
Es,a∼dπPtar

,s′∼Ptar

∣∣∣∣∣∑
a′∈A

(π(a′|s′)− πDtar (a
′|s′))QπDtar

Ptar
(s′, a′)

∣∣∣∣∣
≥ − rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar

∣∣∣∣∣∑
a′∈A

(π(a′|s′)− πDtar
(a′|s′))

∣∣∣∣∣
= − 2rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar [DTV (π(.|s′)||πDtar (.|s′))] .

(22)

For term (b) in the RHS, based on Lemma .2, we have:

JPtar (πDtar
)− J P̂src(π)

=
γ

1− γ
E
s,a∼d

πDtar
Ptar

[
Es′∼Ptar,a′∼πDtar

[
Qπ
P̂src

(s′, a′)
]
− Es′∼P̂src,a′∼π

[
Qπ
P̂src

(s′, a′)
]]

=
γ

1− γ
E
s,a∼d

πDtar
Ptar

[(
Es′∼Ptar,a′∼πDtar

[
Qπ
P̂src

(s′, a′)
]
− Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
])

︸ ︷︷ ︸
(c)

+
(
Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
]
− Es′∼P̂src,a′∼π

[
Qπ
P̂src

(s′, a′)
])

︸ ︷︷ ︸
(d)

]
.

(23)

We first bound term (c) as follows:

Es′∼Ptar,a′∼πDtar

[
Qπ
P̂src

(s′, a′)
]
− Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
]

= Es′∼Ptar

[∑
a′∈A

(πDtar
(a′|s′)− π(a′|s′)))Qπ

P̂src
(s′, a′)

]

≥ −Es′∼Ptar

[∑
a′∈A

|πDtar (a
′|s′)− π(a′|s′))|

∣∣∣Qπ
P̂src

(s′, a′)
∣∣∣]

≥ − 2rmax

1− γ
Es′∼Ptar

[DTV (π(.|s′)||πDtar
(.|s′))] .

(24)



For term (d), we have:
Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
]
− Es′∼P̂src,a′∼π

[
Qπ
P̂src

(s′, a′)
]

= Ea′∼π

[∑
s′∈S

(
Ptar(s

′|s, a)− P̂src(s
′|s, a)

)
Qπ
P̂src

(s′, a′)

]

≥ − 2rmax

1− γ
DTV (Ptar(.|s, a)||P̂src(.|s, a))

≥ − 2rmax

1− γ

√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a)).

(25)

Thus we can bound term (b) as follows:

JPtar (πDtar )− J P̂src(π)

=
γ

1− γ
E
s,a∼d

πDtar
Ptar

[(
Es′∼Ptar,a′∼πDtar

[
Qπ
P̂src

(s′, a′)
]
− Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
])

︸ ︷︷ ︸
(c)

+
(
Es′∼Ptar,a′∼π

[
Qπ
P̂src

(s′, a′)
]
− Es′∼P̂src,a′∼π

[
Qπ
P̂src

(s′, a′)
])

︸ ︷︷ ︸
(d)

]

≥ − 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

[
Es′∼Ptar

[DTV (π(.|s′)||πDtar
(.|s′))] +

√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a))

]
.

(26)

Thus, we have:

JPtar (π)− J P̂src(π)

≥ − 2rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar
[DTV (π(.|s′)||πDtar

(.|s′))]

− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

[
Es′∼Ptar [DTV (π(.|s′)||πDtar (.|s′))] +

√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a))

]

= − 2rmaxγ

(1− γ)2
Es,a∼dπPtar

,s′∼Ptar
[DTV (π(.|s′)||πDtar

(.|s′))]− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

,s′∼Ptar
[DTV (π(.|s′)||πDtar

(.|s′))]

− 2rmaxγ

(1− γ)2
E
s,a∼d

πDtar
Ptar

[√
1/2DKL(Ptar(.|s, a)||P̂src(.|s, a))

]
,

(27)
which completes the proof.

Cross-Domain Offline RL with Limited Target Samples
In this section, we provide detailed discussions about the challenge of the Cross-domain Offline RL with limited target data
setting.

