
Comp-LTL: Temporal Logic Planning via Zero-Shot Policy Composition
Taylor Bergeron1, Zachary Serlin2, and Kevin Leahy1

1Worcester Polytechnic Institute
100 Institute Rd

Worcester, MA 01609 USA
2MIT Lincoln Laboratory

244 Wood St
Lexington, MA 02421 USA

Abstract

This work develops a zero-shot mechanism, Comp-LTL, for
an agent to satisfy a Linear Temporal Logic (LTL) specifica-
tion given existing task primitives trained via reinforcement
learning (RL). Autonomous robots often need to satisfy spa-
tial and temporal goals that are unknown until run time. Prior
work focuses on learning policies for executing a task spec-
ified using LTL, but they incorporate the specification into
the learning process. Any change to the specification requires
retraining the policy, either via fine-tuning or from scratch.
We present a more flexible approach–to learn a set of com-
posable task primitive policies that can be used to satisfy ar-
bitrary LTL specifications without retraining or fine-tuning.
Task primitives can be learned offline using RL and combined
using Boolean composition at deployment. This work focuses
on creating and pruning a transition system (TS) representa-
tion of the environment in order to solve for deterministic,
non-ambiguous, and feasible solutions to LTL specifications
given an environment and a set of task primitive policies. We
show that our pruned TS is deterministic, contains no unreal-
izable transitions, and is sound. We verify our approach via
simulation and compare it to other state of the art approaches,
showing that Comp-LTL is safer and more adaptable.

1 Introduction
A major goal in autonomous systems is the deployment of
robots that are capable of executing complex tasks in safety-
critical scenarios, such as search and rescue (SAR), trans-
portation, and healthcare emergency services (Bogue 2019;
Bravo and Leiras 2015). In these situations, the requirements
may be time-varying, interdependent, and otherwise com-
plex. For example, in healthcare, it is imperative to have a
flexible “triage” approach to high priority tasks while still
safely executing actions. Additionally, in a fire SAR sce-
nario, certain rooms may become inaccessible, requiring a
change of the environment representation and temporal task
ordering for searching the building.

One approach to addressing such complex task executions
is planning with linear temporal logic (LTL) (Baier and Ka-
toen 2008; Kress-Gazit, Lahijanian, and Raman 2018). LTL
allows a user to specify tasks with complex temporal and
inter-task relationships. A major strength of this approach
is the focus on correct-by-construction algorithms that are
capable of planning for an arbitrary formula specified by

a user. However, many associated planning approaches re-
quire reliable task models in order to guarantee satisfaction
of an LTL specification (Kress-Gazit, Lahijanian, and Ra-
man 2018; Belta, Yordanov, and Gol 2017).

Recent work has focused on using reinforcement learn-
ing (RL) to meet LTL specifications when a model of the
system is unavailable. Many of these approaches incorpo-
rate an automaton or similar structure in the training process.
One such approach is Reward Machines (Icarte et al. 2018)
(RM), which encodes the specification as reward functions
while exposing the reward function structure to the train-
ing agent. Other approaches use an automaton to guide the
learning process in the presence of partially-satisfiable LTL
specifications (Cai et al. 2023), or to learn sub-policies cor-
responding to edges in an automaton (Li et al. 2019). While
all of these approaches learn policies that are capable of ex-
ecuting a high-level task specified using LTL, they incor-
porate the specification into the learning process, so any
change to the specification requires retraining the policy. We
desire a more flexible approach – to learn a set of policies
that can be used to satisfy arbitrary specifications without
retraining.

A closely related approach is Skill Machines (Tasse et al.
2024), which leverages prior work on zero-shot composi-
tion (Tasse, James, and Rosman 2020), to satisfy a proposi-
tion on a reward machine. While changing the specification
does not require re-training from scratch, it nonetheless re-
quires fine-tuning of the policies to guarantee satisfaction. In
our work, we aim to find a solution that requires no retrain-
ing and no fine-tuning beyond the initial training of tasks,
while still being able to satisfy an arbitrary LTL specifica-
tion. Another closely related approach, LTL-Transfer (Liu
et al. 2024), is a zero-shot LTL solution that adheres to safety
specifications encoded in the LTL formula. LTL-Transfer
creates a Büchi automaton representation of the specifica-
tion, and trains on the transitions in the automaton and trans-
fers the logic to new LTL specifications. This constrains the
possibilities of LTL specifications that can be satisfied to the
set of automaton transitions that have already been explored
during the training pass, whereas we desire a more broadly
applicable solution.

