Gen-HypRL : Generative Policy learning Framework for Multi-Task
Reinforcement Learning

Sanket Kalwar'*, Jayaram Reddy'*, Brojeshwar Bhowmick?, Arun Singh?, K. Madhava Krishna

1

{sankethkalwar@gmail.com , ramreddyail010@ gmail.com}
TRobotics Research Center, IIIT Hyderabad
2TCS Research, India
3University of Tartu, Estonia

Gen-HypRL

Window-Open

Drawer-Open Button-Press

Figure 1: Overview: We present Gen-HypRL, a framework for directly generating policies 7 using conditioning information (Example:
Behavior embeddings for MetaWorld and Velocity inputs for Half-Cheetah). These generated policies can be directly deployed to successfully
accomplish the task. On the right side are the directly deployed policies generated by Gen-HypRL on the MetaWorld tasks.

Abstract

A key challenge in building generalist agents is enabling them
to perform multiple tasks while simultaneously adapting to
variations across the tasks efficiently, particularly in a zero-
shot manner. Multi-task Reinforcement Learning (MTRL) is
a paradigm that enables agents to learn a single policy that can
be deployed to perform multiple tasks in a given environment.
A straightforward approach like parameter sharing introduces
challenges such as conflicting gradients and determining the
optimal way to distribute shared parameters across tasks. In
this work, we introduce Gen-HypRL, a framework for train-
ing hypernetworks in MTRL that consists of HypLa- tent,
an adversarial autoencoder that generates diverse task- con-
ditioned latent policy parameters, and HypFormer, a single-
layer transformer that performs soft-weighted aggregation on
these priors towards expert policy parameters. Our approach
not only outperforms previous hypernetwork based methods
but also performs comparably to the existing state-of-the-art
methods in MTRL on MetaWorld benchmark. Additionally,
experiments on MuJoCo continuous control tasks demon-
strate the framework’s strong zero-shot learning capabilities,
allowing it to generalize to unseen in-distribution tasks with-
out addi- tional fine-tuning. Our framework also achieves
performance comparable to state-of-the-art offline meta-RL

“Equal contribution.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

methods.
Project Code: https://gen-hyprl.github.io/

INTRODUCTION

Robots deployed in factories and particularly in domestic
environments such as houses are expected to perform wide
variety of tasks. Each of these tasks may vary in reward func-
tions, dynamics or both and its required to adapt to these
variations in the tasks. Developing a framework which can
perform multiple tasks while generalizing to variations in
these tasks is crucial especially in the environments where
changes can arise unexpectedly.

Multi Task reinforcement learning (MTRL) is a paradigm
which aims to learn a single policy that can perform multi-
ple tasks. Natural way to solve MTRL is to have shared pa-
rameters which captures the common representations such
as skills or the objects being manipulated among various
tasks (D’Eramo et al. 2024; Yang et al. 2020). Sharing the
parameters across various tasks can lead to conflicts in gra-
dients if the tasks are not aligned (Standley et al. 2020;
Kendall, Gal, and Cipolla 2018; Chen et al. 2018). This can
lead to under-performance on certain tasks. Over the years,
many works have tackled this challenge by developing meth-
ods that manipulate task-specific gradients to enable effi-
cient learning across multiple tasks (Désidéri 2012; Sener

and Koltun 2018; Yu et al. 2020a; Liu et al. 2021a,b; Navon
et al. 2022), and is still an active area of research. On the
other hand, CARE(Sodhani, Zhang, and Pineau 2021) pro-
poses learning diverse representations—skills, behaviors,
or objects through a mixture of encoders, combined using
attention mechanism based on context such as language.
MOORE(Hendawy, Peters, and D’Eramo 2023) further en-
hances representation diversity with Gram-Schmidt orthog-
onalization. PACO (Sun et al. 2022) learns a policy subspace
where task-specific policies are composed by interpolating
the learned parameters. However, scaling to many tasks in-
creases the learnable parameters.