Datasets Imbalanced Problem
In cross-domain offline RL, a critical challenge is effectively quantifying the domain gap between the source and target domains.
Accurate measurement of this gap enables subsequent strategies to leverage source samples to enhance policy learning for
the target domain. Prior works have proposed various approaches for this purpose, including training domain classifiers (Liu,
Hongyin, and Wang 2022), or estimating target models (Liu et al. 2024). However, these methods often rely on training parametric
models such as neural networks, which are prone to overfitting in scenarios with limited target data and significant dataset
imbalances. For instance, limited target samples can cause classifiers to develop biases, favoring data that appears more frequently
while failing to capture the true dynamics gap. To investigate potential overfitting issues, we train the domain classifiers from
DARA (Liu, Hongyin, and Wang 2022) and the CVAE dynamics model from BOSA (Liu et al. 2024) in Ant environment with
medium source and expert target datasets under the gravity shift. We then evaluate the predicted target likelihood of these models
on samples from the source dataset Dsrc. Figures 4a and 4b show the histograms of the predicted target likelihoods obtained
from the learned domain classifiers and the dynamics model. Both exhibit significant overfitting, as they predominantly output
uniform predictions across all source samples. Additionally, the reward penalties computed via DARA’s domain classifiers are



(a) Predicted target likelihood via classifiers. (b) Predicted Target Likelihood via CVAE. (c) Reward penalties in DARA.

Figure 4: (a) Histogram of the predicted target likelihood of the domain classifiers in DARA for the source sample in the source
dataset. (b) The histogram of the predicted target likelihood of the CVAE dynamics target model proposed in BOSA. (c) The
histogram of the reward penalty values computed using domain classifiers in DARA.

Figure 5: Nearest Neighbor Distance histograms. Blue shows the distance of source samples to their nearest target samples. Pink
shows the distance of target samples to their nearest target samples.

near zero, providing little to no useful signal for policy learning, as shown in Figure 4c. In addition to the overfitting issues, the
imbalance between source and target data can bias the learned policy, potentially causing it to overfit the source data during
training.

Partial Overlapping between Domains
Leveraging source samples is critical for enhancing policy learning and improving sample efficiency in cross-domain offline
RL. However, discrepancies in dynamics between the source and target domains, along with potential policy shifts during data
collection processes, not all source data is close to the target data. To investigate how the source data is close to the target data,
we conduct experiments in the Ant environment with medium source and expert target datasets under gravity shift. Specifically,
we compute the distances from each source sample to its nearest neighbor in the target dataset Dtar and the distances from each
target sample to its nearest neighbor within Dtar. The histograms in Figure 5 reveal only partial overlap between two histograms,
highlighting that only a subset of the source dataset is beneficial for target policy learning. Previous methods (Liu et al. 2024;
Wen et al. 2024) addressed this by filtering out source samples far from the target domain. However, this approach reduces the
number of usable source samples, ultimately impacting the sample efficiency of the algorithms. This raises an important question:
“Can we further improve sample efficiency in cross-domain offline RL by generating additional source data that closely aligns
with the target domain?”

Environment Setting
This section provides a detailed description of the environment settings we use in our experiments.



Source Environments
We conduct our experiments on four Mujoco environments: Ant, Halfcheetah, Hopper, and Walker from the Openai-Gym libraries
(Todorov, Erez, and Tassa 2012; Brockman et al. 2016). For our offline source, we use datasets from the D4RL benchmark
(Fu et al. 2020), which provides three types of datasets for each environment: medium, medium-replay, and medium-expert.
Specifically, the medium datasets consist of experiences collected from an SAC policy that was early-stopped after 1 million
steps. The medium-replay datasets contain the replay buffer of a policy trained to achieve the medium agent’s performance.
The medium-expert datasets are constructed by combining medium and expert data in a 50-50 ratio. Notably, the sizes of these
datasets vary significantly; for example, the medium datasets contain 1 million samples, while the medium-replay datasets may
contain as few as 100,000 samples.

Target Environments
In this paper, we consider the gravity shift and kinematic shift as the dynamics shift between the source domain and the target
domain. Gravity shift refers to differences in gravitational forces acting on the source and target robots. To simulate this shift,
we modify the gravitational acceleration parameter in the environment while keeping its direction consistent with the default
configuration in MuJoCo. Specifically, we retain the default gravitational acceleration value for the source domain and set the
value in the target domain to be half of that in the source domain. On the other hand, when referring to kinematic shift, we are
referring to altering some joints of the simulated robots. We provide the XML modifications in Section and Section , along with
the XML files of the agents in our supplementary materials.

The target datasets are collected following a procedure similar to D4RL. We consider three dataset quality levels: expert,
medium, and medium-expert. Each dataset consists of five trajectories, totaling 5,000 transitions, to reflect the limited target
data setting. The expert datasets are collected using the last checkpoint of the trained policy, while the medium datasets use a
policy performing at approximately 1/2 or 1/3 of the expert policy’s performance. The medium-expert datasets are constructed
by combining two trajectories from the medium dataset and three from the expert dataset. Finally, we use the target datasets
collected by (Anonymous 2025) in our experiments as we consider the same target domain setting as them.