In this work, we propose a framework for finding a sat-
isfying solution for an environment and specification re-
gardless of the exact environment, specification, or policies.



Inspired by Kloetzer and Belta (2008) and recent work in
zero-shot Boolean Composition (Tasse, James, and Rosman
2020) (BC), we observe that compositional approaches al-
low us to satisfy Boolean constraints on automaton represen-
tations of LTL specifications. We leverage our prior work on
safety-aware Boolean compositions of primitive policies to
ensure the solution can be run zero-shot (Leahy, Mann, and
Serlin 2024), and that the satisfying word can be achieved in
the environment. Figure 1 shows our approach, Comp-LTL.

The specific contributions of this work are the following:

1. We develop a method for abstracting a geometric repre-
sentation of an environment into a transition system (TS)
with transition labels representing feasible Boolean com-
binations of tasks to transition between regions;

2. We resolve nondeterminism in the transitions enabled by
the Boolean composition of primitive task policies; and

3. We demonstrate that this representation allows zero-shot
satisfaction of LTL specifications at run time.

We support our theoretical results with case studies in
simulation and comparison to other approaches.

2 Background and Problem Formulation
We consider an agent moving in a planar environment ac-
cording to a high-level mission description. We denote the
agent’s environment E ⊆ R2. The environment contains
non-intersecting regions R ⊆ E taking labels from 2Σ,
where Σ is a set of atomic propositions corresponding to
properties of interest in the environment (see Fig 3a). We
define a labeling function L : R → 2Σ, that defines which
regions are labeled with which properties, where R is the
set of all labeled regions. For σ ∈ Σ, we assume an agent
can perform task σ if it is in a region r of the environment
such that σ ∈ L(r). Given an agent’s motion through a
sequence of regions r0, r1, . . ., the agent produces a word
τ = L(r0), L(r1) . . ..

The agent’s task is specified using linear temporal logic
(LTL) (Baier and Katoen 2008). LTL includes Boolean op-
erators, such as AND (∧), OR (∨), and NOT (¬), along with
time based operators eventually (♢), always (□), and until
(U). The formal syntax of LTL in Backus–Naur form is

ϕ ::= ⊤|σ|¬σ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ϕ1Uϕ2|♢ϕ1|□ϕ1 , (1)

where σ ∈ Σ is an atomic proposition, and ϕ, ϕ1, and ϕ2 are
LTL formulas (Baier and Katoen 2008).

Due to space constraints, we do not describe the seman-
tics of LTL here, but provide a brief intuition. A sequence
τ satisfies a specification ϕ (written τ |= ϕ) if the se-
quence matches the properties specified by ϕ. For exam-
ple, if ϕ = ♢σ (“eventually σ”), τ |= ϕ if σ occurs at
some point in τ . Similarly, □σ (“always σ”) requires that
σ appear at every point in τ . Interested readers are directed
to Baier and Katoen (2008) for more details on the semantics
of LTL. Importantly, off-the-shelf software, such as SPOT,
can automatically translate LTL specifications into Büchi
automata (Duret-Lutz et al. 2022). Furthermore, each transi-
tion on such automata can be described by a Boolean com-
bination of atomic propositions.

We assume there is no transition model for the agent in its
environment, and therefore we use reinforcement learning
(RL) to learn a model for the agent to execute its tasks. RL
is a branch of machine learning that maps states to actions
in order to maximize a reward function (Sutton and Barto
2018). To facilitate satisfaction of temporal logic objectives,
we will leverage our prior work (Leahy, Mann, and Serlin
2024) on safety-aware task composition to train policies for
a given set of tasks. In that work, we proposed a method
for learning policies that have “minimum-violation” (MV)
safety semantics. For a word τ , let the number of positions
in the word with non-empty symbols be denoted |τ | and the
set of symbols in the last position of the word be denoted
τf . Then, for a Boolean formula φ, we define minimum-
violation semantics as follows.

Definition 1 Minimum-violation Path: A word τ is a
minimum-violation path if |τ | > 1 and τf |= φ and there
is no word τ ′ such that |τ ′| < |τ | (Leahy, Mann, and Serlin
2024).

