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Abstract

Graph learning is naturally well suited for use in planning due
to its ability to exploit relational structures exhibited in plan-
ning domains and to take as input planning instances with
arbitrary number of objects. In this paper, we study the us-
age of graph learning for planning thus far by studying the
theoretical and empirical effects on learning and planning
performance of (1) graph representations of planning tasks,
(2) graph learning architectures, and (3) optimisation formu-
lations for learning. Our studies accumulate in the GOOSE
framework which learns domain knowledge from small plan-
ning tasks in order to scale up to much larger planning tasks.
In this paper, we also highlight and propose the 5 open chal-
lenges in the general Learning for Planning field that we be-
lieve need to be addressed for advancing the state-of-the-art.

1 Introduction
Learning for Planning (L4P) has gained significant inter-
est in recent years due to advancements of machine learn-
ing (ML) approaches across various fields, and also because
planning is one of the few problems in AI that has been
unsolved by deep learning and large models [VMH+23,
VMSK23, VSK24]. An aim of L4P involves designing au-
tomated, domain-independent algorithms for learning do-
main knowledge from small training problems for scal-
ing up planning to problems of arbitrary size [CdlRF+12,
TTTX18, TTTX20, DML+19, STT20, KS21, SBG22,
SBG23, MLTK23, CTT24a, CTT24b, WT24, HTT+24,
CT24a]. Planning tasks can exhibit arbitrary numbers of ob-
jects and are represented with relational languages which
begs for the use of learning approaches that operate on rela-
tional structures such as graphs.

In this paper, we recount the story so far for graph learn-
ing for planning. This will be done by studying the contri-
butions in the literature and of the authors thus far regarding
the three main components of graph learning for planning
as summarised in Fig. 1: (1) graph representations of plan-
ning tasks, (2) graph learning architectures, and (3) optimi-
sation formulations for learning. On the experimental side,
we present the GOOSE1 learning framework for leveraging
graph learning for planning.

1Graphs Optimised fOr Search Evaluation; code available at
https://github.com/DillonZChen/goose
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Figure 1: Typical graph learning for planning pipeline. (1)
Planning tasks are represented as graphs. (2) Graph learn-
ing architectures are used to embed graphs. (3) Learning is
performed via some optimisation criteria suited for making
predictions in planning.

This paper summarises previous [CTT24a, CTT24b,
HTT+24, CT24a] and current theoretical and experimental
work by the authors. The paper is structured by introducing
the general L4P problem setup in Section 2 and the formal
background and definitions in Section 3. Next, we highlight
contributions of the authors in graph learning for planning,
summarised as follows:

(1) We provide a taxonomy and theoretical comparison of
graph representations of planning tasks and their expres-
sive power with graph learning approaches. (Section 4)

(2) We introduce a classical ML approach which outper-
forms deep learning methods by several orders of magni-
tude for planning over various metrics. (Section 5)

(3) We present optimisers better suited for learning for plan-
ning by representing heuristic functions as rankings of
states rather than cost-to-go estimates. (Section 6)

Section 7 quantifies the contributions of our work by
showcasing experimental results. We conclude by highlight-
ing open problems and challenges for the general L4P field
in Section 8, and avenues for future work in the field.

2 Learning for Planning
Here we briefly introduce and describe the general Learning
for Planning (L4P) problem statement. The problem setup
of L4P involves learning knowledge from a set of training
problems in either a supervised, unsupervised, or reinforce-
ment learning fashion that may be helpful for planning. This
is in contrast to planning for each individual problem from

https://github.com/DillonZChen/goose
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Figure 2: Visualisations of generalisation setups for planning
and RL. The axis represents the number of objects in a plan-
ning task. Standalone planning and RL commonly follow the
task-specific setup (left), with some RL approaches gener-
alising across similar-sized tasks (middle). L4P approaches
primarily focuses on generalisation across arbitrary numbers
of objects (right).

scratch in typical planning setups [GB13], and learning to
solve a specific problem instance from rewards typical in
task-specific reinforcement learning [SB98] or across dif-
ferent initial states [FGT+22]. Furthermore, as illustrated in
Fig. 2, L4P aims to generalise across an arbitrary number of
objects in the planning domain, as opposed to transfer learn-
ing across similar-sized tasks or task-specific reinforcement
learning. The primary objective of L4P is that by performing
either few-shot training or bootstrapping, we can scale up to
much larger planning tasks which domain-independent plan-
ners cannot handle due to no free lunch.

