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Abstract

Real-world challenges require planning algorithms that can
adapt to diverse and dynamic domains. Traditionally, hand-
crafted planning domains have been limited in scale and di-
versity. While advancements in generative AI, including large
language models (LLMs), have automated domain creation,
they primarily reconstruct existing domains from natural lan-
guage descriptions rather than generating novel ones. In con-
trast, domain randomization—an effective technique in re-
inforcement learning—demonstrates enhanced performance
and generalizability by training on a wide variety of random-
ized domains. Inspired by this, we present PDDLFuse, a tool
designed to bring the benefits of domain randomization to
the Planning Domain Definition Language (PDDL). PDDL-
Fuse generates diverse and complex planning domains, en-
abling robust testing and validation of new planners and plan-
ning foundation models. Its configurable parameters enable
precise control over domain complexity. Initial evaluations
reveal that PDDLFuse generates complex domains, as evi-
dent by the limited solvability of domain-independent plan-
ners and high expressivity measured by the k-WL test on
generated domains. Furthermore, foundation models trained
on PDDLFuse-generated domains demonstrate significantly
improved generalization compared to those trained on tradi-
tional existing domains.

Introduction
Automated planning systems are critical for a wide range of
applications, including robotics and software management
(Ghallab, Nau, and Traverso 2004). Traditionally, planning
domains have been manually created, which, while capable
of producing complex domains, inherently limits the rate of
domain generation and the diversity of available domains.
This limitation slows the development and testing of plan-
ning algorithms, reducing their robustness and adaptability
to new or unseen domains (Chen, Thiébaux, and Trevizan
2024).

Recent advancements in generative AI, particularly large
language models (LLMs), have automated planning domain
creation. However, these approaches primarily focus on re-
constructing existing domains from natural language de-
scriptions, resulting in a limited set of domains for training
and evaluation (Oswald et al. 2024). As a result, the poten-
tial for improving generalization remains constrained, as the
models are still being trained on a narrow set of existing

domains. In contrast, generating diverse domains introduces
variability that enhances generalization, as shown in existing
works in reinforcement learning (Mehta et al. 2020; Ajani,
Hur, and Mallipeddi 2023).

Inspired by the success of domain randomization in rein-
forcement learning, which improves performance and adapt-
ability by training on diverse randomized domains, we
propose applying similar principles to the Planning Do-
main Definition Language (PDDL). Domain randomiza-
tion demonstrates that diverse training environments signif-
icantly enhance an agent’s ability to generalize to new, un-
seen domains, a quality essential for robust planning sys-
tems.

PDDLFuse is a tool designed to generate novel planning
domains by fusing existing ones rather than merely recon-
structing them from natural language descriptions (Oswald
et al. 2024; Mahdavi et al. 2024). This approach substan-
tially increases the diversity of domains available for plan-
ning research, enabling the development of more adapt-
able and generalizable planning algorithms. By expanding
the range of test domains, PDDLFuse supports compre-
hensive testing of planning algorithms, validates new plan-
ners, and allows rigorous evaluation of planning foundation
models on these diverse domains, addressing previously un-
explored aspects of planning research. Preliminary evalu-
ations indicate that PDDLFuse generates complex and di-
verse domains, as evidenced by the limited solvability of
domain-independent planners and the higher expressivity
observed through the k-WL test. Moreover, foundation mod-
els trained on PDDLFuse-generated domains demonstrate
superior generalization compared to those trained on tradi-
tional datasets.

The following sections cover the background of planning
domains, review related works, describe the methodologies
employed, and present the experimental results.

Background and Related Works
This section covers the essentials of planning domains,
domain-independent planners, and the role of generative AI
in domain reconstruction. We highlight the limitations of
current methods. We also explore domain randomization, an
approach from reinforcement learning that improves algo-
rithm robustness by training with diverse domains, offering
potential benefits for planning systems. Detailed discussion



in Supplementary Material.

Planning Domains and Problems
In the context of automated planning, a planning domain is
a structured description of an environment consisting of ob-
jects, predicates, and actions that an agent can perform. For-
mally, a planning domain D is defined by a tuple (O,P,A),
where:

• O is a finite set of objects that exist within the domain.
• P is a finite set of predicates, where each predicate rep-

resents a property or relationship among objects (e.g.,
At(location, package)).

• A is a finite set of actions, where each action a ∈ A is
defined by a pair (pre(a), eff(a)):

– pre(a), the preconditions of action a, is a set of predi-
cates that must hold true for a to be executed.

– eff(a), the effects of action a, is a set of predicates that
describe the changes in the domain after a is executed.

A planning problem specifies a particular task within a
domain by defining both an initial and a goal state. Formally,
a planning problem P is defined by the tuple (D, s0, sg),
where:

• D is the domain in which the problem is defined.
• s0 is the initial state, a set of grounded predicates repre-

senting the domain file’s state before planning begins.
• sg is the goal state, a set of grounded predicates spec-

ifying the desired conditions that define the successful
completion of the task.

Domain Reconstruction
Automating domain creation through translation from nat-
ural language has seen progress, though it still faces lim-
itations in fostering diversity and novelty. Oswald et al.
(2024) employed LLMs to replicate planning domains from
textual descriptions, closely aligning with existing PDDL
specifications, but requiring a reference domain for valida-
tion restricts its scope to known domains. Similarly, Mah-
davi et al. (2024) used an iterative refinement approach
with environment feedback to enhance LLM-generated do-
mains, reducing manual effort but focusing primarily on re-
fining rather than creating new domains, limiting scalabil-
ity. The “Translate-Infer-Compile” (TIC) tool by Agarwal
and Sreepathy (2024) and “AUTOPLANBENCH” by Steina
et al. (2024) advance the translation of natural language into
structured PDDL, enhancing accuracy through logic reason-
ing and LLM interaction, yet they remain confined to recon-
structing established domains, rather than diversifying the
domain pool essential for generalization in planning.

Generalization in Planning
Generalization in automated planning is limited by the lack
of diverse training domains, as exemplified by those in
the International Planning Competition (IPC). This leads to
weaker inductive biases and models prone to overfitting. Re-
cent approaches using Graph Neural Networks (GNNs) and

Large Language Models (LLMs) aim to address this but re-
main restricted by their narrow domain scope. For instance,
the graph representations by Chen, Thiébaux, and Trevizan
(2024) and the GOOSE tool by Chen, Thiébaux, and Tre-
vizan (2023) show promise in learning domain-independent
heuristics, yet face scalability issues and reliance on IPC do-
mains. Similarly, Toyer et al. (2018) employs GNNs to im-
prove plan quality but depends on accessible solvers, lim-
iting real-world applicability. LLMs, even with advanced
prompting techniques (Hu et al. 2023; Yao et al. 2023),
are constrained by a lack of domain diversity, reducing
their effectiveness in novel contexts. Multimodal and code-
based models, such as those by Lu et al. (2023); Pallagani
et al. (2023); Khandelwal, Sheth, and Agostinelli (2024);
Agostinelli, Panta, and Khandelwal (2024), perform well in
known distributions but struggle with out-of-distribution do-
mains, highlighting the need for more diverse domains to
achieve robust generalization. It is worth noting that most re-
cent works on planning foundation models have relied heav-
ily on GNNs (Chen, Thiébaux, and Trevizan 2023, 2024;
Toyer et al. 2018).

Weisfeiler-Leman Test Implementation
Building on the importance of generalization in planning
and the reliance on Graph Neural Networks (GNNs) for
structured data representation, the Weisfeiler-Leman (WL)
test is a critical tool for evaluating the expressivity of do-
mains. The WL test is a widely used algorithm for graph
isomorphism testing, which iteratively refines node color-
ings (labels) based on the colors of neighboring nodes. The
k-WL test extends this concept by considering k-tuples of
nodes, enabling more powerful discrimination between non-
isomorphic graphs. It has been established that the expres-
sivity of standard GNNs is upper-bounded by the 1-WL
test (Huang and Villar 2021), meaning that GNNs cannot
distinguish between graphs that the 1-WL test considers
identical.