Intuitively, a minimum-violation is a path that: 1) terminates
in a state that satisfied a Boolean formula; 2) if possible, vis-
its no additional labeled states; and 3) if not possible, visits
the fewest additional labeled states.

Problem 1 Given a set of labels Σ, an environment E la-
beled from Σ, train policies for achieving tasks correspond-
ing to σ ∈ Σ such that the policies can be used to satisfy an
LTL formula ϕ over Σ without additional training.

3 Technical Approach
To solve Problem 1 we introduce a novel policy-aware envi-
ronment abstraction as described below. Figure 2 shows an
overview of the proposed solution algorithms. First, we cre-
ate a TS (Belta, Yordanov, and Gol 2017) that captures both
the topology of the environment as well as the policies for
each primitive task to move the agent between regions. Con-
structing such a TS is conservative and can introduce ambi-
guity and non-determinism. To that end, we identify 3 cases
for pruning the edge labels to remove non-determinism due
to the reliance on task composition. The resulting TS can
be used for planning to satisfy an LTL specification in the
standard method (Belta, Yordanov, and Gol 2017), while ac-
curately capturing the behavior created by the RL policies.

Generating The Transition System
To facilitate reasoning about satisfaction of an LTL speci-
fication, we abstract the environment as a transition system
(TS). A TS describes the discrete behavior of a system via
states and transitions and is formally defined as follows.

Definition 2 A transition system (TS) is a tuple, TS =
(S,Act,→, I, AP,L), where

• S is a finite set of states;
• Act is a finite set of actions;
• →⊆ S ×Act× S is a transition relation;
• I ∈ S is an initial state;
• AP is a set of atomic propositions; and
• L : S → 2AP is a labeling function.



Figure 1: Comp-LTL training and path execution pipeline. Policies are trained for a set of primitive base tasks, and the primitive
tasks are defined by the user based on knowledge of the tasks that will need to be executed in the environment. The environment
is abstracted as a policy-aware transition system, which can then be composed with a Büchi automaton to plan over the Boolean
composition of task policies.

We do not assume that the TS is deterministic. A deter-
ministic transition system is a TS in which the transition
relation →⊆ S × Act × S is deterministic. For every
(si, αi, si+1) ∈→, given si and αi+1, si+1 is unique.

To create the initial TS, each region is instantiated as
a state, and adjacent regions are connected by transitions.
This captures the topology of the environment. In planning-
and control-based approaches, it is typical to assume that an
agent can travel between any adjacent regions. For example,
Fig. 3a shows an environment and a corresponding TS (3b).
In a planning framework, an agent may choose which of the
regions labeled a to visit. Using our RL approach, however,
for an agent in the unlabeled region q2, executing a policy
corresponding to a may cause the agent to visit q1, q3, q5, or
q6, since the transition function is unknown. We introduce a
pruning process to model and resolve such ambiguities.

First, our TS must accurately reflect the results of apply-
ing a given task policy from each state. Algorithm 1 gener-
ates the transition labels for the TS for this purpose. In this
and the following algorithms, S is the set of states, s ⊆ S
is a state, T is the set of transitions, and t ⊆ T is a transi-
tion. For each transition, the algorithm checks the distance
(represented as function d(·)) between the start and end state
of that transition to each other state in the TS (lines 3–6). If
the distance from the start state to a state is greater than the
distance from the end state to a state, the transition is ap-
proaching that state (and its associated label), so that state’s
label is added to the transition (lines 7–8).

A TS constructed in this manner could be non-
deterministic. For example, state q2 in Fig. 4 has mul-
tiple outgoing transitions labeled a. To resolve this non-
determinism, we propose a method for pruning the TS. To
prune, we will remove transitions and policies in transition
labels that introduce non-determinism, by checking for the
specific cases of: 1) Equivalency; 2) Ambiguity; and 3) Fea-
sibility; with the methods for mitigating these cases later de-
scribed in Sec. 3.

Algorithm 1: Generate Transition System Transition Labels

1: procedure GENERATETSLABELS(S, T )
2: initialize transition labels L
3: for t ∈ T do ▷ t=(startState, endState)
4: for s ∈ S do
5: dstart = d(startState, s)
6: dend = d(endState, s)
7: if dstart > dend then
8: L[t]← L[t] ∪ L[s]

9: return L ▷ The transition system labels

Remark 1 We note that our approach differs from stan-
dard approaches to determinising a system, such as subset
construction (Hopcroft, Motwani, and Ullman 2001). Those
methods track the multiple states that could be reached un-
der a given action. We wish to find a representation such
that executing a policy corresponds exactly with transition-
ing from one region to another.