We define an L4P problem as any tuple ⟨D, Ttrain, Ttest⟩
where D is a domain characterising a class of planning tasks,
Ttrain is a finite set of training tasks from D, and Ttest is a (pos-
sibly infinite) set of testing tasks from D. An L4P solution is
defined as a set of plans corresponding to problems in Ttest.

L4P opens a rich array of possibilities for how one may
come up with algorithms for solving the problem, and meth-
ods for evaluating such algorithms. We can characterise an
L4P algorithm as an algorithm with two components:

(1) a learner module, whose input is D and Ttrain and output
is a knowledge artifact, and

(2) a planner module, whose input is a task from Ttest and
the knowledge artifact, and output is a plan.

Fig. 3 illustrates the general L4P setup and pipeline. The
learner module learns from the training tasks and uses the
domain as prior knowledge to produce a knowledge artifact,
which can then be used by a planner module to plan for arbi-
trary tasks from Ttest. Common knowledge artifacts include
heuristic or value functions, and global policies.

3 Background
In this section, we provide the technical background and for-
malisms of planning used in works described in the paper.
However, they may be skipped upon first read as they are
not entirely necessary for a majority of the paper.

3.1 Planning Task
Let [[n]] denote the set of integers {1, . . . , n}. A planning
task can be understood as a state transition model [GB13]

D Ttrain

Ttest

learner

knowledge

plannertask plan

Figure 3: The general Learning for Planning (L4P) setup.

given by a tuple Π = ⟨S,A, s0, G⟩ where S is a set of states,
A a set of actions, s0 ∈ S an initial state, and G ⊆ S a set of
goal states. Each action a ∈ A is a function a : S → S∪{⊥}
where a(s) = ⊥ if a is not applicable in s, and a(s) ∈ S is
the successor state when a is applied to s. A solution for a
planning task is a plan: a sequence of actions π = a1, . . . , an
where si = ai(si−1) ̸= ⊥ for i ∈ [[n]] and sn ∈ G. A
state s in a planning task Π induces a new planning task
Π′ = ⟨S,A, s,G⟩. A planning task is solvable if there exists
at least one plan.

3.2 Planning Representation
We now describe the numeric planning formalism from
PDDL2.1 [FL03]. Numeric planning encapsulates classical
planning which is a compact, lifted representation of a plan-
ning task with the use of predicate logic and relational nu-
meric variables. More specifically, a numeric planning task
is a tuple Π = ⟨O,Σp,Σf ,A, s0,G⟩, where O denotes a set
of objects, Σp/Σf a set of predicate/function symbols, A a
set of action schemata, s0 the initial state, and G now the
goal condition. Details of the representation of actions in a
planning task induced by grounding action schemata from
A are not required for understanding the paper. We instead
focus on the representation of states and the goal condition.

States Each symbol σ ∈ Σp ∪ Σf is associated with an
arity arity(σ) ∈ N ∪ {0}. Predicates and functions take
the form p(x1, . . . , xnp) and f(x1, . . . , xnf

) respectively,
where the xi denotes the ith argument. Propositional and nu-
meric variables are defined by substituting objects into pred-
icate and function variables. A state s is an assignment of
values in {⊤,⊥} (resp. R) to all possible propositional (resp.
numeric) variables in a state. Following the closed world as-
sumption, we can equivalently represent a state as a set of
true propositions and numeric assignments.

Goal Condition A propositional condition is a positive
(resp. negative) literal x = ⊤ (resp. x = ⊥) where x is
a propositional variable. A numeric condition has the form
ξ⊵ 0 where ξ is an arithmetic expression over numeric vari-
ables and ⊵ ∈ {≥, >,=}. The goal condition G is a set of
propositional and numeric conditions which we denote Gp

and Gn, respectively. A state s satisfies the goal condition G
if s satisfies all its conditions.