Gravity shift The XML files of Ant, Halfcheetah, Hopper, and Walker are modified as follows:
1 <option gravity="0 0 -4.905" timestep="0.01"/>

Kinematic shift The kinematic shifts of the robot occurred at different parts, detailed below:

• Ant-kinematic: The rotation angles of the joints on the hips of two legs in the ant robot are adjusted from [−30, 30] to
[−0.3, 0.3].

1 # hip joints of the front legs
2 <joint axis="0 0 1" name="hip_1" pos="0.0 0.0 0.0" range="-0.30 0.30" type="hinge"/

>
3 <joint axis="0 0 1" name="hip_2" pos="0.0 0.0 0.0" range="-0.30 0.30" type="hinge"/

>

• HalfCheetah-kinematic: The rotation angle of the joint on the thigh of the robot’s back leg is adjusted from [−0.52, 1.05] to
[−0.0052, 0.0105].

1 # back thigh
2 <joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0" range="-.0052 .0105"

stiffness="240" type="hinge"/>

• Hopper-kinematic: The rotation angle of the head joint is adjusted from [150, 0] to [0.15, 0] and the rotation angle of the
joints on the robot’s foot is modified from [−45, 45] to [−18, 18].

1 # head joint
2 <joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05" range="-0.150 0" type="hinge

"/>
3 # foot joint
4 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-18 18" type="hinge"/>

• Walker-Kinematic: The rotation angle of the foot joint on the robot’s right leg is modified from [−45, 45] to [−0.45, 0.45].
1 # right foot
2 <joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1" range="-0.45 0.45" type="hinge

"/>

Evaluation Metric
To evaluate the adaptation performance of the learned policy in the target domain, we use the normalized score (NS) metric as
similar in (Fu et al. 2020; Lyu et al. 2024b). The normalized score of a given policy in the target domain is computed as follows:

NS =
J − Jr
Je − Jr

× 100, (28)



where J, Je, Jr denotes the return of the given, expert, and random policies in the target domain. We list the reference scores in
Table 5 and provide the minimum return, the maximum return, and the average return of the trajectories in each target dataset in
Table 6.

Table 5: The reference scores of the Mujoco datasets under the gravity shifts. Jr denotes the performance of the random policy
in the target domain, and Je denotes the performance of the expert policy in the target domain. The reference scores are used to
compute the normalized score for evaluating the performance of the learned policies.

Environment Dynamic Shift Type Reference score Jr Reference score Je

Ant Gravity -325.6 4317.065
Halfcheetah Gravity -280.18 9509.15
Hopper Gravity -26.336 3234.3
Walker Gravity 10.079 5194.713
Ant Kinematic -325.6 5122.57
Halfcheetah Kinematic -280.18 7065.03
Hopper Kinematic -26.336 2842.73
Walker Kinematic 10.079 3257.51

Table 6: Trajectories return information of the target datasets. We report the trajectory return statistics of the target domain
datasets, including the minimum return (min return), maximum return (max return), and average return.

Task Name Dynamics shift Dataset type Min return Max return Average return

Ant Gravity medium 377.10 3247.66 2314.45
Ant Gravity medium-expert 377.10 4511.55 2131.79
Ant Gravity expert 335.28 4584.53 3365.35
Ant Kinematic medium 2826.00 3111.98 3017.82
Ant Kinematic medium-expert 2826.00 5122.58 4240.99
Ant Kinematic expert 5009.82 5122.57 5072.50
Halfcheetah Gravity medium 4179.82 4383.32 4296.27
Halfcheetah Gravity medium-expert 4342.78 8243.03 6567.94
Halfcheetah Gravity expert 7846.18 8339.18 8131.54
Halfcheetah Kinematic medium 2709.52 2782.61 2755.50
Halfcheetah Kinematic medium-expert 2709.52 7065.04 5298.61
Halfcheetah Kinematic expert 6951.27 7065.04 6998.93
Hopper Gravity medium 1784.88 2885.13 2367.66
Hopper Gravity medium-expert 2416.82 4143.63 3297.79
Hopper Gravity expert 3745.59 4186.19 4051.07
Hopper Kinematic medium 1849.06 1886.89 1870.16
Hopper Kinematic medium-expert 1868.20 2842.17 2452.67
Hopper Kinematic expert 2840.97 2842.73 2841.83
Walker Gravity medium 2421.98 3444.63 2897.85
Walker Gravity medium-expert 3144.32 5166.62 4415.11
Walker Gravity expert 5159.51 5219.14 5174.51
Walker Kinematic medium 1415.69 2223.17 2026.49
Walker Kinematic medium-expert 1415.69 3257.51 2442.82
Walker Kinematic expert 2874.92 3257.51 3077.19

Algorithm’s Implementations
In this section, we provide a details implementation of our method, DnD, and the baselines we use in the experiments. Specifically,
we use the report We report the hyperparameter in Table 7. Our implementation is based on ODRL (Lyu et al. 2024b), Synther
(Lu et al. 2023), and CleanDiffuser (Dong et al. 2024).