Transition System Pruning
When we follow the procedure outlined in Sec. 3, we cap-
ture how states are connected, but the resulting TS state and
transition labels can introduce non-determinism. To mitigate
such problems, we introduce a TS pruning method, which
removes symbols from transition labels. Algorithm 2 shows
the overall pruning procedure. Each case function in the
algorithm is explained below, along with an explanation of
the results of pruning the TS from Figure 4.

Case 1: Equivalent States In a TS where multiple
branches from a parent state contain the same state and tran-
sition labels, taking a policy from one of the symbols shared
on the transition label could take the agent to any of the
duplicate child state regions. Since there is not meaningful
distinction between the two for the purposes of satisfying a



Figure 2: Block diagram representation of the overall Zero-Shot Algorithm for Comp-LTL. It includes the TS generation
algorithm described in Section 3, from parsing the map, generating the initial TS, and pruning the TS to remove equivalency,
solve ambiguity, and ensure feasibility. All sub algorithms are denoted in bold.
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Figure 3: Example of an environment with regions to be
parsed by Algorithm 1 (3a). A corresponding TS (3b) cannot
be used directly, since it is not known a priori which region
with a given label will be reached when executing a policy
trained with RL.

specification, they are effectively equivalent. Therefore, all
duplicate branches are merged into one to simplify the TS.

Case 1: If there are duplicate states, where the state label,
outgoing transition labels, and incoming transition labels
are the same between states, then combine the states into
one.

Figure 5 highlights the changes in the TS after case1 in
Alg. 2 is executed. Algorithm case1 identifies that q2 has
branches that are equivalent. The two equivalent branches
are 1) the branch containing q3 and q4 and 2) the branch
containing q6 and q7. In Fig. 5, the two equivalent branches
get combined into the branch containing q3 and q4.
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Figure 4: Unpruned TS created by Alg. 1 on the environment
in Fig. 3a. State labels appear above each state. Transition
labels correspond to task policies that enable a transition.

Case 2: Ambiguous Transitions If a state has multiple
transition labels that contain the same symbol, it is uncer-
tain which transition will be followed when the correspond-
ing policy is executed. Because we seek a method that is
zero-shot, we perform no additional checks or training on
the policy to see how it would behave if run in the state re-
gion; therefore, we wish to keep at most once outgoing tran-
sition labeled with that symbol.

Case 2: If any outgoing transitions from a state share a



Algorithm 2: Transition System Prune

1: procedure PRUNE(S, T,Σ)
2: S, T ← case1(S, T,Σ)
3: for s ∈ S do
4: T ← case2(s, T,Σ)
5: T ← case3(s, T,Σ)

6: T ← emptyCleanup(T )
7: return S, T
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Figure 5: State labels appear above each state. Transition la-
bels correspond to task policies that enable a transition. Red
states and transitions are removed via case1 to create Fig-
ure 6. Symbols a, b, c, {} are deleted to remove equiv-
alency in the system.

symbol in the transition label, only keep the symbol in the
transition with the least distance to the state labeled with
the shared symbol, according to MV semantics. If all the dis-
tances to the state that is labeled with the shared symbol are
the same, remove the symbol from all the transition labels of
the state.

Algorithm 3 shows the procedure for case2. For a given
state, the algorithm finds the set of outgoing transitions la-
beled by a given symbol σ (lines 2–3). If there is more than
one such transition, determines the state(s) with the largest
distance according to MV semantics (lines 5–7) and removes
σ from the corresponding transitions. The process repeats
until there is at most one transition with label σ.

Algorithm 3: Case 2 Prune

1: procedure CASE2(s, T,Σ)
2: for σ ∈ Σ do
3: tσ ← {t ∈ T | σ ∈ L(t)}
4: while |tσ| ≥ 2 do
5: sσ ← {s ∈ S | σ ∈ L(s)}
6: dt ← max(t,sσ)(d(s, sσ))
7: tfar ← {t ∈ tσ | dt is greatest}
8: delete σ from tfar
9: delete tfar from tσ

return T

Figure 6 highlights the changes in the TS after case2 is
executed. No labels a are kept on outgoing transitions from
q2, because MV semantics cannot distinguish them. The la-
bel c is removed from the transition linking q3 to q2, because
MV semantics will result in an agent transitioning from q3
to q4 under a policy associated with task c.
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Figure 6: State labels appear above each state. Transition la-
bels correspond to task policies that enable a transition. Red
label symbols are removed via case2 to create Figure 7.
Symbols a and c are deleted to remove unambiguous tran-
sition labels from the system.