Description of the Algorithm:
• Initialization: Each k-tuple of nodes are assigned an ini-

tial color based on isomorphism-invariant characteristics,
such as node degrees or specific substructures within the
tuple.

• Iterative Refinement: At each iteration, the color of
each k-tuple is refined by considering the colors of its
neighboring k-tuples. Neighbors include k-tuples that
can be formed by substituting any node in the tuple with
another node in the graph.

• Stabilization: The process continues until no new colors
emerge between successive iterations, indicating that the
coloring has stabilized.

• Result Compilation: The multiset of final colors is com-
puted, serving as a signature of the graph’s structure that
captures information up to k-th order dependencies.

Domain Randomization and Generalization in
Reinforcement Learning
Domain randomization is a key technique in reinforcement
learning (RL) that improves robustness and generalizability



Algorithm 1: Weisfeiler-Leman Test Implementation

Require: Graph G = (V,E), integer k, maximum itera-
tions T

1: Initialize color function c(0) for all k-tuples in V k using
initial graph features

2: for t = 1 to T do
3: Initialize newColors as an empty map
4: for all k-tuples v = (v1, v2, . . . , vk) ∈ V k do
5: Construct multiset Mv of colors of neighboring k-

tuples
6: newColors[v]← Hash

(
c(t−1)(v),Mv

)
7: end for
8: changes ← number of k-tuples where

newColors[v] ̸= c(t−1)[v]
9: Update colors: c(t) ← newColors

10: if changes = 0 then
11: break
12: end if
13: end for
14: return Multiset {c(T )(v) | v ∈ V k}

by exposing agents to diverse training domains, thereby im-
proving generalization to unfamiliar domains. Mehta et al.
(2020) introduced Active Domain Randomization (ADR),
which strategically manipulates challenging environmen-
tal parameters to improve policy robustness, particularly in
robotic control. Similarly, Ajani, Hur, and Mallipeddi (2023)
showed that varying physical properties like surface friction
can significantly boost an RL agent’s generalization ability.
Kang, Chang, and Choi (2024) further refined this with Bal-
anced Domain Randomization (BDR), which focuses train-
ing on rare and complex domains to enhance performance
under demanding conditions. In non-physical tasks, Koo,
Yu, and Lee (2019) applied adversarial domain adaptation to
align feature representations across domains, enhancing pol-
icy generalization in complex tasks like dialogue systems.
These studies demonstrate the power of domain randomiza-
tion in building resilient AI, aligning with PDDLFuse’s goal
to generate diverse planning domains to improve generaliza-
tion in automated planning.

Domain Independent Planners
Domain-independent planners such as Fast Downward
(FD)(Helmert 2006) and LPG (Gerevini, Serina et al. 2002)
play a crucial role in the advancement of automated plan-
ning technologies. These systems are designed to function
across a wide range of problem domains by utilizing heuris-
tics that do not rely on specific domain knowledge. FD
converts PDDL tasks into a more manageable internal for-
mat and employs powerful heuristics like the Fast-Forward
(FF) (Hoffmann and Nebel 2001), which simplifies plan-
ning by focusing only on positive action effects, and the
landmark-cut (lmcut) (Helmert and Domshlak 2009), which
identifies essential milestones within a plan to optimize the
search process. Conversely, LPG leverages stochastic lo-
cal search strategies that incrementally refine plans through
action-graph and plan-graph techniques, proving highly ef-

fective in both propositional and numerical planning con-
texts (Gerevini, Serina et al. 2002). The use of these planners
in research is driven by their ability to efficiently generate
solutions in diverse domains, thereby facilitating the devel-
opment of more robust and adaptable planning systems.

Other Foundation Models
One of the existing foundation models is GOOSE, which
represents a significant stride toward domain generalization
in planning Chen, Thiébaux, and Trevizan (2023). GOOSE
employs the STRIPS Learning Graph (SLG) to represent
the planning domains (Chen, Thiébaux, and Trevizan 2024).
This model encodes states, actions, and their relationships
into a graph structure, facilitating the capture of domain
knowledge through representations of preconditions and ef-
fects and deleting effects as graph edges.

Approximate Value Iteration
Approximate Value Iteration (AVI) employs a Deep Neu-
ral Network (DNN) with parameters θ, approximating the
value function through iterative heuristic updates. The cen-
tral heuristic function h of our planning algorithm is refined
iteratively using the update rule:

h′(s) = min
a∈A

(c(s, a) + h(T (s, a))) (1)

Here, c(s, a) represents the cost associated with taking ac-
tion a from state s, and T (s, a) denotes the state transition
resulting from action a. The primary objective of this model
is to enhance the accuracy of cost-to-go estimates by mini-
mizing the following loss function:

L(θ) =

(
min
a∈A

(c(s, a) + hθ−(T (s, a)))− hθ(s)

)2

(2)

In this model, hθ(s) serves as the heuristic estimate of the
cost-to-go, while θ− refers to the parameters of a target net-
work that are periodically synchronized with θ to stabilize
the training process, providing a consistent target within the
dynamic learning environment.

Batch Weighted A* Search
Batch Weighted A* Search (BWAS) is an enhanced variant
of the traditional A* search algorithm, tailored for complex
pathfinding and graph traversal tasks with vast state spaces
or intricate dynamics (Agostinelli et al. 2019). A* search
traditionally operates by using a priority queue where each
node’s priority is determined by the sum of the actual path
cost from the start node to the current node g(x), and an
estimated cost from the current node to the goal provided by
a heuristic function h(x). The function f(x) = g(x) + h(x)
governs this process.

BWAS modifies this by introducing a weighting factor λ
and batch processing of nodes. The function becomes:

f(x) = λg(x) + h(x) (3)

where λ adjusts the emphasis between the heuristic guidance
and the actual path cost. A lower λ value accelerates the
search but may compromise the path optimality.



Additionally, BWAS employs batch processing, expand-
ing multiple nodes simultaneously instead of one at a time.
This method is especially beneficial on parallel computing
architectures like GPUs, where the heuristic calculations can
be performed concurrently for multiple nodes. By tuning λ
and the batch size N , BWAS efficiently balances exploration
and exploitation, enhancing its suitability for solving large-
scale or computationally demanding problems.

Methods
This section details the procedures and algorithms devel-
oped to fuse existing domains and manipulate domain char-
acteristics to generate new and diverse domains, as shown in
Algorithm 2. Additional details are provided in the Supple-
mentary Material.

Domain Generation
In PDDLFuse, the generation of new planning domains
D = (O,P,A) begins by selecting two existing domains
and their corresponding problem files as bases. To ensure
uniqueness, an initial step systematically renames predicates
and action names to avoid overlap between the two domains.

The actions within the domains are then enhanced using a
set of hyperparameters that control modifications to precon-
ditions and effects. These parameters include:
• Probability of adding a new predicate to the precondi-

tions (prob add pre).
• Probability of adding a new predicate to the effects

(prob add eff).
• Probability of removing a predicate from the precondi-

tions (prob rem pre).
• Probability of removing a predicate from the effects

(prob rem eff).
Additional parameters include:

• prob neg: Probability of negating a predicate when
adding it to the preconditions or effects.

• rev flag: Ensures predicate reversibility.
• num objs: Controls the number of objects, providing fur-

ther flexibility in domain generation.
This process enables the creation of complex and diverse

planning domains along with their respective problem files,
facilitating the testing and development of more generaliz-
able planning algorithms.

Problem File Generation
Problem file generation starts with setting the initial state
based on num objs. A sequence of random actions from the
generated domain is executed to transition the initial state
into a new state, where a subset of true predicates forms the
goal state. This process ensures the generated problems are
solvable within the domain.

This section outlines the systematic approach employed
by PDDLFuse to generate new and diverse planning do-
mains, with an emphasis on parametric controls that enable
customization. Subsequent sections will discuss the experi-
mental setup and results for evaluating the effectiveness and
utility of these generated domains in planning research.

