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Abstract
Understanding an agent’s intent through its behavior is essen-
tial in human-robot interaction, interactive AI systems, and
multi-agent collaborations. This task, known as Goal Recog-
nition (GR), poses significant challenges in dynamic envi-
ronments where goals are numerous and constantly evolv-
ing. Traditional GR methods, designed for a predefined set
of goals, often struggle to adapt to these dynamic scenarios.
To address this limitation, we introduce the General Dynamic
GR problem – a broader definition of GR – aimed at en-
abling real-time GR systems and fostering further research
in this area. Expanding on this foundation, this paper em-
ploys a model-free goal-conditioned RL approach to enable
fast adaptation for GR across various changing tasks.

Introduction
Goal Recognition (GR) is a subarea of artificial intelligence
(AI) focused on understanding and predicting the goals of
agents based on their actions. This task is essential in var-
ious fields, particularly in human-robot interaction (Mas-
sardi, Gravel, and Beaudry 2020; Trick et al. 2019; Scas-
sellati 2002) and multi-agent systems (Rabkina and Forbus
2019; Kaminka, Wendler, and Ronen 2001; Sukthankar and
Sycara 2011; Bansal et al. 2019), as it plays a crucial role in
understanding agent behaviors.

Most traditional GR solutions primarily address single
GR tasks with a specific set of goals within a single en-
vironment. However, they must often restart the process
when presented with a new set of goals within the same do-
main or an entirely new domain. This restart adds signifi-
cant time overhead (e.g., reapplying planners or RL for each
new goal), rendering these approaches impractical in real-
time scenarios where the goal space is continuous or there
is a need for rapid adaptation to dynamically changing GR
tasks with diverse goals and domains. For example, in as-
sistive technologies for the elderly or individuals with mo-
tor disabilities (Zhang et al. 2017), a robotic assistant might
need to dynamically adjust to a range of objectives – such
as inferring human needs for physical tasks like fetching
items or responding to urgent medical requirements. Simi-
larly, in autonomous vehicle systems (Brewitt et al. 2023),
vehicles must continuously adapt and infer the objectives of
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surrounding traffic agents, such as pedestrians, other vehi-
cles, and drivers’ behaviors.

This paper addresses these limitations by introducing a
General Dynamic Goal Recognition (GDGR) framework.
It achieves this by (1) proposing a new definition of General
Dynamic Goal Recognition, (2) outlining a general approach
for GDGR, and (3) applying goal-conditioned, model-free
Reinforcement Learning (RL) to enable real-time GR across
multiple dynamically changing tasks within a single domain.

We present preliminary results from the Point Maze (Tow-
ers et al. 2024) environment (shown in Figure 1). The re-
sults indicate significant improvements in adaptation times
for new goals compared to existing methods, showcasing the
potential of our framework to advance GR in complex, real-
world scenarios. By addressing the run-time limitations of
traditional GR systems, this research lays the groundwork
for more adaptable, efficient, automated, and accurate GR
applications in a wide range of dynamic environments.

Figure 1: The Point Maze Environment features continuous
state, goal, and action spaces. The green ball represents the
agent in its initial state, while the red ball marks the labeled
goal point. On the left, there is an empty 11x11 environment
with the agent starting at 1x1 (top-left) and the goal located
at 6x6 (red ball). On the right, there is a 4-rooms environ-
ment, where the agent begins at 1x1 (top-left), and the goal
is at 9x9 (bottom-right, red ball).

Related Work
GR research has evolved through various methodologies.
Over the past two decades, GR has been addressed pri-
marily through symbolic approaches, such as planning
(Ramı́rez and Geffner 2009; Sohrabi, Riabov, and Udrea



2016; Meneguzzi and Pereira 2021). These studies intro-
duced the concept of GR by employing planners to infer
the most likely goal based on given observations. However,
planning-based methods require detailed domain knowledge
and often rely heavily on expert inputs, which can be im-
practical in dynamic or unfamiliar environments. Further-
more, the emergence of stochastic and continuous domains
necessitated a shift from these traditional methods toward
model-free approaches.