Case 3: Ineffectual Transitions and Feasibility This
case only arises when there are multiple states containing
the same symbol label during the initial TS creation (Alg. 1).
Each duplicate state will have an outgoing transition label
containing the same symbol as its own label, to get to the
other states that share the same symbol label. We prune the
symbol from the outgoing transition labels as running the
policy for generating a symbol while already in the region
that produces the symbol will not cause the agent to transi-
tion out of its current state. Therefore, since the state does
not change, the symbol on the label is ineffectual.

Case 3: If a state shares the same label as any outgoing
transition, remove the label from those transitions.

Figure 7 highlights the changes in the TS after case3
in Alg. 2 is executed. State q1’s label is a, and the transition
from q1 to q2 contains a, so a is removed from that transition.
The same logic applies to the other highlighted labels.
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Figure 7: State labels appear above each state. Transition
labels correspond to task policies that enable a transition.
Red label symbols are removed via case3 to create Fig. 8.
Symbols a and c are deleted to remove system infeasibility
from the system.
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Figure 8: State labels appear above each state. Transition
labels correspond to task policies that enable a transition.
Red label symbols are removed via emptyCleanup.

Empty Cleanup We require final cleanup after the TS has
been generated through the 3 cases. Since there will never
be a policy for spaces that produce no symbols, the policy
∅ is removed from all transition labels. Also, all transitions
with no transition label are removed, as there is no policy
that can take the agent between the connected states. The
transition will create uncertainty when the product is taken
with the TS, so it is imperative it is removed. Figure 8 high-
lights the changes in the TS after emptyCleanup in Alg. 2
is executed.

Product between Transition System and Büchi
Automaton
Given a fully pruned TS with labels from Σ, we create a
Büchi automaton using a an LTL formula specification ϕ
over Σ. We can then construct a Cartesian product between
the TS and automaton, preserving the transition labels from
the TS. The resulting product automaton (PA) can be used
with typical sequence generation methods to find a satisfy-
ing sequence (Belta, Yordanov, and Gol 2017).

Theoretical Analysis
In this section, we propose three theorems about our method.

Theorem 1 The resulting pruned TS from Sec. 3 is deter-
ministic.

Proof (sketch) 1 We note two ways in which a TS may be
non-deterministic. First, a TS may transition to multiple
states given a single action (either indistinguishable from
each other or not), which cases 1 and 2 address. Second,
given a state and an action, the TS may stay in the same
state or transition to another state. The MV semantics of our
policies preclude moving in favor of self-loops, which case
3 addresses.

Theorem 2 The resulting pruned TS from Sec. 3 contains
no unrealizable transitions.

Proof (sketch) 2 The naive TS construction captures all po-
tential transitions that an RL policy enforces. Our pruning
process respects the MV semantics as defined in 2. By prun-
ing transitions to farther states with same label, we prune
states that would never be reached under MV semantics, be-
cause those semantics prioritize producing fewer symbols.

Theorem 3 Satisfying an LTL specification using product
construction with our pruned TS is sound.

Proof (sketch) 3 This follows directly from Theorems 1
and 2. Those theorems imply that the agent executing its RL
policies is a simulation of the pruned TS, and the usual guar-
antees on the PA hold; therefore finding a satisfying τ in the
PA using our TS is sound.

4 Results
Simulation
To demonstrate our logic, we used a high-dimensional video
game environment (Tasse, James, and Rosman 2020). This
is a grid-world environment with 6 possible items: every
combination of colors beige, blue, and purple, with shapes
circle and square. We consider LTL formulas over the set
propositions {w (white), b (blue), p (purple),  (circle), ■
(square)}. These traits can be composed in a Boolean fash-
ion, e.g., ■ := b ∧ ■. Each grid cell is either unoccupied,
represented by empty set ∅, or contains an object character-
ized by a shape and a color from the set propositions.