Hypernetworks (Ha, Dai, and Le 2016) have gained
increasing attention over the years for their soft parameter
sharing capabilities and have been applied across diverse
domains (Mahabadi et al. 2021; Von Oswald et al. 2019;
Ruiz et al. 2024; Alaluf et al. 2022; Zhmoginov, Sandler,
and Vladymyrov 2022) but are relatively less explored in
the context of Reinforcement learning (Rezaei-Shoshtari
et al. 2023; Liang et al. 2024; Zhao et al. 2020; Beck
et al. 2023). Hypernetworks generate the weights for a
target network, enabling it to adapt to specific tasks or
contexts. This capability can be used to generate weights
for the related tasks just by conditioning on task-specific
information. Leveraging their soft weight-sharing prop-
erty, we aim to explore the potential of hypernetworks in
MTRL and assess their zero-shot generalization capabilities.

To summarize, our key contributions are:

1. We propose Gen-HypRL, a framework for training hy-
pernetworks for MTRL. It consists of:

* HypLatent, an adversarial autoencoder which learns
to generate diverse latent policy parameters condi-
tioned on the task information.

* HypFormer is a single-layer transformer network that
performs soft-weighted aggregation on the prior gen-
erated by HypLatent, refining it towards expert pol-
icy parameters.

2. We regularize hypernetworks by reconstructing behav-
ior embeddings. Here, the hypernetwork generates task-
specific weights while a discriminator ensures con-
sistency with the trajectory distribution. This method
improves generalization by encouraging coherent and
adaptable embeddings across tasks.

3. Experiments in MuJoCo control tasks shows that our
framework has impressive zero-shot generalization capa-
bilities on unseen tasks that are in distribution.

METHOD

We propose a three-stage pipeline as shown in Fig 2. In the
first stage, an autoencoder (Kingma 2013) maps policy pa-
rameters to the latent space, whose latent features are then
used in the second stage, HypLatent which is based on Ad-
versarial autoencoder (Makhzani et al. 2015). HypLatent
seeks to approximate the autoencoder’s latent distribution
through adversarial training. The generator aims to map be-
havior embeddings and noise sampled from a normal distri-
bution, where the inclusion of noise enables the generator

to learn diverse latent features. These diverse features are
then utilized in the third stage, HypFormer. HypFormer
uses the diverse latent features generated by HypLatent for
each behavior embedding that performs soft-weighted ag-
gregation and refines them towards expert policy parameters.
A transformer encoder applies self-attention across both the
latent features and behavior embeddings, grounding the la-
tent features through behavior embedding interactions. Ul-
timately, the latent features are guided by learned residuals.
The subsequent sections provide detailed discussions on the
autoencoder training, behavior embeddings, HypLatent,
and HypFormer.

Stage 1: Autoencoder and Behaviour Embedding:

Autoencoder: Takes trained SAC policies of multiple tasks
as input, mapping them to a latent space. These policies are
randomly sampled from various tasks during training and
passed through autoencoder, which learns a latent space that
captures the distribution of task-specific policies. It consists
of encoder network Ey which takes the policy parameters
X as input and outputs latent representation of the policy
parameters Z, and a decoder network Dy which takes the
output latent Z from the encoder Ey and reconstructs the

policy parameters X = Dy (Ey(X)). The objective function
for training autoencoder is shown in equation (1).

M
A ~)
Lautoencoder = M Z(XZ - XZ)2 (l)
i=1

where M is the number of training samples for SAC
policies, and A is the scaling factor set to le3. This will
learn the distribution of policy parameters effectively and
the encoder’s output is used in Stage-2 by HypLatent
during training to generate diverse samples of latents.

Behaviour Embedding: These embeddings are used
to provide conditional information to HypLatent, en-
abling the generation of diverse, task-specific policies.
This approach is adapted from MakeAnAgent (MAA)
(Liang et al. 2024). Consider the trajectory of N
steps. We now define the n-step trajectory 7" =
(s1,a1,a2,03, ..., 84—2,0p—2,an_1, Ay), and post-success
states 7 = (Sk,SK+1,SK+2,---SKk+M), Which are col-
lected after the success step K until M fixed steps. The ob-
jective is to maximize the mutual information I(7;7") be-
tween post-success states and the n-step trajectory. We train
behaviour embeddings using the contrastive loss defined in
Equation (2):

N
1 hTW’Ul
Liehaviour = —— § log N s . 2
N i=1 Zj:l h]TWUj

where, h; = ¢(77) and v; = 1(7;) along with learned
similarity weights W between h; and v; which finally forms
behaviour embedding 7. = (h;, v;).