Domain A planning domain is a set of planning tasks
which share the same set of predicates, functions and ac-
tion schemata. Constant objects are objects that occur in all
planning tasks in a domain.

3.3 Graphs
We denote a graph with categorical and continuous node fea-
tures and edge labels by a tuple G = ⟨V,E,Fcat,Fcon,L⟩.
We have that V is a set of nodes, E a set of edges, Fcat :
V → ΣV the categorical node features, Fcon : V →
R are the continuous node features, and L : E → ΣE
the edge labels. The neighbourhood of a node u ∈ V
in a graph is defined by Nι(u) = {v ∈ V | ⟨u, v⟩ ∈ E}.
The neighbourhood of a node u ∈ V in a graph
with respect to an edge label ι is defined by Nι(u) =
{v ∈ V | e = ⟨u, v⟩ ∈ E ∧ L(e) = ι}.

4 Graph Representations
Representations of planning tasks into ML models have a
great impact on both learning and planning performance.
Graph representations are particularly well-suited due to
their ability to model relational information of planning
tasks, as well as their ability to model arbitrarily large plan-
ning tasks. In this section, we unify the graph representations
of planning tasks in the learning for planning literature by
taxonomising graph definitions. Next, we summarise theo-
retical expressivity results concerning such graphs through
the lens of their ability to distinguish planning tasks in
conjunction with message passing graph neural networks
(MPNNs) [GSR+17].

4.1 Graph Taxonomy
The use of predicate logic in planning representations makes
it natural for several relational or graph representations to
arise from planning tasks. Indeed, early graph representa-
tions for planning tasks were geared towards constructing
algorithms or heuristic functions for planners, starting with
the planning graph which was a vital component of various
early planners [BF97, HN01, GS02], to the usage of various
different graphs and graph algorithms for computing trans-
formations and heuristics of planning tasks [Hel04, HD09],
and also to the use of detecting planning task symme-
tries [PZR11, SKH+15, SRWK19].

On the learning side, graph representations were heav-
ily relied on for representing planning tasks given the un-
bounded nature of planning task sizes. ASNets [TTTX18,
TTTX20] was the seminal work in this field, which made
use of MPNNs for learning policies for probabilistic plan-
ning tasks, and was recently extended for numeric plan-
ning [WT24]. Later MPNN approaches for planning focused
on learning heuristic or value functions [STT20, SBG22,
SBG23, CTT24a, CTT24b, CT24a], with exceptions being
learning policy rules [DML+19], portfolios [MFH+20] and
detecting object importance [SCC+21].

An underlying component of all such learning works is
that planning tasks are represented as some form of graph.
However, there is no such work which compares all such
definitions and provide a high-level view on similar or dif-
ferent characteristics of such representations. In our ongoing

work, we have identified following classification of many
existing graph representations of planning tasks:

(1) Grounded Graphs – nodes represent all possible ground
propositions and actions of planning tasks, and edges
are defined from precondition and effect relations of
actions. Example graphs include ASNets [TTTX18,
TTTX20], STRIPS-HGN [STT20] and the SLG in
GOOSE [CTT24a].

(2) Lifted Graphs with Instantiation Relation (IR) – nodes
represent task objects and only propositions that are true
in the state or the goal condition, and edges are defined
by the relations between object instantiations in ground
propositions. Example graphs include Muninn [SBG22]
and the ILG in GOOSE [CTT24a].

(3) Lifted Graphs with Predicate Relation (PR) – nodes rep-
resent only task objects, and edges are defined by the lo-
cation of pairs of objects in n-ary predicates for n ≥ 2.
This can also be viewed as a line graph of lifted graphs
with Object Relation (OR), where nodes represent only
task atoms, and edges between atoms sharing an object.
Example graphs include the PLOI graph [SCC+21] and
the Object Binary Structure [HŠ24].