Our simulations are executed in Python 3.7. Our TS and
PA are constructed using NetworkX (Hagberg, Swart, and
Schult 2008) and a modified version of LOMAP 1. The
policies used in this experiment are trained using the RL
methodology from Leahy, Mann, and Serlin (2024). All poli-
cies are trained using MV semantics. During training the en-
vironment randomly spawns items and the player’s start po-
sition. The observation space is down sampled 84x84 RGB
images of the world and the action space is the 4 cardinal
directions: up, down, left right. See Leahy, Mann, and Serlin
(2024) for more details on training.

One policy is trained for each of the six primitive tasks
above. The composition of policies is performed zero-shot
via the method of Leahy, Mann, and Serlin (2024).

Case Study
For the demonstration, we show that two different LTL for-
mulas of varying complexities with two different map con-
figurations produce the expected symbols. The same policies
are used for both demonstrations.

The first example is shown in Fig. 9. This example uses
the simple LTL specification ♢■, which translates to “even-
tually square”. Our logic produces the shortest word [■],
which translates to the Boolean composition policy π■ :=
πb ∧ π■. Since the agent is trained using minimum viola-
tion, Fig. 9b shows that the agent following policy π■ does
not enter any area containing another color or shape. The
path is optimal following our logic as there are not any ad-
ditional symbols encountered along the path and the path
never violates the LTL specification.

The second example is shown in Figure 10. This example
uses the more complex LTL specification ♢(b ∧ ¬■) ∧ ♢p,
which translates to “eventually (blue and not square) and
eventually purple”. Our logic produces the word [ ,■,■],
which corresponds to the sequence of Boolean composition
policies given by [π , π■, π■]:=[πb∧π , πb∧π■, πp∧π■].

1https://github.com/wasserfeder/lomap
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Figure 10: Pipeline for ♢(b ∧ ¬■) ∧ ♢p.

The agent progresses along the list of policies in the order
provided, so first the agent begins executing π . Once the
agent has reached a region that produces b ∧  , the agent
transitions to executing the next policy. The agent is done
when it has reached a region that produces the symbols of
the final policy. In this instance, the agent is finished when it
enters the region that produces p ∧■.

Since the agent is trained using MV semantics, Fig. 10b
shows that the agent following a policy does not enter any
cell containing another color or shape. That is why the first
path to the blue circle takes the agent the long way around
the center obstacle, as it will not travel the shorter path to
blue circle and encounter additional symbols from the other
region; therefore the path is optimal following our logic as
there are not any additional symbols encountered along the
path and the path never violates the LTL specification.

Remark 2 A trade-off of our approach is demonstrated
in this case study. The agent does not take the shortest
path in the environment, { ,■, }, since we only consider
path length in the automaton. The paths { ,■, } and
{ ,■,■} both have automaton path length 3. This is one of
the primary trade-offs for zero-shot satisfaction, and meth-
ods such as RM can use fine-tuning to address this trade-off,
but require additional training episodes.

Primitive Policy Training Time
Policy Type MV Time (s) BC Time (s)
Blue 270,602 224,564
White 272,423 192,312
Purple 321,445 237,616

Table 1: Time to train primitive models for object colors.

Execution Time for a New LTL Specification
LTL Specification Comp-LTL

Time (s)
RM (s)

♢(b&■) 0.0371 19151
♢(p& ) 0.0422 30647
♢b&□¬■ 0.0552 1336
□(♢(b&■))&□(♢(p& )) 0.0305 3959

Table 2: Time to reprocess given a new LTL specification.

Comparison
Our main contribution is an approach that is safety aware
and zero-shot. We compare our approach, Comp-LTL,
to two other state-of-the-art approaches BC and RM.
Comp-LTL trains tasks primitives using safety properties be-
fore run time and combines models temporally as needed
using composition at run time (zero-shot) using environ-
mental information to satisfy the specification. These safety-
focused policies are MV policies. BC (Tasse, James, and
Rosman 2020) trains task primitives before run time and
combines models as needed using composition. RM (Icarte
et al. 2018) trains a task policy at run time based on a speci-
fication provided at run time.

To demonstrate the necessity of safety primitive policies,
we train primitive policies using BC and replace our safety
primitive policies in our pipeline with their primitive poli-
cies. To demonstrate the run time benefits of zero-shot com-
position, we implemented RM on the same Boxman envi-
ronment, trained using the default/recommended hyperpa-
rameters, and directly compare our entire pipeline’s perfor-
mance to RM’s performance.