After retrieving latent policy parameter Z from autoen-
coder and behaviour embedding 7., both are used in the
stage-2 for training HypLatent network.

: AR (C) ~
: ! ! Zigken \
1 h 1

s 11, —]
: s m™m r 11 T3 1

n
N : 173 HypFormer —{__] 1
1] ! 1 Te 1
1 e 0l Behaviour Embedding _.: '
AY Policy Parameters Predn:tedpullcypammerers‘, ' 1
................................. Te —
] -~ 1

—oIN EI- """"""""""" e rew B R A e P A B 1
i (b) Yy "R Latent Head 1
1 ! S
' o1y ! - !
['y —> [mean()]—{__] 1
1 "
i p - 1! *) 1
1 e N 1

- MLP mean()| —» L]

V' Behaviour Embedding Ta n %]
I Predicted { .2 7
1 HypLatent Behaviour Embedding !

- Head rd

e e T R

Figure 2: Overview: The figure in a section (a) consists of an Autoencoder which learns to map policy parameters to latent
space, more details is discussed at . Section (b) shows HypLatent architecture in which there is a Generator G'¢ and a Dis-
criminator F),, objective of a generator is to learn latent policy parameter similar to the Autoencoder’s encoder output, given
a behaviour embedding 7, and noise n ~ N(0, I), discriminator assesses whether the samples generated by the generator
belong to the true latent policy parameter distribution, also there is a auxillary network) which reconstructs the trajectory
embedding given the output features of the discriminator, refer for in detail explanation. We also show HypFormer in the
section (¢) where we use the trained generator to produce diverse latent policy parameters. For a given behavior embedding 7,
multiple noise samples ny,n2,n3 ~ N(0,) are used to generate multiple latent policy parameters. These are then processed
by HypF ormer, which predicts the ground truth latent policy parameters using the latent head and residue head. For a detailed
explanation, see Section .

Stage 2: HypLatent Generative Adversarial
Network

do this by minimizing L., in Equation (5).

Areg 7 i\2
We use the HypLatent to learn the latent manifold Z from Lreg = N < (QFW(Z7)) = 7c))
the autoencoder’s encoder output. This is conditioned on the
behavior embedding 7. and a sampled noise n ~ N(0, I).

The network consists of generator GG¢ which is conditioned
on 7. along with sampled noise n to generate Z, i.e Z =

Now, we use the generator G to generate latent policy pa-

rameter Z. Using G alone will generate diverse latent pol-
icy parameters, resulting in various behaviors, meaning dif-

G¢(7e,n), and a discriminator F), tries to predict whether
the generated Z belong to real latent policy parameter man-
ifold, i.e py = FN(Z) For training G we minimize the
objective function V¢ below,

N
Ve(Ge,Fy) = VC% Y log (1 - Fu(Zi)) 3)
=1

And, maximize the objective V), for F,,

N

% Z[log (Fu(Zi)) +

i=1

V#(GC’F#) - vu
log (1 - FM(Zi)>])

For further grounding the generated latent Z, we regu-
larize the generator and discriminator by reconstructing the
input 7. back from the discriminator auxiliary head). We

ferent ways of performing the same task but won’t guarantee
high success rate on an average. HypFormer tackles this
by using soft-weighted aggregation to refine the generated
latent policy parameters toward the expert policy parame-
ters, as detailed in the section below.

Stage 3: HypFormer

In this stage, we use the generator G to generate latent
policy parameters S, = (Z1,Z,Zs5,...,21) by con-
ditioning it on the trajectory embedding 7. and sampled
noise (ni,ne,...,ny) ~ N(0,I). S, is then input to
HypFormer along with the learnable token Ztoken and
the behaviour embedding 7.. Now, HypFormer takes the
combination (Ztoken,S 4,Te) as input tokens, applies self-
attention to produce enhanced latent policy parameters for
each trajectory 7.. This self-attention helps us to perform
soft-weighted aggregation of latent policy parameters. Ap-
plying MSE loss to align HypFormer predictions with
ground truth resulted in unstable training. To address this,
the enhanced tokens are processed by a shared MLP, which

then splits into two branches: the latent Head and the residue
Head. Latent Head learns to predict ground truth latent pol-
icy parameters, while the residue Head predicts the residue
between Latent Head prediction and ground truth latent pol-
icy parameters, after which residue tokens and predicted pol-
icy tokens are averaged to get per trajectory single residue

token Vire 4 and a single latent policy parameter token
me 4- As we have ground truth latent pollcy parameter to-
ken Z; along with the residue token V? ot foreach trajectory