4.2 Graph Hierarchy
On top of achieving a taxonomy, we would like to under-
stand whether there are any theoretical or practical relation-
ships between such graphs. Existing [CTT24a, CTT24b] and
ongoing work of authors have attempted to understand such
relationships through the lens of expressive power.

More specifically, we compare the expressive power of
graph representations based on planning tasks they can dis-
tinguish when used with MPNNs. Results primarily boot-
strap from existing works measuring the distinguishabil-
ity of existing general graph learning models by making
use of the well-known result that the colour refinement
or Weisfeiler-Leman (WL) algorithm subsumes MPNN ex-
pressivity [MRF+19, XHLJ19], with novelty lying in iden-
tifying the effect of graph representations of planning tasks.
However, we note that our results differ from graph learning
literature results which focus on expressiveness [MRM20,
MRKR22, ZSA22, WCW+23, AKG24] of architectures
rather than representations as the graph representations are
assumed to be fixed in graph learning datasets. Results are
summarised in Fig. 4 and key takeaways are:
• grounded representations implicitly encode instantiation

relations and thus are more expressive than lifted repre-
sentations with IR (green edges)

• not encoding planning domain information (predicates
and schemata) results in lower expressivity across dif-
ferent graph classes (red edges)

• lifted graphs with PR are incomparable to both lifted
graphs with IR, and grounded graphs under a weaker no-
tion of expressivity (blue edges)

5 Graph Learning Models
Another core component of a graph learning approach for
planning is the graph learning model itself. ML techniques
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X is used for multi-domain heuristics

Figure 4: Expressivity hierarchy of graph representations of
planning tasks. Colours of edges denote the key takeaways
classified in Section 4.2.

can generally be classified into deep learning and classi-
cal taxonomies. Deep learning [LBH15] pipelines automati-
cally compute parameterised encoder functions which con-
vert raw input data into latent features which they deem use-
ful for inferring outputs, generally using some form of neu-
ral network. In contrast, classical machine learning pipelines
predefine the feature extractor for converting raw input data
into feature vectors which are used by an arbitrary chosen
downstream inference model, such as a regression model or
decision tree.

Classical ML is Better Suited than Deep Learning
for Planning
The graph learning equivalent of such models include GNNs
and graph kernels. Due to the popularity of deep learning,
almost all recent works in learning for planning since the
introduction of ASNets employ some variant of GNN as the
underlying learning model. However, it has been shown very
recently that classical ML approaches such as linear graph
kernels significantly outperform GNN approaches for plan-
ning [CTT24b], over various metrics and often by several
orders of magnitude.

This approach was again motivated by the simple, yet
well-known result that the WL algorithm upper bounded the
expressivity of MPNNs [MRF+19, XHLJ19], and such an
algorithm can be converted into the WL graph kernel for
extracting features for graphs [SSVL+11]. The WL graph
kernel has the same polynomial computational complexity
as the typical MPNN but without the need to perform ma-
trix operations which increases its runtime often by a signif-
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Figure 5: Time to train after data preprocessing in log scale
(left) and number of learnable parameters (right) of GNN
and WL models on various planning domains.

icant constant factor. Furthermore, the features can be com-
bined with a simple linear model which lead to explainable
and very fast models in terms of training and evaluation.
Given that planning is a time-sensitive task and graph learn-
ing models may be called many times during planning, such
speedups from using classical ML approaches over deep
learning methods can lead to greater gains. It is also the case
that generating training labels for many and large planning
tasks is expensive such that one should use models with high
data efficiency.

Indeed, Fig. 5 shows how linear models using WL fea-
tures exhibit significantly faster training times and fewer pa-
rameters than GNN models, and Section 7 later provides re-
sults also showcasing better planning performance. We can
further contrast this with the era of scaling with LLMs ex-
hibiting parameters in the order of billions and training data
and times so significant that they exhibit large monetary
costs. This story concerning cheap models outperforming
large models still holds true in numeric planning [CT24a],
where one may think neural networks may be more suited to
reasoning over numbers as function approximators.

