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Can transformers in-context learn sequential
decision-making tasks?

Yes! ... and No



Our goal:
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Language Models are Few-Shot Learners
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Unique Challenges of Sequential Decision-Making

e Distributional Drift due to the stochasticity in the environment or the agent’s policy

— agent needs to generalize to new, potentially out-of-distribution states

e Unforgiving Environment with unrecoverable states where a single wrong action can be fatal
— agent needs to robustly imitate the expert policy with a high-degree of accuracy
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Unlike in supervised or self-supervised learning, taking the right action most of the time is not enough!




Generalization to New Sequential Decision
Making Tasks with In-Context Learning

Sharath Chandra Raparthy'*, Eric Hambro!, Robert Kirk':2, Mikael Henaff!:', Roberta
Raileanu' 2t

IFAIR at Meta, 2UCL

tJoint advising

Training autonomous agents that can learn new tasks from only a handful of demonstrations is a
long-standing problem in machine learning. Recently, transformers have been shown to learn new
language or vision tasks without any weight updates from only a few examples, also referred to as
in-context learning. However, the sequential decision making setting poses additional challenges
having a lower tolerance for errors since the environment’s stochasticity or the agent’s actions can
lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example
to show that naively applying transformers to sequential decision making problems does not enable
in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with
certain distributional properties leads to in-context learning of new sequential decision making tasks.
We investigate different design choices and find that larger model and dataset sizes, as well as more
task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context
learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is
able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of
demonstrations.
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Human-Timescale Adaptation in an
Open-Ended Task Space
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IN-CONTEXT REINFORCEMENT LEARNING
WITH ALGORITHM DISTILLATION
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What is In-Context Learning for Sequential Decision-Making?

Train Tasks
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Train and test tasks have different states, actions, dynamics, and reward functions

Raparthy et al. 2023



Training Pipeline
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Trajectory Burstiness

Different trajectories from different levels
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Input Sequence

N
° r r r Bursty Trajectory Sequence

Different trajectories from the same level

Raparthy et al. 2023



MiniHack Results

Episodic return
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Procgen Results

Episodic Return
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Burstiness, model size, data size, task diversity, stochasticity



Episodic Return

Trajectory Burstiness
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In-context learning consistently improves as we increase trajectory burstiness

Raparthy et al. 2023



Episodic Return
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[ In-context learning consistently improves as we increase the dataset size ]
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Episodic Return

Task Diversity
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[ In-context learning improves with task diversity until it plateaus (here at 12 tasks) ]
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Episodic Return

Model Size
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[ In-context learning improves with the model size until it plateaus (here at 30M parameters)
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Environment Stochasticity

Effect of Environment Stochasticity
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Training on sequences of identical trajectories from deterministic environments — brittle policies
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Training on sequences of different trajectories from stochastic environments — more robust policies
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Investigating Failure Modes

a. Highaction accuracy and high return

In-Weights Learning
a. Training set contains MazeWalk 9 so there is
some in-weights generalization to
MazeWalk 15 and 45

Unforgiving Environments
a. Evenif the model imitates the correct
actions from its context most of the time, a
single mistake is enough for the agent to
receive O reward (even late in the episode)

Distributional Drift
a. The agent drifts away from the context
early in the episode and cannot recover
since it is OOD for both train and context
states
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Can Transformers In-Context Learn Sequential Decision-Making Tasks?

- Yes, to some extent! A

Transformers can in-context learn new sequential decision-making
tasks if trained on bursty sequences of stochastic trajectories, using a large
enough model size, and a large and diverse enough dataset.

\_ J

4 )
But not always!
They still struggle in vast, stochastic or unforgiving environments with

distributional drift or unrecoverable states.
\_ J




Now What?

e Scale the number of in-context demonstrations to improve performance on “distributional drift” environments

e Uncertainty measures for conservative risk-averse policies in “unforgiving” environments

e Scale to more expressive and open-ended task spaces

e We need an error correction mechanism to learn what to do in new states and what actions not to take

e Online learning to the rescue! Combine offline and online learning



How well does offline learning generalize
relative to online learning?