7!, We apply cosine similarity loss between Zy ¢ and Z°

pred*
N .
ZZ ZZ
Laim = — pred:) (6)
N g maz(||Z),cqll2: [1 2|2 €)

For residue token prediction we minimize L,..s as follows,

N
1 1
Lyes = N Z(pred v) N
i=1
Finally to ensure that residue head and latent head output’s
are consistent with each other consistency loss is applied on
Zi =7 4+ Vi

pred — “pre pred’

N
Z pred (8)

So, final objective to minimize is as follows,
LHprormer =)\simLsim + Areeres +)\CLC (9)

The size of L is typically a power of 2; in our case, it is
set to 2% during training. N is the number of trajectories in
the batch while training. g, Ares, Ac are all set to 1e3.

EXPERIMENTAL SETUP

In our experiments, we aim to evaluate and answer the fol-
lowing: 1.) Performance of our method in Multi-task Re-
inforcement Learning (MTRL) on seen tasks. 2.) Does our
method zero-shot generalize to related but unseen tasks
which are in-distribution? 3.) How well do the representa-
tions learned by the hypernetwork perform on entirely un-
seen tasks, specifically in terms of out-of-distribution task
performance in MTRL?

Datasets and Environments details

We evaluate MTRL performance on MetaWorld (Yu et al.
2020b) and zero-shot generalization capabilities on MuJoCo
control tasks.

1.) MetaWorld: The MAA (MakeAnAgent) splits are uti-
lized for training and evaluating MTRL performance on both
seen and unseen tasks. Dataset is sourced from MAA.

2.) Cheetah-Vel: Following (Mitchell et al. 2021; Xu et al.
2022), the task involves achieving target velocities sampled
from [0-3], with 35 velocities in the training set and 5 in the
test set. Ablation studies are conducted on training with 10,
20, and 25 random velocities, while the test set remains un-
changed, demonstrating the framework’s generalization and

sample efficiency. We collect a dataset of 800 expert policies
for each training velocity by training SAC (Haarnoja et al.
2018). The first policy is saved at 150k training steps, fol-
lowed by checkpoints taken every 500 training steps there-
after.

RESULTS AND ANALYSIS

We train the HypLatent using a 1D UNet architecture
(Ronneberger, Fischer, and Brox 2015) for the generator and
a 3-layer MLP for the discriminator. For regularization, an
auxiliary network consisting of a 2-layer MLP is used. The
noise sample size is set to 128 for MetaWorld tasks and 4
for Half-Cheetah. The behavior embedding size is 128 for
MetaWorld, while for Half-Cheetah, the conditioning infor-
mation is represented by a single scalar value (velocity).

We utilize a single-layer Transformer (Vaswani 2017) en-
coder without positional encoding, with a token size of 256
and 128 heads in the multi-head attention layer.

RESULTS AND ANALYSIS

We qualitatively verify Gen-HypRL performance on the
MetaWorld and MuJoCo continous control task (Half-
Cheetah) as shown in the Fig.1 and Fig.3. Policy generated
by Gen-HypRL when deployed exhibits correct behaviour
qualitatively.

Quantitative Analysis

We quantitatively evaluate our framework on the MetaWorld
and Cheetah-vel datasets to demonstrate its effectiveness
in both Multi-task reinforcement learning (MTRL) and
zero-shot generalization in RL. For the MetaWorld dataset,
the success rate is measured by the proportion of the
task completed given a trajectory which is applicable
to both seen and unseen tasks. Specifically, we assess
our method’s performance in MTRL by evaluating it on
the seen MetaWorld tasks and then testing the zero-shot
generalization capability of the learned representations on
the unseen MetaWorld tasks. We show the comparison of
our method directly with MAA as it is the closest method to
our approach. In Table 1, it is evident that our Gen-HypRL
is better than MAA by 34.3% directly and Gen-HypRL
without HypFormer is better by 15% on MetaWorld
Seen test tasks. Table 2 shows that our top-5 and top-10
generated policies achieve 100% success rate on seen
test environments. For more broad comparison, we have
compared against CARE (Sodhani, Zhang, and Pineau
2021), Decision Transformer DT (Chen et al. 2021). Table
3 shows the success rate on completely unseen tasks of
MetaWorld.