DnD
In our implementation, we use the FAISS library (Douze et al. 2024; Johnson, Douze, and Jégou 2019) to compute the k-NN
estimation. We compute the k-NN based score for all source samples in the source dataset Dsrc at the beginning. The computation



time is only within 1 minute for 1 million source samples and 5 thousand target samples.
After computing the score for each source sample, we train our diffusion model using the offline source dataset with the

corresponding scores as the conditional context y. We use the design of EDM (Karras et al. 2022) for our diffusion model, it
has demonstrated its performance in previous offline RL works (Lu et al. 2023). Specifically, we employ a fixed noise schedule
σmax = σT > · · · > σ1 > σ0 = 0 and diffuse clean data samples using the transition q(xt|xsrc,i) = N

(
xsrc,i, (σ

t)2I
)
. Then,

we train a denoiser Gθ(·) to directly predict the clean samples using classifier-free training (Ho and Salimans 2022):

min
θ

E
[∥∥xsrc,i −Gθ

(
xsrc,i + σtϵ,m · ρk(xsrc,i), σt

)∥∥2] (29)

where xsrc,i ∼ Dsrc, ϵ ∼ N (0, I), and t ∼ U [0, T ]. The score ρk(xsrc,i) is randomly masked during training via the null
token m, which is sampled from the Bernoulli distribution with p (m = ∅) = 0.25. We then used the trained diffusion model to
generate source samples that are close to the target domain by setting the value of the conditional context y to be higher than
the top κ% of the source sample scores in the source dataset Dsrc. Specifically, we uniformly sample a value χ from the range
[κ, 100] and set y to the χ-th quantile of the source dataset’s score distribution. The number of generated samples is 1 million
and fixed for all environments. Finally, the generated samples are combined with the source dataset for later policy learning. We
use the IQL (Kostrikov, Nair, and Levine 2022) as the backbone for DnD.

We summarize our proposed method in Algorithm 1. Based on the analysis in Section , to reduce the dynamics gaps and
tighten the bound in Theorem 0.1, we select the source samples that have the highest scores during training to update the Q value
function. Then, we further use the score as the weighting value for the source data during the training of the Q value function.
This approach ensures the policy adaptively emphasizes source samples that closely align with the target domain, improving
adaptation performance.

As we mentioned, the imbalanced dataset could bias the policy to the source samples. Thus, we employ additional policy
regularization to ensure the learned policy is close to the support areas of the target dataset. Similar to (Wu et al. 2022), we learn
a conditional VAE, denoted as π̂btar(a|s), to model the behavior target policy πbtar(a|s). Thus, we optimize the policy with the
loss function as follows:

Lreg
π = Lπ − λEs∼Dsrc

⋃
Dtar

[
log π̂btar (π(.|s)|s)

]
, (30)

where Lπ is the policy loss of the offline RL method, λ is the coefficient controlling the strength of the additional policy
regularization. In our implementation, we use the default config for CVAE as presented in Wu et al. (2022) .

DARA
DARA (Liu, Hongyin, and Wang 2022) use the learned domain classifiers to compute the reward penalty ∆r and correct the
source samples using the following:

r̂ = r − α∆r, (31)

where α is the penalty coefficient that controls the strength of the reward penalty term. The reward penalty is clipped to [−10, 10]
following the original paper (Liu, Hongyin, and Wang 2022). We report the results of DARA with IQL as the backbone s the fair
comparison.

BOSA
BOSA (Liu et al. 2024) handles the dynamics shift problems using a supported policy and value optimization. The value function
(critic) in BOSA is learned with the following objective:

min
Qϕ

Lmix (Qϕ) :=E(s,a,r,s′)∼Dmix ,a′∼πθ(a′|s′)

[
δ (Qϕ) · 1

(
P̂target (s

′ | s,a) > ϵ′th

)]
+ E(s,a)∼Dsource [Qϕ(s,a)] , (32)

where δ (Qϕ) =
(
Qϕ(s, a)− r −Qϕ̄(s, a)

)2
, 1 is the indicator function, P̂tar is the learned target transition dynamics, ϵth is

the selection threshold. CVAE is used to model the target dynamics model.