Algorithm 2: Domain & Problem Generation

Require: Two base domains D1 = (O1,P1,A1) and D2 =
(O2,P2,A2)

Ensure: No overlapping predicates or actions betweenD1 andD2

1: O ← O1 ∪ O2 {Union of objects from both domains}
2: P ← P1 ∪ P2 {Union of predicates from both domains}
3: A ← ∅
4: for each action a in A1 ∪ A2 do
5: Define pre(a) and eff(a) for new A
6: if random() < prob add pre then
7: Add new predicates to pre(a) {Expanding precond}
8: end if
9: if random() < prob add eff then

10: Add new effects to eff(a) {Expanding effects}
11: end if
12: if random() < prob rem pre then
13: Remove predicates from pre(a) {Simplifying precond}
14: end if
15: if random() < prob rem eff then
16: Remove predicates from eff(a) {Simplifying effects}
17: end if
18: Apply prob neg to negate added predicates
19: A ← A ∪ {a} {Incorporating modified action into new

domain}
20: end for
21: Generate problem P using modified Dnew = (O,P,A) and

num objs
22: Execute actions to derive the goal state from the initial state
23: return Dnew, P {Output new planning domain and problem}

Experimental Setup and Results
This section details the experimental setup and results for
evaluating PDDLFuse’s ability to generate diverse and com-
plex planning domains. The experiments assess the solvabil-
ity of these domains using both domain-independent plan-
ners and foundation models.

Planners used
We evaluate the performance of traditional domain-
independent planners, including Fast Downward (FD) with
FF and lmcut heuristics and LPG. Additionally, we ana-
lyze the generalizability of foundation models by compar-
ing GOOSE (Chen, Thiébaux, and Trevizan 2023) and an
AVI-based reinforcement learning (RL) model trained on
PDDLFuse-generated domains.

For GOOSE, we train on plans generated by the Scor-
pion planner using SLG graph representation over 50 exist-
ing planning domains comprising a dataset of 50,000 exam-
ples. The training employs a Message Passing Neural Net-
work (MPNN) with 16 message-passing layers, mean ag-
gregation, a hidden dimension of 64, and optimization us-
ing a Mean Squared Error (MSE) loss function. The Adam
optimizer is used with a batch size 16 and an initial learn-
ing rate of 0.001. In contrast, the AVI-based RL model is
trained on domains generated by PDDLFuse, utilizing the
same SLG graph representation and MPNN parameters as
GOOSE. This model undergoes training with a batch size of
100 over 600,000 iterations.

All experiments impose a time constraint of 200 seconds



per problem instance. Batch-Weighted A* Search is used
with foundation models as a heuristic to solve the problems.

Experiment 1: Solvability Across Depths
For these experiments, we varied the generated domains us-
ing the following parameters:
• prob add pre = 0.5
• prob add eff = 0.5
• prob rem pre = 0.3
• prob rem eff = 0.5

We generated ten domains per depth level, except for level
0, where we considered five problems each from the Grip-
per and Blocks World domains. For depth level 1, domains
were generated using Gripper and Blocks World as base do-
mains. Subsequent levels iteratively used previously gener-
ated domains as the base, progressively increasing complex-
ity. Planner performance was assessed by success rates and
path costs to evaluate their efficiency and adaptability.

Table 1: Solvability Across Depth Levels

Depth FD(FF) LPG GOOSE AVI-based
0 9/10 10/10 9/10 10/10
1 10/10 10/10 10/10 9/10
2 10/10 8/10 8/10 9/10
3 9/10 7/10 5/10 8/10
4 8/10 5/10 3/10 8/10
5 8/10 4/10 2/10 7/10

As shown in Table 1, FD(FF) and LPG exhibit high solv-
ability at lower depths but decline as domain complexity
increases. LPG’s performance drops sharply beyond Depth
1, indicating its limited adaptability to complex domains.
FD(FF), while slightly affected, maintains relatively consis-
tent performance across depths.

The GOOSE model starts strong but faces significant
challenges with increasing complexity, struggling to gen-
eralize to higher depths. In contrast, the AVI-based model
demonstrates better generalizability, maintaining high solv-
ability across depths, particularly at higher complexities.
This highlights the advantage of training on the diverse and
challenging domains generated by PDDLFuse. While AVI-
based models require more training time than GOOSE, they
also benefit from exposure to more domains and problems,
leading to better generalization.

Experiment 2: Solvability Across Parameter
Variations
We conducted experiments using five base
domains—Blocks-World, Gripper, Depot, Grid, and
Satellite—focusing on depth level 1 with num obj = 15. To
evaluate planner performance under various configurations,
the following parameters were systematically varied:
• Prob add precond and Prob remove precond:

(0.3, 0.7), (0.5, 0.5), (0.7, 0.3)
• Prob add effect and Prob remove effect:

(0.3, 0.7), (0.5, 0.5), (0.7, 0.3)

Additionally, we varied prob neg with values of 0.3, 0.5,
and 0.7, keeping rev flag = True throughout the experi-
ments.

The heat maps in Figure 1 illustrate FD(FF) success rates
across different parameter configurations. Each cell repre-
sents planner solvability for specific combinations of add/re-
move probabilities and negation values. The results reveal
that moderate negation probabilities (e.g., prob neg = 0.5)
and balanced add/remove probabilities (e.g., 0.5, 0.5) gen-
erally achieve higher solvability. Conversely, extreme pa-
rameter values, such as high negation probabilities or un-
balanced add/remove probabilities, lead to reduced success
rates. These findings highlight the sensitivity of FD(FF) to
parameter variations, emphasizing the need for carefully
chosen configurations to balance domain complexity and
solvability. The results also showcase how parameter tun-
ing can be used to generate more complex domains, aiding
in robust evaluation of domain-independent planners.

The heat maps in Figure 2 illustrate the GOOSE Foun-
dation Model’s solvability across different parameter con-
figurations for domains with 15 objects, using the Batch
Weighted A* search. The results show that moderate
settings, especially with prob add precond = 0.5 and
prob add eff = 0.5, generally achieve higher solvability,
while more extreme configurations reduce success rates.
These findings highlight the GOOSE model’s sensitivity to
parameter variations, demonstrating that balancing the pa-
rameters is crucial for maintaining solvability and general-
ization across diverse planning environments.

The heat maps in Figure 3 display the solvability rates of
the AVI-based Foundation Model using the Batch Weighted
A* search across varied parameter configurations for do-
mains with 15 objects. Consistently high solvability across
all settings, particularly at moderate negation levels, indi-
cates the model’s robustness. The results confirm the AVI-
based model’s generalizability, performing well even un-
der complex conditions and varying parameter. This under-
scores the importance of training on PDDL-Fuse generated
diverse and complex domains, enhancing the model’s gener-
alizability. More results in Supplementary Material.

Experiment 3: Expressivity
Building upon the solvability experiments, we now evaluate
complexity of the generated domains using the Weisfeiler-
Leman (WL) test. Domains were generated by systemati-
cally varying parameters, including Prob add precond
and Prob remove precond, Prob add effect and
Prob remove effect, with values of (0.3, 0.7), (0.5,
0.5), and (0.7, 0.3). Additionally, prob neg was varied with
values of 0.3, 0.5, and 0.7, while rev flag was set to True.
The number of objects was also varied, and domain gen-
eration was performed across 5 depth levels. Memory con-
straints influenced the number of problems generated at
higher depths, resulting in 912 domains for Depth 1, 393
for Depth 2, 216 for Depth 3, 61 for Depth 4, and 12 for
Depth 5. This variation in parameters ensures a diverse set
of domains for analyzing expressivity trends and complexity
across depths.
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Figure 1: Solvability heat maps for domains with 15 objects, evaluated using the FD(FF) across varied parameter configurations.
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Figure 2: Solvability heat maps for domains with 15 objects, evaluated using the Batch Weighted A* search with GOOSE
Foundation Model as heuristic across varied parameter configurations.
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Figure 3: Solvability heat maps for domains with 15 objects, evaluated using the Batch Weighted A* search with AVI-based
Foundation Model as heuristic across varied parameter configurations.