Recent advancements have explored the integration of RL
into GR tasks. Notably, the GR as RL framework (Amado,
Mirsky, and Meneguzzi 2022) has shown promise by lever-
aging RL to infer goals without explicit domain models.
However, existing methods are generally restricted to dis-
crete state spaces. They are designed for static, single GR
tasks with a finite number of possible goals, limiting their
applicability in real-world settings where agents must han-
dle continuous and evolving tasks.

To address this limitation, newer studies have reframed
GR as a supervised learning problem, leveraging machine
learning models to classify the most likely goal based on
observations (Chiari et al. 2023; Amado et al. 2018). How-
ever, these approaches depend heavily on the availability of
extensive supervised datasets and often lack interpretability,
which poses challenges in critical applications where under-
standing the rationale behind decisions is essential.

Recent work (Shamir et al. 2024) introduced a novel prob-
lem called Online Dynamic Goal Recognition. This defini-
tion encompasses multiple GR tasks within the same domain
and provides a proof of concept for implementing Dynamic
GR in a discrete, simple navigational domain. The approach
begins by learning Q-tables (discrete RL value functions) for
a few base goals selected heuristically. For each new set of
goals within the same domain, the method combines these
Q-tables heuristically to quickly craft a new policy for each
goal, then uses these policies to infer the most likely goal.
While this work made a conceptual stride toward dynamic
goal recognition, it was limited to empty navigational do-
mains and GR tasks within the same domain.

Fang et al. (2023) expanded the scope of GR as RL using
function approximations, which enabled some generalizabil-
ity to new goals. However, it primarily focused on handling
multiple GR tasks within the same domain without empha-
sizing generalizability across different tasks.

This research defines the General Dynamic Goal Recog-
nition (GDGR) problem, proposes an algorithm for a GDGR
system, and presents a specific application of this algorithm.
Preliminary results demonstrate its time efficiency in adapt-
ing to new GR tasks, highlighting its potential for advancing
GR in dynamic environments.

Theoretical Background
Markov Decision Process (MDP) The foundation of this
research lies in the concept of a Markov Decision Process
(MDP), a mathematical framework used to model decision-
making in situations where both randomness and the actions
of a decision-maker influence outcomes. An MDP is defined
as a tupleM = (S,A, P,R, γ), where: S is the set of states;
A is the set of actions; τ : S × A × S → [0, 1] is the state

transition probability function; R : S × A → R is the re-
ward function. γ ∈ [0, 1] is the discount factor. The objec-
tive when solving an MDP is to identify a policy π : S → A
that maximizes the expected sum of discounted rewards.

Reinforcement Learning (RL) Building on the concept
of MDPs, RL provides a practical framework for solving
these problems (Kaelbling, Littman, and Moore 1996; Sut-
ton and Barto 2018). RL is a branch of machine learning
where agents learn to make optimal decisions by interacting
with their environment, aiming to maximize cumulative re-
wards over time. RL involves learning a policy π to optimize
the cumulative reward in an MDP. The value function V π(s)
and the action-value function Qπ(s, a) are defined as:

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st)) | s0 = s

]
(1)

Qπ(s, a) = E [R(s, a) + γV π(s′) | s′ ∼ τ(·|s, a)] (2)

Goal-conditioned Reinforcement Learning (GCRL)
Building on the RL framework, Goal-conditioned Rein-
forcement Learning (GCRL) Liu, Zhu, and Zhang (2022)
offers a nuanced perspective by incorporating specific goals
into the learning process. This approach is central to this
research as it aligns with the dynamic nature of the GR prob-
lem, where agents must adapt their policies to accommodate
evolving objectives. GCRL employs a Goal-Augmented
MDP (GA-MDP). A GA-MDP extends the standard MDP
with an additional tuple ⟨G, pg, ϕ⟩, where: G represents
the goal space, pg denotes the desired goal distribution of
the GA-MDP, and ϕ : S → G is the mapping function
that associates a state with its corresponding achieved goal.
The reward function is goal-dependent and is expressed as
R : S × G × A → R. The objective is to reach a goal state
by using a goal-conditioned policy π : S ×G× A→ [0, 1]
that maximizes the expected return for a goal distribution:

J(π) = Eat∼π(·|st,g),g∼pg,st+1∼τ(·|st,at)

[∑
t

γtR(st, at, g)

]
(3)

Transfer Learning in RL Transfer Learning in RL en-
hances learning efficiency across different domains (Zhu
et al. 2023). This concept is particularly relevant to this re-
search as it demonstrates how prior knowledge can be lever-
aged to address new challenges, which is crucial in GDGR.