6 Optimisation
Typical machine learning tasks have a well defined problem
to solve, such as classification or regression, which usually
give rise to obvious loss functions to optimise. Conversely,
the focus of planning generally involves solving problems
efficiently, and in some cases optimising over solution qual-
ity. Also in contrast to Reinforcement Learning, planning
does not exhibit dense reward signals which can be used to
guide learning. Thus, there is not obvious method for decid-
ing the optimisation problem to solve for training learners
for planning.

6.1 Learning Policies
The seminal deep learning for planning model, AS-
Nets [TTTX18, TTTX20], learns policies for solving plan-
ning tasks in a RL-style fashion. A benefit of learning poli-
cies is that when learned correctly, execution of policies is
linear time in the size of the solution. Furthermore, some
planning domains only require a ‘trick’ to be learned in order
to solve them which can be represented by a neural network
architecture. One downside of learning policies is that ex-
ecution of such policies have no completeness guarantees,



meaning that execution of the policy may not return goal-
reaching plan if it exists. Thus, one usually combines the use
of policies with search to achieve completeness [STT+19].
Orthogonally one may allow a user to provide advice or
background knowledge to the learning planner for defining
the solution space for a planning domain, and instead focus
the learner on optimising solution quality, which is a more
difficult task than solving domains we may already know the
answer to [CHŠ24].

6.2 Learning Optimal Heuristic Functions
Common L4P approaches exploit the fact that most state-of-
the-art planners are based on heuristic search, giving rise to
the idea of learning reusable heuristic functions2 in a su-
pervised fashion for guiding search. Contrary to policies,
learned heuristic functions used with search algorithms such
as GBFS are complete and will always (eventually) return a
solution if one exists.

However, most approaches end up performing the naive
approach of trying to learn the optimal h∗ heuristic for a
domain from samples via mean squared error loss. This is
generally not the best idea as theoretical arguments can be
made from computational complexity theory, or explicit ex-
amples [CTT24a] stating that learning h∗ is not possible
for some domains, and furthermore, it may not even be
necessary to just solve planning tasks. This is because h∗

is derived from optimal solutions which are stronger than
arbitrary solutions for planning tasks. Furthermore, opti-
mising cost-to-go as mean squared error (MSE) estimates
does not match up with the original derivation of MSE loss
as maximising likelihood under Gaussian distribution as-
sumptions, which is not the case for planning heuristic val-
ues [NAMF24].

Nevertheless, the reason why researchers generally opt to
learn h∗ is because it is a canonical label for training tasks
that can be computed automatically and efficiently. More
specifically, it is easier to run an optimal planner on an ar-
bitrary task to receive optimal plans and h∗ labels, than to
manually label tasks with domain-dependent polynomial-
time heuristic functions that still guide search efficiently.
One such example of heuristics with this property are dead-
end avoiding, descending heuristics [SPRH16]. Another rea-
son for learning h∗ is that in the best case scenario where h∗

is learned correctly, problems can be solved in linear time
with respect to solution size.

6.3 Learning Ranking Functions
Garrett et al. [GKL16] proposed to frame heuristic functions
not as learning cost-to-go estimates but as ranking states for
expansion in GBFS. An advantage of ranking as a learning
task is that it aligns better with the intent of GBFS and fur-
thermore allows for a larger hypothesis space of solutions.
This idea was extended to neural network architectures in
independent works [CEKP23, HTT+24]. However, the latter
work identified that the data used in [CEKP23] is quadratic
in the training plans by encoding all possible ranking pairs,

2Drawing analogies to RL, this is similar to learning optimal
value functions across multiple tasks.
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Figure 6: Visualisations of heuristics that achieve zero
loss when optimising cost-to-go (left), classification rank-
ing (middle), and constrained optimisation ranking (right).
Yellow nodes correspond to optimal plan traces, and white
nodes the siblings of trace states.

but can be reduced to a linear number of rankings by exploit-
ing the fact that ranking is a transitive relation.