Figure 4: Distribution of planning domains distinguishable
by the Weisfeiler-Leman (WL) test across various domain
generation depths. As depth increases, the proportion of do-
mains requiring higher-order WL tests (k > 3) rises signif-
icantly, underscoring a marked increase in structural com-
plexity.

As shown in the Figure 4, we identify the following ex-
pressivity trend,

• At Depth 1, the majority of domains (850) are distin-
guishable by the 2-WL test, indicating simple structures.
A smaller percentage (7%) requires the 3-WL test, with
less than 1% needing higher-order WL tests.

• At Depth 2, the number of domains identifiable by the
2-WL test drops to 250, while 130 (34%) need the 3-WL
test, and 13 (3.5%) require more complex tests.

• By Depth 5, only 2 domains are distinguishable by the 2-
WL test, with a substantial increase in domains needing
higher-order WL tests—30 (55%) for the 3-WL and 11
(20%) for tests beyond the 3-WL, highlighting significant
increases in complexity. Domains in the ‘>3-WL’ cate-
gory reach the computational limits of the testing proce-
dure, reflecting the challenges of testing higher complex-
ity with available resources.

These observations underscore that as depth increases, the
percentage of domains requiring higher-order WL tests in-
creases dramatically. This trend signifies the generation of
increasingly intricate domain structures, which serve as a
rigorous benchmark for evaluating the generalizability and
robustness of planning models.

System Hardware Configuraiton

Experiments were conducted on CPU-only nodes equipped
with Intel Xeon Platinum 8480CL processors. These pro-
cessors feature two sockets with 56 cores each, totaling 112
cores per node. Each node was allocated 500GB of RAM.
For each experiment, 14 cores were utilized, providing ap-
proximately 608MB of RAM per experiment with a random
seed of 42.

Conclusion and Future Work
In this work, we introduced PDDLFuse, a tool designed to
generate diverse and complex planning domains that signif-
icantly challenge existing planning systems and provide a
robust resource for developing and benchmarking planning
foundation models. Through systematic parameter variation
and depth-based complexity, PDDLFuse generated a wide
variety of domains, increasing structural intricacy as evi-
denced by the Weisfeiler-Leman (WL) expressivity analysis.
Our experiments demonstrated that these domains under-
lines the limitations of current domain-independent planners
like Fast Downward and LPG but also highlight the varying
generalizability of foundation models such as GOOSE and
AVI-based models. The results underscore the importance
of diverse and complex training environments in improving
model generalizability and robustness.

Future work will focus on enhancing PDDLFuse’s capa-
bilities by integrating dynamic feedback mechanisms to ad-
just parameters based on planner performance. This would
enable the generation of adaptive and goal-specific domains,
further refining the complexity and diversity of the domains
created. Additionally, we plan to explore the integration of
knowledge graphs into the domain generation process. By
leveraging knowledge graphs, domain generation can be in-
fluenced and controlled to align with specific structural or
contextual requirements, enabling the creation of more tar-
geted domain variations. Furthermore, knowledge graphs
could be utilized to train foundation models that general-
ize to unseen variations of existing domains without requir-
ing fine-tuning, thereby enhancing their adaptability to novel
scenarios. Another avenue for future work involves expand-
ing PDDLFuse to replicate existing domains by precisely
tuning parameters to match specific characteristics. This ca-
pability would broaden its applicability for benchmarking
against known domains while still fostering the exploration
of novel variations. Finally, the development of interpreta-
tive tools to analyze domain structures and provide insights
into their complexity would improve the usability of PDDL-
Fuse, making it an essential tool for advancing AI planning
systems.
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Chen, D. Z.; Thiébaux, S.; and Trevizan, F. 2024. Learning
Domain-Independent Heuristics for Grounded and Lifted
Planning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, 20078–20086.
Gerevini, A.; Serina, I.; et al. 2002. LPG: A Planner Based
on Local Search for Planning Graphs with Action Costs. In
Aips, volume 2, 281–290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 19, 162–169.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253–302.
Hu, H.; Lu, H.; Zhang, H.; Lam, W.; and Zhang, Y. 2023.
Chain-of-Symbol Prompting Elicits Planning in Large Lan-
gauge Models. arXiv preprint arXiv:2305.10276.
Huang, N. T.; and Villar, S. 2021. A short tutorial on the
weisfeiler-lehman test and its variants. In ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 8533–8537. IEEE.
Kang, C.; Chang, W.; and Choi, J. 2024. Balanced Domain
Randomization for Safe Reinforcement Learning. Applied
Sciences, 14(21): 9710.
Khandelwal, V.; Sheth, A.; and Agostinelli, F. 2024. To-
wards Learning Foundation Models for Heuristic Func-
tions to Solve Pathfinding Problems. arXiv preprint
arXiv:2406.02598.
Koo, S.; Yu, H.; and Lee, G. G. 2019. Adversarial approach
to domain adaptation for reinforcement learning on dialog
systems. Pattern Recognition Letters, 128: 467–473.
Lu, Y.; Lu, P.; Chen, Z.; Zhu, W.; Wang, X. E.; and Wang,
W. Y. 2023. Multimodal Procedural Planning via Dual Text-
Image Prompting. arXiv preprint arXiv:2305.01795.
Mahdavi, S.; Aoki, R.; Tang, K.; and Cao, Y. 2024. Lever-
aging Environment Interaction for Automated PDDL Gen-
eration and Planning with Large Language Models. arXiv
preprint arXiv:2407.12979.
Mehta, B.; Diaz, M.; Golemo, F.; Pal, C. J.; and Paull, L.
2020. Active domain randomization. In Conference on
Robot Learning, 1162–1176. PMLR.
Oswald, J.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and
Sohrabi, S. 2024. Large Language Models as Planning Do-
main Generators. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 34,
423–431.
Pallagani, V.; Muppasani, B.; Srivastava, B.; Rossi, F.;
Horesh, L.; Murugesan, K.; Loreggia, A.; Fabiano, F.;

Joseph, R.; Kethepalli, Y.; et al. 2023. Plansformer Tool:
Demonstrating Generation of Symbolic Plans Using Trans-
formers. In IJCAI, volume 2023, 7158–7162. International
Joint Conferences on Artificial Intelligence.
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Background and Related Works
In this section, we explore foundational concepts and re-
view significant advancements related to planning domains,
generalization in planning, and domain generation tech-
niques. We discuss traditional approaches to domain cre-
ation, the use of large language models for domain recon-
struction, and challenges related to generalization in plan-
ning tasks. Additionally, we highlight domain randomiza-
tion techniques in reinforcement learning and examine key
domain-independent planners, such as Fast Downward and
LPG, including the heuristics that support their functional-
ity. This background provides a comprehensive understand-
ing of the context and motivations behind developing our
PDDLFuse tool for generating diverse and complex plan-
ning domains.

Planning Domains and Problems
In the context of automated planning, a planning domain is
a structured description of an environment consisting of ob-
jects, predicates, and actions that an agent can perform. For-
mally, a planning domain D is defined by a tuple (O,P,A),
where:

• O is a finite set of objects that exist within the domain.

• P is a finite set of predicates, where each predicate rep-
resents a property or relationship among objects (e.g.,
At(location, package)).

• A is a finite set of actions, where each action a ∈ A is
defined by a pair (pre(a), eff(a)):

– pre(a), the preconditions of action a, is a set of predi-
cates that must hold true for a to be executed.

– eff(a), the effects of action a, is a set of predicates that
describe the changes in the environment after a is exe-
cuted.

A planning problem specifies a particular task within a
domain by defining both an initial and a goal state. Formally,
a planning problem P is defined by the tuple (D, s0, sg),
where:

• D is the domain in which the problem is defined.