In the context of RL, Transfer Learning involves learn-
ing an optimal policy π∗ for a target domain Mt by utiliz-
ing knowledge transferred from a set of source domains Ms.
This process incorporates both the experiences acquired in
the source domains Is and those from the target domain It,
which are specific to Mt:

π∗ = argmax
π

Es∼µt
0,a∼π[Q

π
Mt

(s, a)], (4)

Here, µt
0 represents the initial distribution of states within

the target environment Mt, and Qπ
Mt

(s, a) denotes the ex-
pected utility of selecting action a in state s, under strategy



Figure 2: General Dynamic Goal Recognition Framework.

π, within Mt. The policy π = ϕ(Is ∼Ms, It ∼Mt) : St →
At is tailored for Mt and is constructed using both It and Is.

Goal Recognition (GR) GR is the task of inferring the
most likely goal according to a series of observations. For-
mally defined, the GR problem can be represented as a tuple
T = (D,G,O), where: D represents the domain theory; G
is the set of potential goals; O is a sequence of observations.
The objective of GR is to identify a goal g ∈ G that provides
the best explanation for the observation sequence O. Differ-
ent approaches to GR primarily differ in how they formulate
the domain theory D and the techniques they use to interpret
the observation sequence O.

Goal Recognition as Reinforcement Learning Amado,
Mirsky, and Meneguzzi (2022) define a GR as RL problem
as: T = (D,G,O) where: G - the set of potential goals; O -
a sequence of observations; D - the domain theory, which is
divided into two types:
• Utility-based domain theory DQ(G), represented as
(S,A,Q) where Q is a set of Q-functions {Qg|g ∈ G}.

• Policy-based domain theory Dπ(G), represented as
(S,A, π) where π is a set of policies {πg|g ∈ G}.

General Dynamic Goal Recognition
We introduce a broader definition of the GR problem as
a continuous transfer learning task, referred to as General
Dynamic Goal Recognition (GDGR). Given a tuple repre-
senting the prior distribution of domain theories pD0 and a
sequence of GR problems:

⟨pD, (T1 = ⟨D1, DG1, O1⟩, T2, . . . , Tn)⟩,

each input is provided at an increasing time step, starting
with pD at time step t = 0. Each GR task corresponds to a
distinct time step t ∈ {1, . . . , n}. We define the problem of
General Dynamic Goal Recognition (GDGR) as follows:

For a given series of time steps t ∈ {1, . . . , n}, each time
step consists of three stages of inputs, which can be given
incrementally. For each time step t,

• The first input is the domain theory Dt, formally defined
as Dt = (St, At, Gt), where:
– St is the state space of the given domain theory,

– At is the action space of the given domain theory,
– Gt is the goal space of the given domain theory.

• The second input is the set of dynamic goals DGt used
for the GR task.

• The last input is an observation sequence

Ot = (⟨st1 , at1⟩, ⟨st2 , at2⟩, . . .),

which might contain gaps between consecutive states and
actions. Note: in an online GR setting, each state and ac-
tion in the observation sequence are also provided incre-
mentally, in the order they appear within the sequence.

The objective is to return a sequence of goals (g∗1 , . . . , g
∗
n)

for each time step t ∈ {1, . . . , n}, where g∗t is the recog-
nized goal within the set of dynamic goals DGt based on
the given observations Ot and the information state ISt−1

carried over from the previous time step:

g∗t = arg max
g∈DGt

P (g|Ot, ISt−1) (5)

Note that at time step t = 1, the given information state
IS0 is the initialized information state, acquired based on
the prior distribution of domain theories pD created at time
step t = 0 (before receiving the first GR task).

Figure 2 describes the generic algorithm for the GDGR
framework, outlining its different components and phases.
There are three main components in the GDGR framework:

1. Initial Information State Phase: (line 2 –
InitInformationStatePhase function – in
Algorithm 1 and component (a) in Figure 2) Given
the prior distribution of domain theories, initialize an
information state that will save computation time during
the subsequent phases.

