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Motivation
• Stream of tasks not known in advance

• Unknown, non-stationary environment dynamics

• Relational state representation

• Limited simulator budget per task
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Problem Setting

Problem
• A stream of tasks 𝑀!, … ,𝑀"with different initial states, goals (even different state/action 

spaces) and a simulator whose transition function changes in an arbitrary fashion at 
unknown intervals. Reward for reaching a goal is +1 and is 0 otherwise.

Objective
• Maximize the tasks accomplished (goals reached) within the simulator budget

• Need to adapt fast (minimize adaptive delay), and compute good solutions (minimize regret)

Best Possible 
Expected Reward

(Model-based Reinforcement Learning)

Figure Source: J. Balloch et al., NovGrid: A Flexible Grid World for Evaluating Agent Response to Novelty, AAAI Spring Symposium 2022 on Designing AI for Open Worlds 
3



Reinforcement Learning (RL)
• Collect experience from the simulator 

and use it to solve tasks

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛾 𝑅 𝑠, 𝑎 + max
!"

𝑄(𝑠", 𝑎")
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Advantages
üLow input requirements 
üCan handle non-stationarity

Disadvantages
× Sample inefficient
× Not suitable for transfer
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Learning and Planning

• Learn a model using the simulator

• Use the model to compute a policy and execute it on the simulator

𝑉∗ 𝑠 = max
!

𝑅 𝑠, 𝑎 + 𝛾2
$"

𝛿 𝑠, 𝑎, 𝑠" 𝑉∗(𝑠")
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Challenges in the Learning and Planning Paradigm
1. How do we generate useful experience for learning models while ensuring 

sample efficiency?
• Need to explore the state space to generate experience for learning good models
• If not systematic, the model-learning process might be very sample inefficient

2. Is learning a model worth it rather than learning a policy using RL?
• Learning full models will learn irrelevant actions not useful for solving the current task
• Non-stationarity might render a lot of the computational effort expended wasted
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Our Approach: Continual Learning and Planning (CLaP)
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• Use an active query-based learning approach for learning lifted PPDDL models
• Simulator’s implementation does not need to be PPDDL!

• Keeps track of uncertainty in models/discrepancies with experience
• Automatically generates investigative behavior for resolving model uncertainty
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• We employ goodness-of-fit (GoF) tests to quickly detect whether effects are 
being sampled from the same distribution
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• Finally, we utilize a stochastic, model-based planner to compute policies and 
use these computed policies to accomplish the task
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Theoretical Results
• We guarantee that our approach is sound (always learns correct models)
• We also show monotonic improvement as more data is collected
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Taxonomy of Model-based Learning
Known Drift Unknown Drift

Comprehensive (full) learning QACE-S (Verma et al; 2023) QACE (Verma et al; 2023)

Need-based Learning - CLaP

• Known/Unknown Drift: Whether changes about the transition system are advertised to the 
agent

• Comprehensive/Need-based: Whether relearning must be done from scratch or whether 
need-based updates can be made
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Empirical Evaluation

• 4 benchmark domains from the Intl. Probabilistic Planning Competition (IPPC)

• 5 tasks per domain (100k step budget per task, horizon=40)
• Different init states, goals, and transition functions between each task

• Non-stationarity: perform [1-6] changes in a random action from prev. task
• Modifications can either add/delete/modify preconditions or effects

Also used two additional baselines: Oracle and Q-Learning
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Sample Efficiency (CLaP = solid blue line, higher better)

Sample Efficiency: We measure the total tasks accomplished within the simulator budget
• CLaP completes more tasks
• CLaP also closely matches the performance of the oracle
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Avg. Reward (CLaP = solid blue line, higher better)

Avg. Reward: We measure avg. reward obtained while executing tasks greedily
• CLaPs avg. reward converges to that of the Oracle

• Our approach can learn models that closely approximate the ground truth

• CLaP zero-shot transfers in some cases and few-shot transfers policies
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Adaptive Delay (CLaP = solid blue line, lower better)

Adaptive Delay: We measure the total # of steps required for a steady-state performance of a 
task within a fraction of the Oracle’s (10%)
• CLaP has much better generalizability
• It transfers knowledge such that very little learning is required
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Conclusions and Future Work

• CLaP is a sample-efficient method for solving tasks under non-stationarity
• Epistemic guidance helps learning models efficiently

Future Directions
• Include information about the goal in the model learning process
• What if priors on the transition function change and/or goals was available?

Known Drift Unknown Drift

Comprehensive (full) learning QACE-S (Verma et al; 2023) QACE (Verma et al; 2023)

Need-based Learning ? CLaP
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Conclusions and Future Work

• CLaP is a sample-efficient method for solving tasks under non-stationarity
• Epistemic guidance helps learning models efficiently

Future Directions
• Include information about the goal in the model learning process
• What if priors on the transition function change and/or goals was available?

Thank you! 
Please stop by the poster!
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