Classification Ranking can be interpreted as a classifica-
tion task on pairs of states. This has been modelled and
solved by RankSVMs in [GKL16] or by backpropagation
in [HTT+24]. Ranking formulations treating pairs of distinct
states (s, t) as single data point that can be labelled as either
1 or −1, where 1 means that s is ranked strictly better than t,
and vice versa for −1. True labels are derived from optimal
plan traces where (s, t) = 1 if t is either a parent or sibling
of s in an optimal plan trace. After learning is performed,
point-wise GBFS heuristic functions are extracted from the
model that remain faithful to the ranking relation.

Constrained Optimisation An issue with the classifica-
tion formulation is that the hypothesis space is still restric-
tive given that cross-entropy forces ranking differences to
be close to the value 1 even when this may not be neces-
sary to represent a useful ranking function. This issue can
be handled by formulating the problem as a constrained op-
timisation problem inspired by SVMs which allows addi-
tional flexibility in heuristic predictions as long as the rank-
ings represented by inequalities are preserved. Furthermore,
there is also room to model the difference between compar-
ing optimal states against its siblings which may be equally
good (≥) and against its parent which will always be worse
with positive action costs (>) inequalities. Such an example
can be seen in the LP encoding in [CT24a]. Fig. 6 illustrates
the differences between learning heuristic functions as cost-
to-go estimates, classification rankings, and constrained op-
timisation rankings.

7 Experimental Results
In this section, we provide an outline of experimental results
arising from our work on graph learning for both classical
(Section 7.1) and numeric (Section 7.2) planning, and sum-
marise key takeaways (Section 7.3).

7.1 Classical Planning
For classical planning, we use the benchmarks from the
Learning Track of the 2023 International Planning Compe-
tition (IPC23LT) [TAE+24]. The IPC23LT benchmarks em-
phasise generalisation across number of objects, where as
displayed in Fig. 7, the testing tasks are often up to an order
of magnitude larger than the training tasks in the number
of objects. Furthermore, sizes of planning task state spaces
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generally scale in a high polynomial variable with respect to
the number of objects. The primary metric we discuss in this
section is the coverage of graph learning planners across all
900 problems (10 domains × 90 problems) in the IPC23LT
within a fixed 30 minute time and 8GB memory limit for
testing, i.e. solving a single planning task. Fig. 8 displays
the coverage of various baseline planners and graph learn-
ing planner configurations abbreviated as follows:
• hFF: GBFS + the hFF heuristic [HN01]
• LAMA: a strong satisficing planner which uses multi-

ple queues, helpful actions, and lazy heuristic evalua-
tion [RW10]

• hGNN: GBFS + a GNN heuristic trained with mean
squared error loss on h∗ values, detailed in [CTT24b]

• hWL
cost: GBFS + a linear WL heuristic trained with Gaus-

sian Process Regression, detailed in [CTT24b]
• hWL

rank: GBFS + a linear WL heuristic trained with the LP
ranking formulation in [CT24a]

• hWL
grid: GBFS + a grid search over WL heuristic configura-

tions performed on each domain
• hWL

ptfl : GBFS + a parallel portfolio over WL heuristic con-
figurations

7.2 Numeric Planning
In [CT24a], we also performed experiments on numeric en-
codings of domains from the IPC23LT, with the exception
of two domains which have no benefit from numeric en-
codings. Fig. 8 displays the coverage of various baseline
numeric planners and graph learning planner configurations
abbreviated as follows:

• hmrp: GBFS + the hmrp heuristic [SSSG20]
• M(3h∥3n): state-of-the-art numeric planner with multi-

ple queues and novelty heuristics [CT24b]
• hGNN

cost : GBFS + a GNN heuristic trained with mean
squared error loss on h∗ values

• hGNN
rank : GBFS + a GNN heuristic trained with a differen-

tiable ranking loss
• hWL

cost: GBFS + a linear WL heuristic trained with Gaus-
sian Process Regression

• hWL
rank: GBFS + a linear WL heuristic trained with a LP

ranking formulation

7.3 Key Takeaways
Classical ML consistently outperform deep learning for
symbolic planning From Fig. 8, we observe that classi-
cal ML approaches using learned WL heuristics outperform
their deep learning counterparts over different optimisation
formulations in terms of coverage. In classical planning,
hWL

cost outperforms hGNN by 89 problems, while in numeric
planning, hWL

cost (resp. hWL
rank) outperforms hGNN

cost (resp. hGNN
rank )

by 60 (resp. 119) problems.