We evaluate zero-shot generalization capability on the
Cheetah-vel dataset by averaging the returns across the test
velocity seeds-(2, 7, 15, 23, 26) following (Mitchell et al.
2021; Xu et al. 2022). Our proposed model, Gen-HypRL,
without HypFormer, achieves the best average return of
-33.44 when trained using only 10 random velocities from
the training set, outperforming state-of-the-art methods
such as MACAW (Mitchell et al. 2021) and Prompt-DT

T=0

Vel: 2.846

T=100

T=200

-40.82

Reward:

Vel: 0.154

Reward: -23.56

Figure 3: Qualitative results for Half-Cheetah showcasing policies generated by Gen-HypRL at two extreme, previously unseen

velocities, along with their corresponding rewards.

(Xu et al. 2022), which utilize 35 seeds for training. When
the number of training seeds is scaled from 10 to 35, the
average return further improves to -29.6, emphasizing the
robust zero-shot generalization capability of our framework.

Table 1: Gen-HypRL Success Rate(%) on the MetaWorld
dataset. Bold numbers highlights the top achieved success-
rate on the task, while the italics shows the 2nd best achieved
success-rate.

MTRL Tasks MAA | Gen-HypRL | Gen-HypRL
(w/o Hyp- | (w/ Hyp-
Former) Former)
window-open 33 51 64
door-open 27 35 62
drawer-open 42 40 78
dial-turn 23 36 48
plate-slide 45 66 88
button-press 32 38 58
handle-press 50 62 82
faucet-close 45 77 82
Avg. Success Rate 36 51 70.3

Ablation Studies

We present design decisions of Gen-HypRL framework
in the context of MetaWorld tasks. We demonstrate the
impact of number of tokens on task performance and pro-
vide PCA analysis to further substantiate our design choices.

a) Varying number of Tokens: We train HypFormer
using 8 tokens, which results in the best performance on the
seen MTRL tasks. This is demonstrated in Figure 5, where
the left image with the blue bar graph highlights this setup.
As number of tokens increases, the performance on MTRL
tasks decreases asymptotically. In contrast, for unseen tasks,
the model achieves optimal performance with 32 tokens.

Table 2: Gen-HypRL Success Rate(%) on MetaWorld
dataset. Bold numbers highlights the top achieved success-
rate, while the italics shows the 2nd best achieved success-
rate. Unless explicitly stated otherwise, such as for top-10 or
top-5, the success rate reported in table below represents the
average over 100 policies.

Methods Seen Task | Unseen Task
CARE 82.1 58.5
DT 80.3 60.4
MAA 36 16.25
Gen-HypRLe w/o HypFormer 51 12.13
Gen-HypRLe 70.3 19.8
Gen-HypRLe w/o HypFormer (top 10) 100 54.38
Gen-HypRLe w HypFormer (top 10) 100 80.63
Gen-HypRLe w/o HypFormer (top 5) 100 75.1
Gen-HypRLe w HypFormer (top 5) 100 87.5

Increasing the number of tokens from 8 to 32 results in a
corresponding improvement in performance, but beyond
32, the performance begins to degrade as number of tokens
continues to increase.

b) PCA Analysis: We present a PCA analysis on the
latent policy parameters generated by HypLatent and
HypFormer, as illustrated in Figure 4 for three seen tasks
from MetaWorld: ’Button-Press,” ’Dial-Turn,” and ’Door-
Open.” In the 2D PCA plots, the latent policy parameters
predicted by HypF ormer are more closely aligned with the
ground truth compared to those generated by HypLatent,
demonstrating the effectiveness of HypFormer.

Table 4 demonstrates the effectiveness of HypLatent in
the Cheetah-vel setup. In summary, HypLatent, together
with HypFormer, constitutes a key component of the Gen-
HypRL design framework.

Button-press

Door-Open

~.

LY

-,

Figure 4: Visualization of the predicted latent policy parameters for three MetaWorld tasks. In each task, the image on the
left represents the output of the HypLatent generator, while the image on the right shows the output of HypFormer. The
red color points are the predicted latent policy parameters while the blue color points indicate the ground-truth latent policy

parameters.