2. Specific Goal Recognition Task: (lines 3-10 in Algo-
rithm 1 and component (b) in Figure 2) Given the GR
task and the information state:

• Perform domain adaptation for the specific domain
theory (DomainAdaptationPhase function in
Algorithm 1) to acquire the domain knowledge re-
quired for goal adaptation and accurate recognition.



Algorithm 1: General Dynamic Goal Recognition

Require: pD - prior distribution of domain theories
1: Init IS
2: IS ← InitInformationStatePhase(pD, IS) ▷ Initialized IS after adaptation to pD
3: for all Ti in GetGoalRecognitionTask() do
4: Get Domain theory Di = ⟨Si, Ai, Gi⟩ from Ti

5: ISDi ← DomainAdaptationPhase(Di, IS) ▷ Domain Information State ISDi after domain adaptation
6: Get the set of new dynamic goals DGi from Ti

7: {ISg}g∈GDi
← GoalsAdaptationPhase(DGi, ISDi

) ▷ Goals Information State {ISg}g∈GDi
after goal adaptation

8: Get the Observation sequence Oi = (⟨si0 , ai0⟩, . . .) from Ti ▷ In the online GR setting, each state and action tuple is
provided in a different time-step and has its own recognition inference phase

9: g∗ ← RecognitionInferencePhase({ISg}g∈GDi
, Oi) ▷ g∗ ← arg maxg∈DGi

[DISTANCE(Oi, ISg)], where
DISTANCE calculates the similarity between the observation sequence and the goal Information State

10: Save and return g∗

11: IS ← UpdateInformationStatePhase(IS, ISDi
, {ISg}g∈GDi

, Ti, g
∗) ▷ Updated IS using the previous IS, and the

current GR task, adaptations and inference

• Adapt goals for the specific set of new dynamic goals
(GoalsAdaptationPhase function in Algorithm
1) to acquire knowledge about the new dynamic goals,
enabling accurate and fast recognition.

• Conduct recognition inference
(RecognitionInferencePhase function in
Algorithm 1) for the GR task to find the most likely
dynamic goal based on the given observations.

3. Update Information State: (line 11 –
UpdateInformationStatePhase function –
in Algorithm 1 and component (c) in Figure 2) Given the
GR task with its outputs (from component (b)) and the
previous information state, update the information state
to include the current experience. This updated state
transfers knowledge to subsequent GR tasks, enhancing
their accuracy and run-time efficiency.

Algorithm 1 is a generic algorithm that can be imple-
mented in various ways. As observed in Figure 1, where the
left depicts an empty domain without obstacles and the right
shows a four-rooms domain, there can be numerous scenar-
ios of GR in the Point Maze Environment and beyond. These
scenarios can be classified into three levels of abstraction:

1. There can be GR tasks assuming a small set of goals
within a single domain. For a single GR task, as in the
GR as RL (Amado, Mirsky, and Meneguzzi 2022) set-
ting, there will only be a Goal Adaptation Phase, where a
Q-Learning policy is learned for each goal, and the most
likely goal is identified based on the similarity between
the Q-Learning policy and the observation sequence.

2. There can be GR tasks with many possible goals, assum-
ing a specific domain such as the empty Point Maze Do-
main. For a sequence of goals within the same domain
theory, as in ODGR (Shamir et al. 2024) (a heuristic
implementation for discrete simple cases), the Informa-
tion State Initialization Phase involves learning a specific
domain representation (a set of Q-Learning policies for
heuristically chosen base goals). Then, during the Goal
Adaptation Phase, heuristically crafted policies are de-
rived using the domain representation for each new dy-

namic goal, followed by the same inference mechanism
as in GR as RL. In this paper, we focus on this case to
propose a GDGR approach for continuous goal spaces
with fast adaptation times for different GR tasks within
the same domain.

3. There can be GR tasks with many possible goals across
multiple domains. For example, one GR task might in-
volve the empty domain with certain dynamic goals,
while another could involve the four-rooms domain with
different dynamic goals. Levels 1 and 2 can be extended
to this case by introducing a caching mechanism to lever-
age past experiences and employing a Meta-Learning
Policy as the information state to enable fast adaptation
to new goals and domains.