• s0 is the initial state, a set of grounded predicates repre-
senting the environment’s state before planning begins.

• sg is the goal state, a set of grounded predicates spec-
ifying the desired conditions that define the successful
completion of the task.

Given a domain D and problem P , a plan π is a sequence
of actions (a1, a2, . . . , an) that, when applied in order from
s0, transitions the initial state to a state where sg holds true.
The objective of a planner is to find a valid plan π that satis-
fies sg , optimizing for factors such as plan length or action
cost in some cases.

The structured nature of planning domains and problems
allows automated planners to systematically search for so-
lutions, making planning a core component of decision-
making systems in AI.

Domain Reconstruction
Several studies have focused on automating domain gener-
ation by reconstructing existing domains from natural lan-
guage descriptions. For example, Oswald et al. (2024) pro-
posed a framework where LLMs are used to reconstruct
planning domains from textual descriptions, aligning closely
with ground-truth PDDL specifications. However, this ap-
proach requires a reference domain for validation, restricting
its applicability to pre-existing domains and limiting its ca-
pacity to foster novel, unencountered domains. This reliance
on predefined standards constrains the generation of diverse
domains necessary for improved generalization in planning.

Similarly, Mahdavi et al. (2024) introduced an iterative re-
finement process that leverages environment feedback to en-
hance LLM-generated PDDL domains. While this approach
reduces human intervention, it remains heavily reliant on en-
vironmental validation and is focused on modifying existing
structures rather than generating new domains. The need for
accessible validation functions also limits its scalability.

The “Translate-Infer-Compile” (TIC) framework by
Agarwal and Sreepathy (2024) translates natural language
descriptions into structured intermediate representations,
later compiled into PDDL task files using a logic reasoner.
This method improves translation accuracy but is limited
to domain reconstruction, making it unsuitable for creating
diverse, novel domains. Steina et al. (2024) also proposed
“AUTOPLANBENCH” to convert PDDL files into natural
language prompts for LLM-based action choice, enhancing
LLM interaction but without expanding the pool of available
domains beyond pre-existing templates.

While these studies contribute valuable methods for do-
main reconstruction, they cannot generate new, diverse do-
mains essential for robust planning generalization. Dom-
GenX addresses this gap by generating novel domains in-
dependent of existing templates, significantly enhancing the
diversity of available domains. This expanded domain pool
enables the training of planning models with stronger induc-
tive biases, enhancing adaptability across a wider range of
real-world challenges.

Generalization in Planning
Achieving generalization in planning remains challenging,
largely due to the limited diversity in available training do-
mains, such as those in the International Planning Competi-
tion (IPC). This lack of domain variety results in weaker in-
ductive biases within machine learning models, as they learn
patterns from a narrow training set rather than developing
broadly applicable knowledge. Robust inductive bias, which
enables models to recognize generalizable patterns across
diverse domains, is essential for effective adaptation to new
and varied domains. Without this, models are prone to over-
fitting, limiting their adaptability in real-world applications.

Recent works have attempted to improve generalization
by using Graph Neural Networks (GNNs) and Large Lan-
guage Models (LLMs), though these approaches remain
constrained by the limited set of domains. For instance,
Chen, Thiébaux, and Trevizan (2024) proposed novel graph
representations to learn domain-independent heuristics us-
ing GNNs. While effective, this approach faces scalability



challenges with large graphs and relies on grounded repre-
sentations that limit flexibility. Similarly, the GOOSE frame-
work by Chen, Thiébaux, and Trevizan (2023) uses GNNs
for learning heuristics, but its reliance on IPC domains re-
stricts its generalization potential.

Toyer et al. (2018) explored GNN-based heuristics aimed
at improving plan quality, though their method’s depen-
dence on supervised learning with moderately challenging
instances assumes accessible solvers, which is impractical
for many real-world domains. Likewise, LLMs pre-trained
on large-scale text datasets have shown limited success in
planning contexts. Despite advancements in prompting tech-
niques (Hu et al. 2023; Yao et al. 2023), LLMs still lack the
domain diversity needed for robust generalization.

Studies on multimodal and code-based models, such as
those by Lu et al. (2023) and Pallagani et al. (2023),
similarly reveal that these models, though effective on
in-distribution tasks, struggle to generalize to out-of-
distribution domains, further underscoring the need for
broader domain diversity to support generalization across
varied settings.

Our work introduces DomGenX, a novel domain and
problem generator, to address this gap. Unlike prior meth-
ods restricted to finite sets of domains, DomGenX combines
existing domain files to generate a broad range of novel,
randomized domains, substantially increasing the diversity
of training data. By training on this expanded set of do-
mains, DomGenX fosters stronger inductive biases, enhanc-
ing the potential for planning systems to generalize effec-
tively across diverse and unseen problem domains. This ap-
proach ultimately provides a foundation for more adaptable
and robust planning algorithms.

Domain Randomization and Generalization in
Reinforcement Learning
Domain randomization has proven to be a powerful tool in
reinforcement learning (RL). It trains agents across diverse
environments, enhancing their adaptability and robustness.

Mehta et al. (2020) introduced Active Domain Random-
ization (ADR) to tackle high-variance policies seen in zero-
shot transfer. By selecting challenging environment param-
eters, ADR focuses training on difficult domains, improv-
ing policy robustness in tasks such as robotic control. In
locomotion tasks, Ajani, Hur, and Mallipeddi (2023) eval-
uated domain randomization by varying environmental pa-
rameters like surface friction, showing that specific random-
ization improves RL agents’ generalization to unseen envi-
ronments, reinforcing the importance of controlled diversity
for real-world transfer. Kang, Chang, and Choi (2024) pro-
posed Balanced Domain Randomization (BDR) to address
training imbalances by emphasizing rare, challenging do-
mains. This method enhances worst-case performance, mak-
ing agents more robust in unpredictable settings, which un-
derscores the value of diverse training conditions. Lastly,
Koo, Yu, and Lee (2019) used adversarial domain adapta-
tion for RL in dialog systems to align feature representa-
tions across domains, thus improving policy generalization
in complex, non-physical tasks.

These studies collectively illustrate that training over di-
verse domains strengthens generalization across RL tasks
by diversifying training contexts, aligning with DomGenX’s
goal to generate domains for enhanced generalization in
planning.

Domain Independent Planner
Fast Downward Planner. Fast Downward is a highly ver-
satile planning system that operates based on the plan-
ning graph concept, employing a more efficient representa-
tion known as multi-valued planning tasks. Developed by
Torsten Helmert, Fast Downward has been prominent in
the planning community and successful in several planning
competitions. It efficiently translates PDDL (Planning Do-
main Definition Language) tasks into a compact internal rep-
resentation, facilitating more effective planning solutions.
The system’s modularity allows for the application of var-
ious search algorithms and heuristics, tailored to specific
problem types.

• FF Heuristic : The FF heuristic, or ”Fast-Forward”
heuristic, is central to the Fast Downward planner, devel-
oped by Joerg Hoffmann and Bernhard Nebel. It is rec-
ognized for its rapid and effective planning capabilities,
mainly due to its approach of ignoring the delete lists
of actions, which simplifies the search process signifi-
cantly. This heuristic generates relaxed plans by consid-
ering only the positive effects of actions, enabling quick
heuristic calculations and efficient plan generation.

• lmcut Heuristic : The landmark-cut (lmcut) heuristic,
another innovative heuristic used within the Fast Down-
ward framework, calculates the minimum cost of achiev-
ing all necessary landmarks in a planning task. A land-
mark is a fact or a set of facts that must be true at some
point in every valid plan. This heuristic identifies critical
paths and bottlenecks in the plan’s causal graph, aiding
in the formulation of more efficient solutions.