IGDF
IGDF (Wen et al. 2024) measure the dynamics mismatch between two domains via the mutual information estimated via
contrastive learning. IGDF uses a score function h, using the target dataset as the positive sample and the source dataset as the
negative sample. Then, based on the score function, IGDF updates the value function using the following objective:

LQ =
1

2
EDtar

[
(Qθ − T Qθ)

2
]
+

1

2
α · h (s, a, s′)E(s,a,s′)∼Dsrc

[
1
(
h (s, a, s′) > hξ%

)
(Qθ − T Qθ)

2
]
, (33)

where α is the weighting coefficient for the TD in the source data, and ξ is the data selection ratio.



Table 7: Hyperparameter setup for DnD and the baselines.

Hyperparams Value

Shared

Actor network (256,256)
Critic network (256,256)
Learning rate 3e-4
Discounted factor 0.99
Buffer size 1e6
Activation ReLU
Target update coefficient 5e-3
Batch size for source and target 128
Temperature coefficient 0.2
Max log std 2
Min log std -20

DARA Domain classifiers network (256,256)
Reward penalty coefficient α 0.1

BOSA

Policy regularization coefficient λπ 0.1
Transition coefficient λtransition 0.1
Threshold parameter ϵ, ϵ′ log(0.01)
Value weight 0.1

IGDF

Representation dimension {16,64}
Contrastive encoder network (256,256)
Encoder training steps 7000
Importance coefficient 1.0
Data selection ratio ξ% 75%

SRPO Discriminator network (256, 256)
Data selection ratio 0.5
Reward coefficient {0.1, 0.3}

OTDF CVAE training steps 10000
CVAE learning rate 1e-3
Cost function cosin
Data filtering ratio 80%
Policy coefficient {0.1, 0.5}

DnD kth nearest neighbor 5
Data selection ratio 50%
Policy regularization coefficient 0.1
Score threshold for guided sampling 90%

IQL
IQL (Kostrikov, Nair, and Levine 2022) is a state-of-the-art offline RL algorithm. It updates the state-value function and
state-action value function via the following objectives:

LV = E(s,a)∼Dsrc∪Dtar
[Lτ2 (Qθ′(s, a)− Vψ(s))] ,

LQ = E(s,a,r,s′)∼Dsrc∪Dtar

[
(r(s, a) + γVψ (s′)−Qθ(s, a))

2
]
,

(34)

where Lτ2(u) = |τ − 1(u < 0)|u2. The policy is learned using the advantage-weighted behavior cloning objective:

Lπ = EDsrc
⋃
Dtar

[exp (β ×A(s, a)) log π(a|s)] , (35)

where A(s, a) = Q(s, a)− V (s, a), and β is the inverse temperature coefficient.

SRPO
SRPO (Xue et al. 2024) proposes optimizing the policy by solving the following constrained optimization problem:



max
π

Est,at∼τπ

[ ∞∑
t=0

γtr(st, at)

]
s.t. DKL(dπ(·) ∥ ζ(·)) < ϵ, (36)

where τπ is the trajectory induced by policy π, dπ(·) is the stationary state distribution of policy π, and ζ(·) represents the
optimal state distribution under different environment dynamics.

This problem can be reformulated into an unconstrained optimization problem using Lagrange multipliers, where the logarithm
of the probability density ratio, λ log ζ(st)

dπ(st)
, is added to the standard reward function. Based on this formulation, SRPO samples

a batch of size N from two offline datasets, Dsrc and Dtar, and ranks the transitions based on state values. A proportion ρN (in
the paper ρ = 0.5 is used) of samples with high state values is labeled as real data, while the remaining samples are labeled as
fake data.

A discriminator Dδ(·) is then trained to distinguish between these samples, and the rewards are modified as follows:

r̂SRPO = r + λ · Dδ(s)

1−Dδ(s)
, (37)

where λ is the reward coefficient.

OTDF
OTDF (Anonymous 2025) attempts to solve the problem of estimating domain gaps in the limited target data setting with the
optimal transport. Specifically, they use cousin distance as the cost function for solving optimal transport problems between the
datasets of two domains. After obtaining the optimal coupling µ∗, they measure the deviation of the source domain to the target
domain as follows:

d(ut) = −
|Dtar|∑
t′=1

C(ut, ut′)µ∗t,t′ , ut = (stsrc, a
t
src, (s

′
src)

t) ∼ Dsrc, (38)

where C is the cost function. They then use d(ut) to select good source data for policy training via the source data filtering.
Additionally, they also employ a policy regularization to ensure the learned policy is close to the support of the target dataset.