The Generalization Gap
in Offline Reinforcement Learning

Ishita Mediratta''f, Qingfei You''!, Minqi Jiang'2, Roberta Raileanu' 2

IFAIR at Meta, 2UCL
tJoint first author

Despite recent progress in offline learning, these methods are still trained and tested on the same
environment. In this paper, we compare the generalization abilities of widely used online and
offline learning methods such as online reinforcement learning (RL), offline RL, sequence modeling,
and behavioral cloning. Our experiments show that offline learning algorithms perform worse on
new environments than online learning ones. We also introduce the first benchmark for evaluating
generalization in offline learning, collecting datasets of varying sizes and skill-levels from Procgen (2D
video games) and WebShop (e-commerce websites). The datasets contain trajectories for a limited
number of game levels or natural language instructions and at test time, the agent has to generalize
to new levels or instructions. Our experiments reveal that existing offline learning algorithms struggle
to match the performance of online RL on both train and test environments. Behavioral cloning is a
strong baseline, outperforming state-of-the-art offline RL and sequence modeling approaches when
trained on data from multiple environments and tested on new ones. Finally, we find that increasing
the diversity of the data, rather than its size, improves performance on new environments for all offline
learning algorithms. Our study demonstrates the limited generalization of current offline learning
algorithms highlighting the need for more research in this area.

Date: December 12, 2023
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Existing Offline Datasets and Methods

JIESQelInEl DM Control Suite / DM Locomotion | comotior | Atari 2600
Real World RL Suite Human
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Action space continuous continuous continuous discrete
Observation space state pixels pixels pixels
Exploration difficulty low to moderate high moderate moderate

Dynamics | deterministic / stochasitic deterministic deterministic stochastic

Singleton Environments
Not suitable for assessing generalization

Mediratta et al. 2023



Generalization to New Environments
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Generalization to New Environments: Expert Data
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[ Offline learning methods struggle to generalize to new environments, underperforming online RL at test time ]

Vv, 165C

=
W

Irmalized 1Q

[ Behavioral cloning is a competitive approach, outperforming both offline RL and sequence modeling methods ]

= ,
-§ 0.1 = .
rlv
5
0.0 BC BCT

Mediratta et al. 2023



Generalization to New Environments: Mixed Data
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Behavioral cloning also outperforms state-of-the-art offline RL and sequence modeling methods on both train
and test environments when learning from suboptimal data from multiple environments.
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Training and Testing on a Single Environment

Level Seed 40: Expert Dataset

- ==~ Dataset Average —== PPO performance on Level Seed 40
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Offline learning algorithms perform well when training and testing on a single environment,
but struggle to generalize and learn well when trained on multiple environments and tested on new ones
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When trained and tested on the same environment using expert data, BC performs best, as expected.
When using mixed data, offline RL is comparable to or better than BC, as expected.
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The Effect of Data Diversity on Generalization

0.6 0.6 0.6
c c (g
2 S 5
2 E 0.5 EO.S
s s s
S0.4 ©0.4 c0.4
o 3 o ] o
& N 8
= =0.3 503
E £ £
20.2 20.2 20.2
5 N 5
= - =
= —F— Train e 0.1 —F— Train < 0.1 —F Train
= —— Test = —+ Test = —+ Test
00300 200 800 1k 10k 100k 00300 4200 800 1k 10k 100k 00300 200 800 1k 10k 100k
Number of training levels Number of training levels Number of training levels
(a) BC (b) BCQ (c) DT

Increasing the diversity of the dataset
improves performance on new environments for all offline learning algorithms
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The Effect of Data Size on Generalization

Scaling Procgen 10M Expert Dataset
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Increasing the size of the dataset without also increasing its diversity
doesn’t lead to significant improvements on new environments for any of the offline learning algorithms
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Online RL > Behavioral Cloning > Offline RL > Sequence Modeling
wrt zero-shot generalization to new environments



Why does online generalize better than offline learning?

One hypothesis:
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On the Importance of Exploration for
Generalization in Reinforcement Learning

Yiding Jiang* J. Zico Kolter Roberta Raileanu
Carnegie Mellon University Carnegie Mellon University Meta Al Research
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Explore to Generalize in Zero-Shot RL
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Technion — Israel Institute of Technology



Can Transformers In-Context Learn Sequential Decision-Making Tasks?
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Yes, to some extent!
Transformers can in-context learn new sequential decision-making

tasks if trained on bursty sequences of stochastic trajectories, using a large

enough model size, and a large and diverse enough dataset.
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But not always!

distributional drift s common or a single bad action can be fatal.
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They still struggle in vast, stochastic or unforgiving environments where
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Thank you!
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Policy Visualisations

Multi-Trajectory Transformer

Single-Trajectory Transformer
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