LPG Planner. The LPG (Local Search for Planning
Graphs) planner utilizes stochastic local search techniques
to effectively handle propositional and numerical planning
problems. Developed by Alfonso Gerevini and Ivan Serina,
LPG iteratively refines a candidate plan through a combina-
tion of action-graph refinement and plan-graph expansion,
showcasing robust performance across diverse domains.

Methods
In this section, we provide detailed descriptions of the steps
used within PDDLFuse to ensure the generation of di-
verse and solvable planning domains. The methods outlined
include handling overlapping predicate and action names
when combining two domains, dynamically generating ac-
tion sequences to simulate goal states, and validating the
generated domains and problems against PDDL 3.1 stan-
dards. These processes enhance the robustness and gener-
alizability of generated domains, providing a reliable foun-
dation for testing planning algorithms. Detailed algorithms
for each method are discussed below.



Handling Overlapping Predicate and Action
Names
Handling overlapping predicates and action names is cru-
cial for maintaining the integrity and uniqueness of domain
definitions when combining two existing domains. Overlap-
ping elements can cause logical conflicts and inaccuracies
in domain behavior during planning tasks. This algorithm
identifies overlaps and systematically renames the conflict-
ing elements in one domain to prevent ambiguity.

Algorithm 3: Handling Overlapping Names

Require: Two domains D1 and D2 with potential overlap-
ping predicates and actions.

Ensure: Unique predicates and actions across D1 and D2.
1: Initialize set O1 for unique objects from D1.
2: Initialize set O2 for unique objects from D2.
3: for each predicate or action in D1 and D2 do
4: if exists in both D1 and D2 then
5: Rename in D2.
6: end if
7: end for
8: return Updated D1 and D2 with unique names.

Action Generator Process
The Action Generator is designed to dynamically produce a
sequence of actions based on the specifications of a given
domain’s initial state. It simulates random actions from the
domain’s action set, transforming the initial state into a new
state that can potentially serve as a goal state for planning
problems. The goal state is determined by selecting a subset
of predicates active in the reached state, ensuring that there
exists a sequence of actions that leads to this state.

Algorithm 4: Action Generator Process

Require: Generated domain D = (O,P,A), Initial state
s0

1: Initialize current state← s0
2: Initialize action sequence← []
3: for i = 1 to N do
4: Select a ∈ A randomly such that preconditions of a

are satisfied in current state
5: Apply a to current state
6: Append a to action sequence
7: Update current state based on the effects of a
8: end for
9: Define goal state sg as a subset of predicates true in

current state
10: return action sequence, sg

Validator Process
The Validator ensures that the generated domains and prob-
lems conform to PDDL 3.1 standards, utilizing a parser to
validate the structural and logical correctness of the domain

and problem definitions. It checks for consistency in the do-
main’s actions and the feasibility of achieving the problem’s
goal state from its initial state based on the defined actions.

Algorithm 5: Validation Process

Require: Domain D = (O,P,A), Problem P =
(D, s0, sg)

1: Parse D and P using a PDDL 3.1 parser
2: Check for syntactical correctness of D and P
3: Verify logical consistency: all actions in A must cor-

rectly transform predicates from s0 to achieve sg
4: if all checks pass then
5: Return ”Validation Successful”
6: else
7: Return ”Validation Failed”
8: end if

Results
In this section, we present the outcomes of our experi-
ments, evaluating the PDDLFuse tool’s efficacy in gener-
ating complex planning domains and the performance of
domain-independent planners across various configurations.
We assess the robustness of our validator, analyze planner
solvability under different parameter variations, and exam-
ine planner performance across increasing domain depths.
These results underscore the versatility and challenge of the
generated domains, demonstrating the value of PDDLFuse
for advancing research in automated planning. Detailed find-
ings are discussed below.

Evaluating the Validator
To assess the robustness and accuracy of our validator, we
conducted evaluations across eight diverse domains, each
with 20 problem instances. The problem data was sourced
from the study by Chen, Thiébaux, and Trevizan (2023),
which used the Scorpion planner to generate optimal plans
for each domain and problem file. This evaluation focused
on two primary aspects: (1) verifying that the validator could
correctly interpret and check the syntax of both the domain
and problem files, and (2) ensuring that it could execute each
optimal plan step-by-step to reach the specified goal state.

Table 2: Validator Performance Across Domains

Domain Reached Goal State Success Rate
Blocks Yes 100%
Ferry Yes 100%
Gripper Yes 100%
N-Puzzle Yes 100%
Sokoban Yes 100%
Spanner Yes 100%
Visitall Yes 100%
Visitsome Yes 100%

As summarized in Table 2, the validator demonstrated
perfect performance, successfully reaching the goal state in
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Figure 5: Solvability heat maps for domains with 15 objects, evaluated using the Fast Downward planner with lmcut heuristic
across varied parameter configurations.
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Figure 6: Solvability heat maps for domains with 15 objects, evaluated using the LPG Planner across varied parameter config-
urations.

100% of cases across all tested domains. Each optimal plan
was validated without error, affirming the validator’s ability
to reliably execute complex action sequences across a range
of domain types.

This experiment underscores the validator’s essential role
in confirming both the syntactic integrity and operational
feasibility of plans within diverse domains. By accurately
verifying optimal plans across varied problem sets, the val-
idator supports robust evaluation and validation of planning
solutions, ensuring that generated plans align with intended
outcomes across different planning contexts. This high level
of reliability is critical for advancing automated planning
systems that depend on accurate and interpretable validation
processes.

Solvability Across Parameter Variations
We conducted experiments using five base
domains—Blocks-World, Gripper, Depot, Grid, and
Satellite—focusing on depth level 1 with num obj = 15. To
evaluate planner performance under various configurations,
the following parameters were systematically varied:

• Prob add precond and Prob remove precond:
(0.3, 0.7), (0.5, 0.5), (0.7, 0.3)

• Prob add effect and Prob remove effect:

(0.3, 0.7), (0.5, 0.5), (0.7, 0.3)

Additionally, we varied prob neg with values of 0.3, 0.5,
and 0.7, keeping rev flag = True throughout the experi-
ments.

Figure 5 Analysis: The solvability heat maps illustrate the
performance of the Fast Downward planner with the lmcut
heuristic on domains with 15 objects across varied parame-
ter configurations. Each cell’s value indicates the number of
solvable instances within a specific configuration, combin-
ing different probabilities for adding and removing precon-
ditions and effects, as well as varying negation probabilities.
Results indicate that configurations with balanced add/re-
move probabilities and moderate negation values yield bet-
ter solvability, while more extreme parameter settings pose
greater challenges. This highlights the limitations of the lm-
cut heuristic in handling high-complexity domains gener-
ated by extreme parameter values.

Figure 6 Analysis: Figure 6 presents the solvability heat
maps for the LPG planner on domains with 15 objects, ana-
lyzed across a range of parameter settings. Like the FD, the
LPG planner shows a decrease in solvability for configura-
tions with high add/remove probabilities or negation values,
indicating its sensitivity to complex domain setups. These



findings emphasize LPG’s adaptability in certain configu-
rations and reveal its struggles in randomized, diverse do-
mains, further underscoring the necessity of diverse domain
configurations for robust planner evaluation.

Solvability Across Parameter Variations and Depth

We evaluated the solvability of the generated domains across
varying depths by conducting experiments with diverse do-
main configurations. Each configuration was defined by a
unique combination of parameters, including probabilities
for adding and removing precondition and effect predicates,
negation probabilities, the number of objects, and predicate
reversibility settings. Due to memory constraints on our sys-
tem during the data generation process, the number of prob-
lems generated at each depth and the depths vary across con-
figurations.

The tables below summarize the results, presenting the
number of problems each planner (Fast Downward with
FF and lmcut heuristics and LPG) successfully solves for
different depths, parameter values, and domain characteris-
tics. These results highlight the diversity and complexity of
the generated domains, as even robust domain-independent
planners face challenges in solving them, underscoring the
effectiveness of our domain generator in creating complex
domains.