Learned ranking functions consistently outperform
learned cost-to-go estimates From Fig. 8, we note that
learned ranking heuristics outperform their cost-to-go esti-
mate counterparts over graph learning models in terms of
coverage. In classical planning, hWL

rank outperforms hWL
cost by

18 problems, while in numeric planning, hWL
rank (resp. hGNN

rank )
outperforms hWL

cost (resp. hGNN
cost ) by 66 (resp. 7) problems.

Learned heuristics with simple search are competitive
with strong planners From Fig. 8 for classical planning,
we observe that single instantiations of learned WL heuris-
tics (502 and 520) with GBFS alone do not outperform the
strong LAMA planner (557). However, taking the best con-
figuration for each domain (580), or using multiple threads
for parallelised portfolios (619), learned heuristics with sim-
ple search algorithms can be competitive with planners em-
ploying stronger search algorithms. However, for numeric
planning, learned heuristics with GBFS alone (445) are a lot
more competitive with numeric planners (369).

8 Open Challenges
The general L4P field is still in its infancy and poses mul-
tiple open challenges for future research. This is reflected
by the fact that there are still many domains and problems
in the tested benchmarks that remain unsolved for L4P ap-
proaches. We highlight the themes of core open challenges
that we believe are crucial for advancing the state-of-the-art.

I Expressivity
A core challenge that needs to be addressed by L4P ap-
proaches is the concept of expressivity: the ability of a
model to represent solutions to planning domains. Propo-
sitional planning is PSPACE-complete in general [Byl94]
but even many domains that are solvable in polynomial
time cannot be solved by learning approaches [SBG22,



CTT24a]. Recent L4P approaches use some variant of mes-
sage passing neural networks which are known to be theoret-
ically bounded by two-variable counting logics [MRF+19,
XHLJ19, BKM+20, Gro21], with some works studying
the effect of (approximate) higher-order graph learning ap-
proaches [CTT24b, SBG24] and performing distinguishabil-
ity tests of models [HŠ24, DSBG24].

However, this direction of research mirrors the graph
learning literature of building more expressive mod-
els [MRM20, KJM20, ACGL21, BHG+21, MRKR22,
FCL+22, ZSA22, ZJAS22, WCW+23, BFZB23, AKG24]
at the cost of runtime complexity, unclear generalisa-
tion performance and unclear relevance to downstream
tasks [MFD+24]. Furthermore, tractable graph learning ar-
chitectures alone have yet to be able to achieve expressivity
for the basic P-time complexity time which is not directly
achievable with finite-variable counting logics, and bounded
number of message passing layers.

Possible directions for research in expressivity involve
building or making use of models which can handle re-
cursion such as inductive logic programming [CDEM22]
or Generalised Planning [Sri10, CAJ19] approaches, mo-
tivated by the fact that P is captured by first-order logic
with transitive closure [Var82, Imm82]. Indeed, some earlier
works have studied rule-based approaches for learning poli-
cies or subgoals for planning [Kha99, GT04, IM19, BG24,
DSG24], with recent work explicitly studying the use of Dat-
alog for directly encoding planning domain solutions and
solvability [GRH24, CHŠ24].

II Generalisation
Another key challenge in L4P is understanding both theoret-
ical and empirical generalisation results for planning. L4P
is inherently an out-of-distribution task as testing tasks are
arbitrarily large and hence are drawn from a different dis-
tribution from bounded-size training tasks. Thus, exploit-
ing common generalisation theory tools such as VC dimen-
sion [Vap98] and Rademacher complexity [BM01], which
assume similar training and testing probability distributions,
for bounding generalisation theory is not straightforward.

