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Motivation

Relational state representation

Limited simulator budget per task

Stream of tasks not known in advance

Unknown, non-stationary environment dynamics

Driver Information
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Task 0: Deliver goods from warehouse to lab
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Problem Setting
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« Pre-novelty — +— Post-novelty —

Problem

* A stream of tasks My, ...

Number of Steps —

, M, with different initial states, goals (even different state/action

spaces) and a simulator whose transition function changes in an arbitrary fashion at
unknown intervals. Reward for reaching a goal is +1 and is O otherwise.

Objective

* Maximize the tasks accomplished (goals reached) within the simulator budget

* Need to adapt fast (minimize adaptive delay), and compute good solutions ( )
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Figure Source: J. Balloch et al., NovGrid: A Flexible Grid World for Evaluating Agent Response to Novelty, AAAI Spring Symposium 2022 on Designing Al for Open Worlds



Reinforcement Learning (RL)

* Collect experience from the simulator Action
and use it to solve tasks RL Agent Simulator

N

State

Q(s,a)=(1—-—a)0(s,a) +vy ’R(s, a) + max Q(s’, a’)]

Advantages Disadvantages

v'Low input requirements x Sample inefficient
v'Can handle non-stationarity x Not suitable for transfer



Learning and Planning

Model-based =~ Model Stochastic
RL Agent “ Planner
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State

Simulator <—
Action

* Learn a model using the simulator

* Use the model to compute a policy and execute it on the simulator

V*(s) = max [R(S, a) + yz 5(s,a,s")V*(s")




Challenges in the Learning and Planning Paradigm

1. How do we generate useful experience for learning models while ensuring
sample efficiency?

* Need to explore the state space to generate experience for learning good models
* |f not systematic, the model-learning process might be very sample inefficient

2. Is learning a model worth it rather than learning a policy using RL?
* Learning full models will learn irrelevant actions not useful for solving the current task
* Non-stationarity might render a lot of the computational effort expended wasted



Our Approach: Continual Learning and Planning (CLaP)
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* Use an active query-based learning approach for learning lifted PPDDL models
e Simulator’s implementation does not need to be PPDDL!

» Keeps track of uncertainty in models/discrepancies with experience

* Automatically generates investigative behavior for resolving model uncertainty
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* We employ goodness-of-fit (GoF) tests to quickly detect whether effects are
being sampled from the same distribution
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* Finally, we utilize a stochastic, model-based planner to compute policies and
use these computed policies to accomplish the task
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Theoretical Results
* We guarantee that our approach is sound (
* We also show monotonic improvement as more data is collected



Taxonomy of Model-based Learning

Known Drift Unknown Drift
Comprehensive (full) learning QACE-S (Verma et al; 2023) QACE (Verma et al; 2023)
Need-based Learning - CLaP

* Known/Unknown Drift: Whether changes about the transition system are advertised to the
agent

* Comprehensive/Need-based: Whether relearning must be done from scratch or whether
need-based updates can be made

Autonomous Capability Assessment of Sequential Decision-Making Systems in Stochastic Settings, NeurlPS-23



Empirical Evaluation

* 4 benchmark domains from the Intl. Probabilistic Planning Competition (IPPC)

* 5 tasks per domain (100k step budget per task, horizon=40)
* Different init states, goals, and transition functions between each task

* Non-stationarity: perform [1-6] changes in a random action from prev. task
* Modifications can either add/delete/modify preconditions or effects

Also used two additional baselines: Oracle and Q-Learning



Sample Efficiency (CLaP = solid blue line, higher better)

Unknown Drift + Need-based (CLaP (Ours))
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Sample Efficiency: We measure the total tasks accomplished within the simulator budget
e CLaP completes more tasks
* CLaP also closely matches the performance of the oracle
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Avg Reward (CLaP = solid blue line, higher better)
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Avg. Reward: We measure avg. reward obtained while executing tasks greedily

e CLaPs avg. reward converges to that of the Oracle
e Our approach can learn models that closely approximate the ground truth

* CLaP zero-shot transfers in some cases and few-shot transfers policies
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Adaptive Delay (CLaP = solid blue line, lower better)
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Adaptive Delay: We measure the total # of steps required for a steady-state performance of a
task within a fraction of the Oracle’s (10%)

* CLaP has much better generalizability
* It transfers knowledge such that very little learning is required
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Conclusions and Future Work

* CLaP is a sample-efficient method for solving tasks under non-stationarity
* Epistemic guidance helps learning models efficiently

Future Directions
* Include information about the goal in the model learning process
* What if priors on the transition function change and/or goals was available?

| Known Drift Unknown Drift

Comprehensive (full) learning QACE-S (Verma et al; 2023) QACE (Verma et al; 2023)
Need-based Learning CLaP
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Conclusions and Future Work
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Thank you!
Please stop by the poster!