Depth FD(ff) FD(lmcut) LPG
1 5/5 5/5 2/5
2 5/5 5/5 0/5
3 5/5 5/5 0/5
4 1/1 1/1 0/1

Table 3: Solvability of Generated Domains for Depth 1 to 4,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 1/5 0/5
2 5/5 5/5 1/5
3 5/5 4/5 0/5
4 5/5 4/5 0/5
5 5/5 4/5 0/5

Table 4: Solvability of Generated Domains for Depth 1 to 5,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 1/5 3/5
2 5/5 4/5 1/5
3 3/5 3/5 0/5
4 3/3 3/3 0/3

Table 5: Solvability of Generated Domains for Depth 1 to 4,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 0/5 1/5
2 2/5 2/5 0/5
3 4/4 4/4 0/4

Table 6: Solvability of Generated Domains for Depth 1 to 3,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 5/5
2 2/5 4/5 2/5
3 4/5 4/5 0/5
4 4/5 4/5 1/5

Table 7: Solvability of Generated Domains for Depth 1 to 4,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 1/5 0/5
2 3/5 3/5 2/5
3 1/5 4/5 2/5
4 2/2 2/2 0/2

Table 8: Solvability of Generated Domains for Depth 1 to 4,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 1/5 3/5 1/5
3 5/5 5/5 0/5
4 5/5 4/5 0/5
5 2/2 2/2 0/2

Table 9: Solvability of Generated Domains for Depth 1 to 5,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 0/5
2 3/5 3/5 2/5
3 4/5 4/5 0/5
4 5/5 5/5 0/5
5 2/2 2/2 0/2

Table 10: Solvability of Generated Domains for Depth 1 to
5, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 5/5
2 4/5 4/5 0/5
3 5/5 5/5 0/5
4 0/1 0/1 0/1

Table 11: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 3/5
2 3/5 3/5 3/5
3 4/5 4/5 0/5

Table 12: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 3/5
2 2/5 2/5 1/5
3 2/3 2/3 0/3

Table 13: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 2/5
2 4/5 4/5 1/5
3 3/4 3/4 0/4

Table 14: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 2/5
2 3/5 3/5 1/5
3 4/4 4/4 0/4

Table 15: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 4/5
2 4/5 3/5 0/5
3 3/4 3/4 0/4

Table 16: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 2/5
2 3/5 4/5 0/5

Table 17: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 0/5 2/5 3/5
2 4/5 4/5 0/5
3 2/4 2/4 0/4

Table 18: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 1/5
2 3/5 3/5 0/5
3 4/5 4/5 0/5

Table 19: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 3/5
2 2/5 2/5 0/5
3 3/4 3/4 0/4

Table 20: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 0/5
2 5/5 4/5 1/5
3 4/5 4/5 0/5

Table 21: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 1/5
2 3/5 3/5 1/5
3 5/5 4/5 0/5
4 4/5 4/5 0/5
5 1/1 0/1 0/1

Table 22: Solvability of Generated Domains for Depth 1 to
5, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 3/5
2 5/5 4/5 0/5
3 5/5 5/5 0/5
4 5/5 5/5 0/5
5 2/2 2/2 0/2

Table 23: Solvability of Generated Domains for Depth 1 to
5, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 1/5
2 4/5 4/5 0/5
3 5/5 4/5 0/5
4 2/3 3/3 0/3

Table 24: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 1/5
2 3/5 4/5 1/5
3 3/4 3/4 0/4

Table 25: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.7, predicate reversibility = True, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 2/5
2 5/5 3/5 0/5
3 2/4 3/4 0/4

Table 26: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 1/5
2 5/5 4/5 0/5
3 5/5 5/5 0/5

Table 27: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 1/5 0/5
2 5/5 5/5 0/5
3 5/5 5/5 0/5

Table 28: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5
2 5/5 3/5 0/5
3 5/5 5/5 1/5
4 2/3 3/3 0/3

Table 29: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 1/5 0/5
2 3/5 4/5 1/5
3 4/4 4/4 0/4

Table 30: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 4/5
2 4/5 4/5 0/5
3 4/4 4/4 0/4

Table 31: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 3/5
2 3/5 3/5 0/5
3 4/5 4/5 0/5

Table 32: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5
2 3/5 3/5 0/5
3 5/5 4/5 0/5
4 3/3 3/3 0/3

Table 33: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 2/5
2 4/5 3/5 0/5
3 5/5 5/5 0/5
4 5/5 5/5 0/5

Table 34: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 4/5
2 4/5 4/5 0/5
3 4/5 5/5 0/5

Table 35: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 2/5
2 5/5 5/5 0/5
3 1/1 1/1 0/1

Table 36: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 0/5 4/5
2 3/5 3/5 0/5

Table 37: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 2/5
2 5/5 4/5 0/5
3 2/4 2/4 0/4

Table 38: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 1/5 0/5
2 4/5 3/5 0/5
3 1/1 1/1 0/1

Table 39: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 0/5
2 4/5 3/5 0/5

Table 40: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 1/5
2 3/5 4/5 0/5
3 4/4 2/4 0/4

Table 41: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 0/5
2 3/5 3/5 0/5
3 4/4 3/4 0/4

Table 42: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 4/5 0/5
2 5/5 4/5 0/5
3 4/5 5/5 0/5
4 2/2 2/2 0/2

Table 43: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 2/5 1/5
2 5/5 3/5 0/5

Table 44: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 0/5
2 5/5 3/5 0/5
3 5/5 4/5 0/5

Table 45: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 0/5
2 3/5 3/5 0/5
3 4/4 4/4 0/4

Table 46: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 2/5
2 2/5 3/5 0/5
3 5/5 5/5 0/5
4 5/5 5/5 0/5

Table 47: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 0/5
2 4/5 4/5 0/5
3 5/5 5/5 0/5
4 3/3 3/3 0/3

Table 48: Solvability of Generated Domains for Depth 1 to
4, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 3/5 2/5
2 2/5 3/5 0/5

Table 49: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 0/5 1/5
2 3/5 0/5 0/5
3 5/5 0/5 0/5

Table 50: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 0/5 0/5
2 4/5 0/5 0/5

Table 51: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 0/5 0/5
2 3/5 0/5 0/5
3 4/4 0/4 0/4

Table 52: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 5/5 2/5
2 4/5 3/5 0/5
3 3/4 0/4 0/4

Table 53: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 0/5
2 4/5 4/5 0/5
3 3/4 4/4 0/4

Table 54: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 5.0



Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 0/5
2 5/5 4/5 0/5
3 4/4 4/4 0/4

Table 55: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 2/5 0/5
2 4/5 5/5 0/5
3 3/3 3/3 0/3

Table 56: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 5.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 5/5 1/5
2 5/5 5/5 0/5
3 3/3 3/3 0/3

Table 57: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 2/5 1/5
2 1/1 1/1 0/1

Table 58: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 3/5
2 2/5 2/5 1/5

Table 59: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 2/5
2 1/1 1/1 0/1

Table 60: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 2/5
2 4/5 4/5 1/5

Table 61: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 4/5 2/5
2 1/2 1/2 0/2

Table 62: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 1/5
2 4/5 4/5 0/5

Table 63: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 3/5
2 1/1 1/1 0/1

Table 64: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 10.0



Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5
2 3/5 3/5 0/5

Table 65: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 2/5
2 2/5 2/5 0/5

Table 66: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 0/1 0/1 0/1

Table 67: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 4/5 2/5
2 0/1 0/1 0/1

Table 68: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 2/5
2 0/1 0/1 0/1

Table 69: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5
2 0/1 0/1 0/1

Table 70: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 0/1 0/1 0/1

Table 71: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 2/5
2 3/5 2/5 0/5

Table 72: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 1/5
2 0/1 0/1 0/1

Table 73: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 2/5
2 0/1 0/1 0/1

Table 74: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 10.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 4/5 4/5 1/5

Table 75: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 2/5 1/5
2 4/5 4/5 0/5
3 3/3 3/3 0/3