Conversely, planning representations often contain infor-
mation encoded as rich relational or logical structures. Re-
lated to the concept of expressivity previously, researchers
have developed theoretical frameworks to better under-
stand the behaviour of planning domains such as nov-
elty width [LG12], correlation complexity [SPRH16], the
river measure [DH24a], and methods to bound such mea-
sures [DH24b]. These tools may provide insights for devel-
oping generalisation theory for planning.

III Optimisation
As discussed in Section 6, there is no clear consensus on
the best optimisation criteria for learning for planning as
this may depend on the domain, learning architecture and
also training data. Although ranking as discussed provides a
much better suited optimisation criteria for learning heuris-
tics for planning, it may be the case that learning other forms
of domain knowledge such as policies, subgoals [DSG24],
and search effort estimates [OL21, FGT+22] may be easier

and well-suited for specific domains. In other words, there
is no single optimisation criterion that is best for all plan-
ning domains. Theoretical and empirical results on optimi-
sation criteria that are well suited for specific planning do-
main characteristics are still unknown.

IV Collecting Data
Another challenge in L4P is the problem of deciding
how and what data to collect for training, mirroring the
exploration-exploitation tradeoff in RL [SB98]. This also re-
lates to the optimisation problem as the choice of optimisa-
tion criteria depends on the type of data collected. For exam-
ple, optimal plan traces are sufficient for learning cost-to-go
or ranking heuristic functions, but not optimal policies. This
is because there may be more than one optimal action to
take at each state that cannot be deduced from optimal plans.
ASNets [TTTX18, TTTX20] handles this issue similar to
the RL approach of exploring with a partially learned policy
and exploiting with a teacher planner as proxy for a reward
function. Learning subgoals as policy sketches requires ex-
panding entire state spaces [DSG24] which does not scale to
high predicate or asymmetric domains, even with symmetry
detection [DSBG24].

Similarly to the optimisation problem, theoretical and em-
pirical results on how to best collect and how much data to
collect for L4P are much appreciated.

V Fair Comparisons
A final challenge in L4P is the problem of fairly compar-
ing different methodologies and approaches, given the addi-
tional experimental variables of training data and training
time introduced when learning is involved. Thus, this re-
sulted in various researchers and groups employing different
benchmarks and evaluation strategies. The Learning Track
of the 2023 International Planning Competition [TAE+24]
was a welcome addition for standardising the set of plan-
ning domains and testing tasks. However, although training
tasks are given, the method of generating useful labels is not
standardised and instead competitors were given a fixed time
limit to both generate labels and train models. This leads to
an undesirable scheduling task of trading off between data
generation and training time.

Possible suggestions for future proposed benchmarks or
good practices to follow include (1) providing all baselines
with the same set of labelled training data generated by a
fixed time limit that benefits all models, and/or (2) recording
training time and amount of data used for all baselines.

9 Conclusion
Learning for Planning (L4P) is an increasingly popular re-
search field, with planning being one of the few problems in
AI that has been unsolved by deep learning and large mod-
els [VMH+23, VMSK23, VSK24]. This paper summarises
the contributions of the authors in L4P, with a specific focus
on using cheap and efficient graph learning approaches for
planning. Furthermore, we have identified 5 key challenges
in L4P that still remain unsolved and offer plenty of oppor-
tunities for future research for progressing the field.
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Ron Levie, Derek Lim, Michael M. Bronstein,
Martin Grohe, and Stefanie Jegelka. Position:
Future directions in the theory of graph ma-
chine learning. In ICML, 2024.

[MFH+20] Tengfei Ma, Patrick Ferber, Siyu Huo, Jie
Chen, and Michael Katz. Online planner se-
lection with graph neural networks and adap-
tive scheduling. In AAAI, 2020.

[MLTK23] Jiayuan Mao, Tomás Lozano-Pérez, Joshua B.
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[SBG23] Simon Ståhlberg, Blai Bonet, and Hector
Geffner. Learning general policies with pol-
icy gradient methods. In KR, 2023.
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