Hyperparamters
We adopt the hyperparameters reported in Anonymous (2025) for baseline methods. For DnD, we set k = 5 for k-NN estimation,
use a 50% data selection ratio, a policy regularization coefficient of 0.1, and a 90% score threshold for guided sampling from the
diffusion model. We note that without bothering the hyperparameter tuning, DnD achieves strong performance across diverse
tasks with a single set of hyperparameters.

Computing Infrastructure
We use Python 3.9, Gym 0.23.1, Mujoco 2.3.2 and D4RL 1.1. All experiments are conducted on a Ubuntu 22.04 server with
CUDA version 12.2. We report the computing infrastructure that we use to run our experiments in Table 8.

CPU Number of CPU Cores GPU VRAM RAM
Intel(R) Xeon(R) Gold 6248 CPU 10 V100 32 GB 377 GB

Table 8: Computing infrastructure.

More Experimental Results
In this section, we present additional experimental results omitted from the main text due to space constraints. We use the
same number reported in Anonymous (2025) since we consider similar gravity and kinematic shift settings. We present the
performance comparison between DnD and the other baselines under kinematic shift and report additional results on the impact
of the guided-diffusion model. Furthermore, we conduct ablation studies on DnD’s hyperparameters to provide deeper insights
into its behavior and effectiveness.

Missing Results on Kinematic Shift Tasks
We present the performance comparison between DnD and other methods under kinematic shifts in Table 9. We observe DnD
excels in 29 out of 36 tasks, surpassing IQL performance by 59.4%, and achieves a total normalized score of 1902.2, compared
to 1547.6 of the second best method OTDF. Besides that, we observe the cross-domain RL methods that involve training neural
networks to estimate the domain gaps fail to bring performance improvement compared to IQL. These results validate the
effectiveness of DnD in cross-domain offline RL with limited target data.
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Figure 6: Ablation study on the effect of policy regularization weight λ. The solid curves are the average target returns, and the
shaded areas represent the standard deviation over 5 random seeds.

Effect of Guided-Diffusion Model
In this section, we provide additional experiment results to answer question 3. Specifically, we compare DnD against three
variants: (1) DnD without upsampling via the diffusion model (w/o diffusion), (2) DnD where the target dataset is upsampled
using a diffusion model (upsample target), and (3) DnD with naive diffusion-based generation without guidance (w/o guidance).
We conduct experiments on Ant medium and medium-expert source datasets under gravity shift and present results in Table
10. We observe that upsample target slightly improves performance over w/o diffusion. However, the w/o guidance variant,
which naively upsamples the source dataset, achieves significantly better results than upsample target. We hypothesize that
the limited target data setting hinders the training diffusion model in the target domain, thus affecting adaptation performance.
Among all variants, DnD achieves the highest performance, demonstrating the effectiveness of our proposed method of using a
guided-diffusion model to upsample the source dataset with generated data close to the target domain.

Guided Score κ

The parameter κ controls the conditional k-NN score used for generating source samples, effectively determining their proximity
to the target domain. To evaluate its impact, we conduct experiments on HalfCheetah and Hopper under both gravity and
kinematic shifts. The results, presented in Table 11, show that a lower κ value (κ = 80) leads to significant performance drops
across multiple tasks. We hypothesize that this occurs because the generated source samples are not sufficiently beneficial for
policy adaptation. These findings highlight the importance of generating source samples that closely align with the target domain
to improve adaptation performance.

Effect of λ
λ controls the strength of the policy regularization in Eq (10). A small λ may lead to the policy being biased toward the source
dataset, while a large λ limits knowledge transfer from the source. We evaluate different λ values (λ ∈ 0, 0.1, 0.5, 2) and present
the results in Figure 6. Removing policy regularization, i.e. setting λ = 0, leads to suboptimal performance. We also observe
that the optimal λ varies by task (e.g., Halfcheetah prefers λ = 0.1, while Walker performs best with λ = 2.0). To balance this
trade-off, we set λ = 0.1 for all tasks.

Data Selection Ratio ξ

Parameter ξ controls how many source data we select to use in a batch at each training step for policy learning, with larger ξ
indicating more source data will be rejected. We evaluate the impact of ξ on DnD’s performance using medium source datasets
under both gravity and kinematic shifts. Specifically, we sweep ξ ∈ 0, 25, 50, 75, where ξ = 0 means all source data is used
for training. As shown in Figure 7, using ξ = 0 is suboptimal, confirming that naively combining source and target datasets is
ineffective. While different tasks prefer different ξ values, we find that ξ = 50 provides a balanced trade-off across tasks.