Table 76: Solvability of Generated Domains for Depth 1 to
3, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 2/5
2 1/1 0/1 0/1

Table 77: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 3/5 2/5
2 4/5 3/5 0/5

Table 78: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 2/5
2 1/1 1/1 1/1

Table 79: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 2/5
2 1/1 1/1 0/1

Table 80: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 1/5
2 3/5 2/5 0/5

Table 81: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 0/5
2 1/1 1/1 0/1

Table 82: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 3/5
2 1/1 1/1 0/1

Table 83: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 2/5
2 2/2 2/2 0/2

Table 84: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 10.0



Depth FD(ff) FD(lmcut) LPG
1 3/5 4/5 0/5
2 1/1 1/1 0/1

Table 85: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 0/5
2 1/2 1/2 0/2

Table 86: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 0/5 2/5
2 1/1 1/1 0/1

Table 87: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 0/5
2 1/1 1/1 0/1

Table 88: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 0/5
2 1/1 1/1 0/1

Table 89: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 1/5
2 1/1 1/1 0/1

Table 90: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5
2 0/1 0/1 0/1

Table 91: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 2/5
2 1/1 1/1 0/1

Table 92: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 0/5
2 1/1 1/1 0/1

Table 93: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 0/5 0/5
2 1/1 0/1 0/1

Table 94: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.3, predicate reversibility = False, number of objects = 10.0



Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 2/5
2 2/2 2/2 0/2

Table 95: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5
2 0/1 1/1 0/1

Table 96: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 2/5
2 1/1 1/1 0/1

Table 97: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 4/5 2/5
2 5/5 5/5 0/5

Table 98: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 3/5 0/5
2 5/5 5/5 0/5

Table 99: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 0/5
2 1/1 0/1 0/1

Table 100: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5
2 1/1 1/1 0/1

Table 101: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 0/5
2 1/1 0/1 0/1

Table 102: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 0/5
2 1/1 1/1 0/1

Table 103: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 1/5 0/5
2 1/1 1/1 0/1

Table 104: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation =
0.7, predicate reversibility = False, number of objects = 10.0



Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 0/5
2 1/1 1/1 0/1

Table 105: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 1/1 1/1 0/1

Table 106: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.3, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 1/5
2 1/1 1/1 0/1

Table 107: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.5, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 0/5
2 5/5 5/5 0/5

Table 108: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.5, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5
2 1/1 1/1 0/1

Table 109: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 1/5
2 1/1 1/1 0/1

Table 110: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.7, prob add eff
= 0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 10.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5

Table 111: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 1/5

Table 112: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 4/5 0/5
2 1/1 0/1 0/1

Table 113: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation =
0.5, predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 5/5 5/5 1/5

Table 114: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 4/5 1/5

Table 115: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = 15.0



Depth FD(ff) FD(lmcut) LPG
1 2/4 2/4 1/4

Table 116: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 1/5 0/5

Table 117: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 0/5

Table 118: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 0/5

Table 119: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 1/5
2 0/1 0/1 0/1

Table 120: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.5, predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 0/5 1/5
2 0/1 0/1 0/1

Table 121: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation =
0.7, predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 0/5 1/5

Table 122: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 0/5 1/5

Table 123: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/4 1/4 1/4

Table 124: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 1/5

Table 125: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/4 0/4 1/4

Table 126: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 2/5 1/5
2 0/1 0/1 0/1

Table 127: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.3, prob add eff
= 0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation =
0.7, predicate reversibility = True, number of objects = 15.0



Depth FD(ff) FD(lmcut) LPG
1 1/4 1/4 1/4

Table 128: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 5/5 0/5
2 1/1 1/1 0/1

Table 129: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.3, predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 2/5

Table 130: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 2/5

Table 131: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 5/5 2/5

Table 132: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 0/5

Table 133: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 4/5 1/5
2 1/1 1/1 0/1

Table 134: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation =
0.7, predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 1/5

Table 135: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 1/5
2 1/1 1/1 0/1

Table 136: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation =
0.3, predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 1/5

Table 137: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 1/5

Table 138: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 0/5

Table 139: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = True, number of objects = 15.0



Depth FD(ff) FD(lmcut) LPG
1 0/4 0/4 1/4

Table 140: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 0/5
2 0/1 0/1 0/1

Table 141: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.3, predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 2/5

Table 142: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 0/5

Table 143: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/5 0/5 2/5

Table 144: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5

Table 145: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 1/5 0/5
2 1/1 1/1 0/1

Table 146: Solvability of Generated Domains for Depth 1 to
2, with probability values: prob add pre = 0.5, prob add eff
= 0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation =
0.7, predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 4/5 3/5 0/5

Table 147: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/4 3/4 1/4

Table 148: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 4/5 1/5

Table 149: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/4 3/4 1/4

Table 150: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 0/5

Table 151: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = 15.0



Depth FD(ff) FD(lmcut) LPG
1 3/4 2/4 0/4

Table 152: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 4/5 0/5

Table 153: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 2/5 1/5

Table 154: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 0/5

Table 155: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/4 4/4 1/4

Table 156: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 3/5 1/5

Table 157: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 1/5

Table 158: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/5 2/5 0/5

Table 159: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/4 2/4 1/4

Table 160: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 3/5 3/5 1/5

Table 161: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 0/4 2/4 0/4

Table 162: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 1/5 1/5 0/5

Table 163: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = True, number of objects = 15.0



Depth FD(ff) FD(lmcut) LPG
1 2/4 2/4 0/4

Table 164: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = False, number of objects = 15.0

Depth FD(ff) FD(lmcut) LPG
1 2/2 1/2 1/2

Table 165: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 2/2 2/2 1/2

Table 166: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 167: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 1/2 1/2

Table 168: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/3 1/3 0/3

Table 169: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/3 1/3 1/3

Table 170: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.3, prob rem pre = 0.7, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/3 1/3 1/3

Table 171: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 0/2 0/2

Table 172: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 173: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 174: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 1/2

Table 175: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = True, number of objects = None



Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 176: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.5, prob rem pre = 0.7, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 177: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 178: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 1/2

Table 179: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 180: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 181: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 1/2

Table 182: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.3, prob add eff =
0.7, prob rem pre = 0.7, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/4 0/4 0/4

Table 183: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 184: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 1/2 0/2

Table 185: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 1/2 0/2

Table 186: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 2/2 0/2

Table 187: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = None



Depth FD(ff) FD(lmcut) LPG
1 2/3 2/3 0/3

Table 188: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.3, prob rem pre = 0.5, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 189: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 190: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 191: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 192: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 193: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 2/3 2/3 1/3

Table 194: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.5, prob rem pre = 0.5, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 195: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 196: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 197: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 198: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 199: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = True, number of objects = None



Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 200: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.5, prob add eff =
0.7, prob rem pre = 0.5, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 201: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 202: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 203: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 0/3

Table 204: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 205: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 206: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.3, prob rem pre = 0.3, prob rem eff = 0.7, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 207: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 208: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 209: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 210: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/3 0/3 1/3

Table 211: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = True, number of objects = None



Depth FD(ff) FD(lmcut) LPG
1 2/3 2/3 1/3

Table 212: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.5, prob rem pre = 0.3, prob rem eff = 0.5, negation = 0.7,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 2/2 2/2 0/2

Table 213: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 2/2 1/2 1/2

Table 214: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.3,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 2/2 0/2

Table 215: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 1/2 0/2

Table 216: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.5,
predicate reversibility = False, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 0/2 0/2 0/2

Table 217: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = True, number of objects = None

Depth FD(ff) FD(lmcut) LPG
1 1/2 1/2 1/2

Table 218: Solvability of Generated Domains for Depth 1 ,
with probability values: prob add pre = 0.7, prob add eff =
0.7, prob rem pre = 0.3, prob rem eff = 0.3, negation = 0.7,
predicate reversibility = False, number of objects = None