Specifically, as shown in Algorithm 2 (in the appendix),
this paper focuses on cases where for all t ∈ {0, . . . , n}:
• All GR tasks are within the same domain theory D.
• ISt = ⟨GCPD, cache⟩, where GCPD is the Goal-

Conditioned RL Policy trained at time step t = 0, and
the cache contains the buffered experiences accumu-
lated up to this GR task at time step t (inclusive).

The challenge in such cases lies in adapting the Goal-
Conditioned Policy to new dynamic goals DGt with mini-
mal additional learning. This iterative and continuous pro-
cess improves policy adaptation mechanisms with each
recognition task, exemplifying a Lifelong Learning system
that efficiently adapts to new goals.

Method We implemented the generic GDGR algorithm
assuming GR tasks within a specific domain (the im-
plementation can be found in Algorithm 2 in the ap-
pendix). During the InitInformationStatePhase,
we train a Goal-Conditioned RL (GC-RL) policy for the
specific domain. This policy is utilized for all tasks.
In the DomainAdaptationPhase, the GC-RL policy
trained during the InitInformationStatePhase and
a cache of previous GR tasks are returned.

We used sparse rewards to increase the challenge com-
pared to dense rewards, avoiding heuristics for reward shap-
ing that do not scale to real complex domains. To enhance



Figure 3: The figure illustrates the learning curves for the
Four Rooms Point Maze Domain. The blue curve represents
the SAC+HER Goal-Conditioned RL policy, which con-
verged to near-optimal performance after approximately 2
million update steps. The green curve shows the SAC+HER
goal-directed policy for the specific goal at (9, 9), which
converged after roughly 200,000 update steps. In contrast,
the orange curve represents the SAC+HER goal-directed
policy for the same specific goal at (9, 9), which only began
to converge after 2 million update steps.

learning efficiency, we combined the SAC RL algorithm
with Hindsight Experience Replay (HER), which relabels
unsuccessful episodes as successful for other goals encoun-
tered during training. GC-RL policies were trained by sam-
pling random goals in the domain, while goal-directed RL
policies were trained with a constant goal.

Results
In our experiments, we focused on the Point Maze Four
Rooms Domain (Figure 1, right image) as described in the
Appendix. We evaluate the performance and runtime of
training a Goal-Conditioned RL (GC-RL) policy compared
to training a goal-directed policy for individual goals. In
the GC-RL scenario, the policy was trained once during
the InitInformationStatePhase to achieve near-
optimal performance for every goal in the continuous goal
space. This eliminates the need for additional training or
fine-tuning during subsequent GR tasks. In contrast, in the
GR as RL scenario, policies are trained from scratch for ev-
ery new goal. See hyperparameters details in the Appendix.

Performance Comparison
Figure 3 illustrates the training curves for the different ap-
proaches. The x-axis represents the number of update steps,
and the y-axis shows the mean cumulative reward evaluated
using a deterministic policy:

• The blue curve represents GC-RL (SAC+HER) trained
with random goals per episode. After approximately
2 million update steps, the policy converges to near-
optimal performance across the continuous state and goal
spaces, without the need for fine-tuning.

• The green and orange curves represent goal-directed
SAC+HER policies trained for the specific goal (9, 9).
The green curve (seed 1) converges to near-optimal
performance after approximately 300,000 update steps,
while the orange curve (seed 2) does not converge even
after 2 million steps.

These results reveal clear distinctions between the GC-RL
and GR as RL scenarios:

1. Efficiency of GC-RL: In the GC-RL sce-
nario, a single training phase during the
InitInformationStatePhase provides a policy
capable of handling any goal in the continuous goal
space without further training. This drastically reduces
the overhead for new GR tasks, as only inference is
required for dynamic goals.

2. Challenges in GR as RL: In the GR as RL scenario,
each new goal requires training a separate policy from
scratch. As demonstrated in the orange curve, this pro-
cess can be significantly impacted by realistic sparse re-
wards, making it impractical in real-time applications.

3. Inference Speed: While the inference phase is similar
for both GC-RL and GR as RL, the absence of training in
GC-RL for new tasks allows for faster overall execution
in dynamic environments.

4. Sparse Rewards: The sparse reward setting presented
substantial challenges for goal-directed policies. The or-
ange curve, which used a different random seed, illus-
trates a scenario where the agent struggled to converge
due to limited reward signals, even with HER. In con-
trast, GC-RL benefited from its generalization across
goals, overcoming some sparse reward issues effectively.