Effect of Weighting Q-function
We conduct experiments to evaluate the impact of weighting the Q-function with the score as in Eq. (9). Specifically, we compare
DnD with a variant that removes this weighting during value function updates, as follows:

LQ = EDtar

[
(Qϕ − T Qϕ)

2
]
+ EDsrc

[
1(wk ≥ wk,ξ%)(Qϕ − T Qϕ)

2
]
, (39)

Since the source data selection ratio remains constant, Eq. (39) may suffer from bad source transitions, as low-quality source
samples can still be used for training. Weighting the Q-function mitigates this issue by reducing the influence of source samples
that deviate significantly from the target domain. As shown in Table 12, removing the weighting mechanism leads to performance
drops in 3 out of 4 tasks, highlighting its importance.
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Table 9: Results in kinematic shift tasks. We report normalized scores and their standard deviations in the target domain,
averaged over five random seeds. The best score is bold. Half=Halfcheetah, Hopp=Hopper, m=medium, me=medium-expert,
mr=medium-replay.

Source Target IQL DARA BOSA SRPO IGDF OTDF DnD

Ant-m medium 50.0±5.6 42.3±7.6 20.9±2.6 50.5±6.7 54.5±1.3 55.4±0.0 62.1±0.6
Ant-m medium-expert 57.8±7.2 54.1±3.8 31.7±7.0 54.9±1.3 54.5±4.6 60.7±3.6 68.9±1.0
Ant-m expert 59.6±18.5 54.2±11.3 45.4±8.6 45.5±9.3 49.4±14.6 90.4±4.8 92.1±3.5
Ant-me medium 49.5±4.1 44.7±4.3 19.0±8.0 41.3±8.1 41.8±8.8 50.2±4.3 60.6±1.3
Ant-me medium-expert 37.2±2.0 33.3±7.0 6.4±2.5 32.8±8.0 41.5±4.9 48.8±2.7 60.4±3.7
Ant-me expert 18.7±8.1 17.8±23.6 14.5±9.0 35.2±15.5 14.4±22.9 78.4±12.2 76.0±4.1
Ant-mr medium 43.7±4.6 42.0±5.4 19.0±1.8 45.3±5.1 41.4±5.0 52.8±4.4 61.9±0.5
Ant-mr medium-expert 36.5±5.9 36.0±6.7 19.1±1.6 36.2±6.6 37.2±4.7 54.2±5.2 58.8±3.6
Ant-mr expert 24.4±4.8 22.1±0.4 19.5±0.8 27.1±3.7 24.3±2.8 74.7±10.5 43.8±2.6
Half-m medium 12.3±1.2 10.6±1.2 8.3±1.2 16.8±4.2 23.6±5.7 40.2±0.0 38.5±1.4
Half-m medium-expert 10.8±1.9 12.9±2.8 8.7±1.3 10.3±2.7 9.8±2.4 10.1±4.0 19.1±1.0
Half-m expert 12.6±1.7 12.1±1.0 10.8±1.7 12.2±0.9 12.8±0.7 8.7±2.0 13.1±0.8
Half-me medium 21.8±6.5 25.9±7.4 30.0±4.3 17.2±3.3 21.9±6.5 30.7±9.6 38.4±1.4
Half-me medium-expert 7.6±1.4 9.5±4.2 6.8±2.9 9.6±2.4 8.9±3.3 10.9±4.2 24.1±4.6
Half-me expert 9.1±2.4 10.4±1.3 4.9±3.2 11.2±1.0 10.7±1.4 3.2±0.6 13.4±2.0
Half-mr medium 10.0±5.4 11.5±4.9 7.5±3.1 10.2±3.7 11.6±4.6 37.8±2.1 19.5±1.8
Half-mr medium-expert 6.5±3.1 9.2±4.7 6.6±1.7 9.5±1.8 8.6±2.3 9.7±2.0 11.4±2.1
Half-mr expert 13.6±1.4 14.8±2.0 10.4±4.9 14.8±2.2 13.9±2.2 7.2±1.4 15.6±2.9
Hopp-m medium 58.7±8.4 43.9±15.2 12.3±6.6 65.4±1.5 65.3±1.4 65.6±1.9 69.8±2.3
Hopp-m medium-expert 68.5±12.4 55.4±16.9 15.6±10.8 43.9±30.8 51.1±18.5 55.4±25.1 78.2±5.1
Hopp-m expert 79.9±35.5 83.7±19.6 14.8±5.5 53.1±39.8 87.4±25.4 35.0±19.4 59.8±21.8
Hopp-me medium 66.0±0.5 61.1±4.0 35.0±20.1 64.6±2.6 65.2±1.5 65.3±2.4 69.6±1.3
Hopp-me medium-expert 45.1±15.7 61.9±16.9 13.9±4.9 54.7±17.0 62.9±15.6 38.6±15.9 75.5±9.6
Hopp-me expert 44.9±19.8 84.2±21.1 12.0±4.3 57.6±40.6 52.8±19.7 29.9±11.3 64.5±24.2
Hopp-mr medium 36.0±0.1 39.4±7.2 3.2±2.6 36.1±0.2 35.9±2.4 35.5±12.2 64.8±2.4
Hopp-mr medium-expert 36.1±0.1 34.1±3.6 4.4±2.8 36.0±0.1 36.1±0.1 47.5±14.6 69.7±7.5
Hopp-mr expert 36.0±0.1 36.1±0.2 3.7±2.5 36.1±0.1 36.1±0.3 49.9±30.5 69.9±18.0
Walker-m medium 34.3±9.8 35.2±22.5 14.3±11.2 39.0±6.7 41.9±11.2 49.6±18.0 63.2±4.2
Walker-m medium-expert 30.2±12.5 51.9±11.5 13.6±7.7 38.6±6.5 42.3±19.3 43.5±16.4 53.5±7.0
Walker-m expert 56.4±18.2 40.7±14.4 15.3±2.5 57.3±12.2 60.4±17.5 46.7±13.6 70.5±12.0
Walker-me medium 41.8±8.8 38.1±14.4 21.4±8.3 36.9±4.3 41.2±13.0 44.6±6.0 59.4±6.8
Walker-me medium-expert 22.2±8.7 23.6±8.1 15.9±4.1 23.2±7.9 28.1±4.0 16.5±7.2 53.2±7.3
Walker-me expert 26.3±10.4 36.0±9.2 18.5±3.6 40.9±9.6 46.2±19.4 42.4±9.1 69.2±7.0
Walker-mr medium 11.5±7.1 12.5±4.3 1.9±2.1 14.3±3.1 22.2±5.2 49.7±9.7 52.9±8.4
Walker-mr medium-expert 9.7±3.8 11.2±5.0 4.6±3.0 4.2±5.1 7.6±4.9 55.9±17.1 36.4±5.4
Walker-mr expert 7.7±4.8 7.4±2.4 3.6±1.5 13.2±8.5 7.5±2.1 51.9±7.9 44.4±8.5