We compare the approaches based on three metrics 1)
path safety; 2) training time; and 3) specification process-
ing time. Path safety ensures that when a primitive policy,
or composition of primitive policies, is being executed, no
other symbol is produced unless necessary. Training time is
the time for a primitive policy to be fully trained. This is not
applicable for RM as there are no primitive policies to train.
Specification processing time is the time for the approach
to recalculate the approach based on a new LTL specifica-
tion. We provide RM with the new LTL specification as a
state machine which they train on, and we create the state
machine from a translation of the specification automation
created by SPOT (Duret-Lutz et al. 2022). The MV and BC
approaches are provided a new LTL specification as a string.

Table 1 shows that MV primitive policies take longer to
train than non-MV policies. Comp-LTL takes, on average,
32% longer than BC to train primitive policies.

Table 2 shows that upon a change in the LTL specification,



Number of “Unsafe” Symbols Collected
LTL Specifi-
cation

Comp-LTL Comp-LTL +
BC Policies

RM

♢(b&■) 0 1 1
♢(p& ) 0 0 0
♢b&□¬■ 0 0 2
□(♢(b&■))
&□(♢(p& ))

0 0 0

Total 0 1 3

Table 3: Number of symbols collected that are not specified
in the policy or specification. Green indicates the specifica-
tion was satisfied by the the trajectory (agent behavior), and
red indicates the specification was not satisfied by the tra-
jectory. Comp-LTL with BC policies is our framework with
our safety policies swapped for BC policies.

our mechanism takes significantly less time to reprocess, as
we are not training whereas RM requires retraining. For a
new LTL specification, our reward is, on average, 99.99%
quicker than RM. We observe that reward machines that in-
clude a transition that uses ∨ take longer to train than reward
machines without ∨. The reward machines for specifications
♢(b&■) and ♢(p& ) include ∨, so they take on average
8.4% longer to train than the specifications ♢b&□¬■ and
□(♢(b&■))&□(♢(p& )), which do not include ∨ in their
reward machines.

Table 3 shows that Comp-LTL’s additional training for
safety results in no additional symbols being generated other
than the symbol for the primitive policy and we are the
only approach to consistently satisfy the specification. Ta-
ble 3 also shows that other approaches produce extrane-
ous symbols. For the specification ♢b&□¬■, Comp-LTL
with BC policies only collects the purple circle symbol,
it does not reach any blue symbols, so it fails the spec-
ification even though it doesn’t produce any unsafe be-
havior. For the same specification RM collects purple cir-
cle and blue square, but square is explicitly not allowed,
so it fails the specification. Finally, for the specification
□(♢(b&■))&□(♢(p& )), RM does not converge as the
reward machine never collects any rewards – we note that
we used the default recommended training parameters and
with more parameter tuning or a different reward machine
representation of the LTL specification the policy may have
converged.

Our results show that our zero-shot approach requires no
additional training per specification, and the paths our ap-
proach produces are safe and feasible.

5 Conclusion
We present Comp-LTL, an end-to-end zero-shot approach
for executing an LTL task specification. To encode environ-
ment topology, we create a TS representation of the environ-
ment. Creating the TS introduces non-determinism and am-
biguity, which we resolve via pruning. Our pruned TS is de-
terministic, contains only feasible transitions, and is sound.
We create a Büchi automaton from an LTL specification then

take the product between the TS and Büchi automaton to
create a PA, which encodes both environment topology and
the task specification. We use the PA to find a satisfying path
for the agent to reach an acceptance state in the LTL spec-
ification. This satisfying path is a list of MV policies for
the agent to execute throughout its environment traversal.
Comp-LTL is validated via simulation. We also show that
our MV policies do not produce any extra symbols, unless
necessary, and verify that the policies produce the expected
symbols. We also compare processing and training time to
other state of the art approaches, showing that our approach
is safer and more adaptable.

Future work includes demonstrating the effectiveness of
Comp-LTL on a variety of systems, including but not lim-
ited to a changing environment. When the agent receives
feedback that the environment has changed, it can update the
transition system to reflect the changes, and therefore update
its solution to solving the LTL specification and the corre-
sponding satisfying path. A limiting factor of our approach
is the agent does not necessarily take the shortest path in
the environment due to the zero-shot nature of our solution.
An extension to this work could investigate encoding region
proximity into the TS or other methods for evaluating the
choice of transitions.
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