Table 3: Success Rate(%) on unseen tasks of MetaWorld.
Bold numbers highlights the top achieved success-rate on
the task, while the italics shows the 2nd best achieved
success-rate.

Zero-Shot RL | MAA | Gen-HypRL | Gen-HypRL
Tasks (wlo Hyp- | (w/ Hyp-
Former) Former)
drawer-close 55 53 80
handle-press-side | 4 6 0
door-lock 13 6 6
window-close 10 0 12
reach-wall 13 6 10
coffee-button 8 3 9
button-press-wall | 11/ 2 14
faucet-open 16 21 27
Avg.Success 16.25 | 12.13 19.8
Rate

Table 4: Comparing Gen-HypRL to the offline Meta-RL
works on Cheetah-Vel task.

Methods Avg. Return
MACAW (Iter. 0) -121.6
MACAW (Iter. 20K) -60.5
Prompt-DT -34.43
Gen-HypRL (w/o HypFormer) (10 seeds) -33.44
Gen-HypRL (w/o HypFormer) (35 seeds) -29.6

Ablation on Num Tokens for MTRL Ablation on Num Tokens for Zero-Shot RL
0.8 0.20

0.6

o
o

0.4
0.2

Success Rate(%)
2
&

Success Rate(%)
o
S

0.0

o
=3
S

8 16 32 64 128 256 512 3
Num Tokens

16 32 64 128 256 512
Num Tokens

Figure 5: Performance of Gen-HypRL on MetaWorld
MTRL and Zero-Shot RL tasks on varying token size from
8 to 512. Better viewed at 2x zoom.

CONCLUSION

In this paper, we propose a framework for training hypernet-
works in the context of Multi-Task Reinforcement Learn-

ing (MTRL). By training a prior over the various task poli-
cies in an adversarial fashion, we encourage diversity of
the generated latent policy parameters. We then use a sin-
gle layer transformer architecture to guide the prior towards
expert policy parameters. Our framework outperforms re-
lated hypernetwork-based baselines in MTRL and achieves
performance comparable to state-of-the-art MTRL meth-
ods. Additionally, our experiments on MuJoCo control tasks
demonstrate that the framework exhibits strong zero-shot
generalization to unseen tasks within the same task distri-
bution.

We believe that our framework is an important step to-
wards tackling MTRL while retaining zero shot generaliz-
ability to in-distribution tasks.

FUTURE WORK

We currently rely on expert policies during training, making
it crucial to explore performance when training with sub-
optimal policies. Another promising future direction is to
enhance the scalability of the framework to handle a larger
number of tasks.

References
Alaluf, Y.; Tov, O.; Mokady, R.; Gal, R.; and Bermano, A.
2022. Hyperstyle: Stylegan inversion with hypernetworks
for real image editing. In Proceedings of the IEEE/CVF con-
ference on computer Vision and pattern recognition, 18511-
18521.
Beck, J.; Jackson, M. T.; Vuorio, R.; and Whiteson, S. 2023.
Hypernetworks in meta-reinforcement learning. In Confer-
ence on Robot Learning, 1478-1487. PMLR.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, 1. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems, 34: 15084-15097.
Chen, Z.; Badrinarayanan, V.; Lee, C.-Y.; and Rabinovich,
A. 2018. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International
conference on machine learning, 794-803. PMLR.
D’Eramo, C.; Tateo, D.; Bonarini, A.; Restelli, M.; and Pe-
ters, J. 2024. Sharing knowledge in multi-task deep rein-
forcement learning. arXiv preprint arXiv:2401.09561.

Désidéri, J.-A. 2012. Multiple-gradient descent algorithm
(MGDA) for multiobjective optimization. Comptes Rendus
Mathematique, 350(5-6): 313-318.

Ha, D.; Dai, A.; and Le, Q. V. 2016. Hypernetworks. arXiv
preprint arXiv:1609.09106.

Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al.
2018. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905.

Hendawy, A.; Peters, J.; and D’Eramo, C. 2023. Multi-task
reinforcement learning with mixture of orthogonal experts.
arXiv preprint arXiv:2311.11385.

Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-task learn-
ing using uncertainty to weigh losses for scene geometry and
semantics. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7482-7491.