Total Score 1193.0 1219.8 513.5 1195.7 1271.0 1547.6 1902.2

Table 10: Performance comparison between DnD and its variants on using the diffusion model. We bold the highest
scores.m=medium, e=expert, me=medium-expert.

Method m-m m-me m-e

w/o diffusion 23.6±2.9 14.4±0.8 19.7±1.4
up sample target 25.4±3.1 23.7±3.7 24.2±2.7
w/o guidance 46.8±11.5 31.6±11.5 22.43.6
w guidance (DnD) 56.9±2.2 47.5±3.9 36.1±7.8
Method me-m me-me me-e

w/o diffusion 22.5±3.7 16.1±1.3 18.4±1.7
up sample target 22.6±2.8 27.1±1.1 22.6±2.6
w/o guidance 40.7±6.5 35.8±7.2 30.2±4.1
w guidance (DnD) 55.7±8.1 46.3±4.9 42.7±13.0



Table 11: Performance comparison of DnD between different guided score κ values. We highlight the highest score in bold.
Half=Halfcheetah, Hopp=Hopper, m=medium, me=medium-expert, e=expert.

Source Target κ

80 90 99

Half-gravity-m me 48.2±0.8 48.9±0.7 47.8±1.8
Half-gravity-m e 48.8±0.4 48.8±1 49.5±1
Half-kinematic-m me 17.7±4.1 19.1±1 16.7±3.6
Half-kinematic-m e 13.7±1.3 13.1±0.8 13.2±1.4
Hopp-gravity-m me 33.6±8 40.6±5.5 35±4.9
Hopp-gravity-m e 32.8±8.5 51.3±10.6 40.5±12.2
Hopp-kinematic-m me 74.6±4.2 78.2±5.1 79.3±8.5
Hopp-kinematic-m e 53.4±20.6 59.8±21.8 53.5±18.2

Table 12: Ablation study on the effect of weighting q-function. We report the normalized score on the target domain. The highest
scores are bold.

Task w/o weighting q w weighting q

Ant-kinematic 87.5±6.6 92.1±3.5
Hopper-kinematic 51.1±18.9 59.8±21.8
Halfcheetah-gravity 49.4±0.8 48.8±1
Walker-gravity 62.4±1.9 63.8±2.7