The comparison highlights that GC-RL significantly im-
proves runtime efficiency and adaptability for GR tasks.
While GR as RL struggles with scalability in scenarios in-
volving continuous goal spaces, GC-RL demonstrates ro-
bustness and practicality for real-time applications.

Discussion and Conclusions

In this paper, we introduced General Dynamic Goal
Recognition (GDGR) as a new recognition problem. This
definition extends the definition of GR when goals and set-
tings may change with time. We present an initial solution
approach, implemented as a continuous transfer learning
task. We demonstrated a specific application using Goal-
Conditioned RL in continuous state and goal spaces, show-
casing its applicability for real-time scenarios. Preliminary
results using GC-RL for GR tasks validate the potential of
GDGR to pave the way for real-time GR frameworks in
applications such as autonomous vehicles and robotic as-
sistants. These systems require rapid inference in dynamic
environments. Our next steps are to apply GDGR in multi-
domain settings by incorporating transfer learning or meta-
learning techniques, e.g. to transfer a GC-RL policy from
one domain to another.
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Point Maze Domain Settings
In our experiments, we focused on the Point Maze Four
Rooms Domain (Figure 1, right image) with 1000 maximum
steps in an episode, with sparse rewards:
• Reward = 0 if the agent’s Euclidean distance to the goal

is less than 0.5 meters.
• Reward = −1 if the distance is greater than 0.5 meters.

The state space is as follows:
• x-coordinate of the green ball (position (m)).
• y-coordinate of the green ball (position (m)).
• Linear velocity in the x-direction (velocity (m/s)).
• Linear velocity in the y-direction (velocity (m/s)).

The action space includes:
• Linear force in the x-direction (force (N)).
• Linear force in the y-direction (force (N)).

The goal space comprises:
• Current goal position in the x-coordinate (position
(m)).

• Current goal position in the y-coordinate (position
(m)).

Hyperparameters
The following hyperparameters were used in the experi-
ments:
• SAC Hyperparameters:

– Buffer size: 1,000,000
– Learning starts: 1,500 steps
– Learning rate: 0.0003
– Batch size: 256
– Soft update coefficient (τ ): 0.005
– Discount factor (γ): 0.99
– Training frequency: 1
– Gradient steps: 1

• HER Hyperparameters:
– Number of HER-sampled goals: 4
– Sampling strategy: future

A reasonable number of hyperparameter configurations
were tested, and the results were found to be similar or less
efficient than those reported here.



Algorithm 2: GDGR - Implemented with Goal Conditioned Reinforcement Learning within a specific domain theory

Require: pD - prior distribution of domain theories, assumed to be distribution with a single domain theory D = ⟨S,A,G⟩
1: Init IS = ⟨GCPD, cache⟩
2: IS ← InitInformationStatePhase(pD, IS) ▷ Train a Goal Conditioned RL policy GCPD for the domain theory D
3: for all Ti in GetGoalRecognitionTask() do
4: Get Domain theory Di = D
5: ISD ← DomainAdaptationPhase(Di, IS) ▷ Return the trained GCPD from InitInformationStatePhase and the cache
6: Get the set of new dynamic goals DGi from Ti

7: {πg}g∈GDi
← GoalsAdaptationPhase(DGi, ISD) ▷ On each goal g ∈ DGi it evaluates the goal specific

RL policy GCPD(g) to decide whether to fine-tune it with few-shot transfer learning, or without modification (zero-shot
transfer learning) GCPD(g), or taking a goal specific RL policy from the cache

8: Get the Observation sequence Oi = (⟨si0 , ai0⟩, . . .) from Ti ▷ In the online GR setting, each state and action tuple is
provided in a different time-step and has its own recognition inference phase

9: g∗ ← RecognitionInferencePhase({πg}g∈GDi , Oi) ▷ g∗ ← arg maxg∈DGi
[DISTANCE(Oi, πg)], where DISTANCE

Calculates the similarity between the observation sequence and the goal specific RL policy
10: Save and return g∗

11: IS ← UpdateInformationStatePhase(IS,GCPD, {πg}g∈GDi
, Ti, g

∗) ▷ Caching the πg and