Kingma, D. P. 2013. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Liang, Y.; Xu, T.; Hu, K.; Jiang, G.; Huang, F.; and Xu,
H. 2024. Make-An-Agent: A Generalizable Policy Net-
work Generator with Behavior-Prompted Diffusion. arXiv
preprint arXiv:2407.10973.

Liu, B.; Liu, X.; Jin, X.; Stone, P.; and Liu, Q. 2021a.
Conflict-averse gradient descent for multi-task learning.
Advances in Neural Information Processing Systems, 34:
18878-18890.

Liu, L.; Li, Y.; Kuang, Z.; Xue, J.; Chen, Y.; Yang, W.; Liao,
Q.; and Zhang, W. 2021b. Towards impartial multi-task
learning. iclr.

Mahabadi, R. K.; Ruder, S.; Dehghani, M.; and Hender-
son, J. 2021. Parameter-efficient multi-task fine-tuning
for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and
Frey, B. 2015. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644.

Mitchell, E.; Rafailov, R.; Peng, X. B.; Levine, S.; and Finn,
C. 2021. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, 7780-7791. PMLR.

Navon, A.; Shamsian, A.; Achituve, I.; Maron, H.;
Kawaguchi, K.; Chechik, G.; and Fetaya, E. 2022. Multi-
task learning as a bargaining game. arXiv preprint
arXiv:2202.01017.

Rezaei-Shoshtari, S.; Morissette, C.; Hogan, F. R.; Dudek,
G.; and Meger, D. 2023. Hypernetworks for zero-shot trans-
fer in reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 37, 9579—
9587.

Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention—-MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part 111
18, 234-241. Springer.

Ruiz, N.; Li, Y.; Jampani, V.; Wei, W.; Hou, T.; Pritch, Y;
Wadhwa, N.; Rubinstein, M.; and Aberman, K. 2024. Hy-
perdreambooth: Hypernetworks for fast personalization of
text-to-image models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
6527-6536.

Sener, O.; and Koltun, V. 2018. Multi-task learning as multi-
objective optimization. Advances in neural information pro-
cessing systems, 31.

Sodhani, S.; Zhang, A.; and Pineau, J. 2021. Multi-task
reinforcement learning with context-based representations.
In International Conference on Machine Learning, 9767—
9779. PMLR.

Standley, T.; Zamir, A.; Chen, D.; Guibas, L.; Malik, J.; and
Savarese, S. 2020. Which tasks should be learned together in
multi-task learning? In International conference on machine
learning, 9120-9132. PMLR.

Sun, L.; Zhang, H.; Xu, W.; and Tomizuka, M. 2022. Paco:
Parameter-compositional multi-task reinforcement learning.
Advances in Neural Information Processing Systems, 35:
21495-21507.

Vaswani, A. 2017. Attention is all you need. Advances in
Neural Information Processing Systems.

Von Oswald, J.; Henning, C.; Grewe, B. E.; and Sacramento,
J. 2019. Continual learning with hypernetworks. arXiv
preprint arXiv:1906.00695.

Xu, M.; Shen, Y.; Zhang, S.; Lu, Y.; Zhao, D.; Tenenbaum,
J.; and Gan, C. 2022. Prompting decision transformer for

few-shot policy generalization. In international conference
on machine learning, 24631-24645. PMLR.

Yang, R.; Xu, H.; Wu, Y.; and Wang, X. 2020. Multi-task
reinforcement learning with soft modularization. Advances
in Neural Information Processing Systems, 33: 4767-4777.
Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; and
Finn, C. 2020a. Gradient surgery for multi-task learning.

Advances in Neural Information Processing Systems, 33:
5824-5836.

Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2020b. Meta-world: A benchmark and

evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, 1094—1100. PMLR.

Zhao, D.; Kobayashi, S.; Sacramento, J.; and von Oswald,
J. 2020. Meta-learning via hypernetworks. In 4th Work-
shop on Meta-Learning at NeurIPS 2020 (MetaLearn 2020).
NeurIPS.

Zhmoginov, A.; Sandler, M.; and Vladymyrov, M. 2022.
Hypertransformer: Model generation for supervised and

semi-supervised few-shot learning. In International Con-
ference on Machine Learning, 27075-27098. PMLR.

