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Reinforcement Learning

• Task: Maximize rewards in an unknown environment
• Only given: the state-action interface
• Much research: learn policies given an arbitrary interfaces
• Our research: discover interfaces that are easier to learn

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.2/20



Value-Based RL

State

Reward

Action

Agent

Learn: a control policy

“What action should I choose in each state?”
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Value-Based RL

State

Reward

Action

PassMove Shoot

[Game State]

Learn: Q : S × A → R

“How much reward can I earn starting at s by choosing a?”
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Value-Based RL

State

Reward

Action

PassMove Shoot

MyPosition

AllyPosition1

AllyPosition2

GoaliePos

OppPosition1

OppPosition2

Score

Energy

Time

Learn: Q : F1 × F2 × F3 × F4 × F5 × F6 × F7 × F8 × F9 ×A → R

In practice: high-dimensional state spaces
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Value-Based RL

State

Reward

Action

PassMove Shoot

MyPosition

AllyPosition1

GoaliePos

OppPosition1

Energy

Learn: Q : F1 × F2 × F4 × F5 × F9 × A → R

State abstraction: ignore the irrelevant dimensions
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State abstraction as qualitative knowledge

• Traditional sources of abstraction
◦ Prior knowledge from a human
◦ Computation from a given model

• Automatic discovery?
◦ But discovering structure is harder than learning policies
◦ Our approach: knowledge transfer

1. Discover abstractions in easy domains

2. Transfer abstractions to hard domains
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

• Prior work
◦ ... if the states share the same abstract one-step model.
◦ Requires the true model of the environment
◦ Depends on the global abstraction
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

• Prior work
◦ ... if the states share the same abstract one-step model.
◦ Requires the true model of the environment
◦ Depends on the global abstraction

• Our work
◦ ... if the states share the same optimal action.
◦ Requires a learned policy for the environment
◦ Independent of abstraction at other states

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.5/20
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The Taxi domain

• Four features
◦ Taxi x coordinate
◦ Taxi y coordinate
◦ Current passenger location
◦ Passenger destination

• Six actions: North, South, East, West, Pick Up, Put Down
• Optimal policy:

◦ Navigate to the passenger’s location
◦ Pick up the passenger
◦ Navigate to the passenger’s destination
◦ Put down the passenger
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Policy irrelevance with real data

Relevance of the passenger destination. . .
• When the policy is learned from data
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Policy irrelevance from action-value comparisons

Q(s′, a) ≥ Q(s′, a′)

When should we ignore a set of features F at a state s?
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Policy irrelevance from action-value comparisons

∃a ∀s′ ∈ [s]F ∀a′ Q(s′, a) ≥ Q(s′, a′)

• Action a is better than action a′ at state s′

• Action a is optimal at state s′

• Action a is optimal at every state s′ ∈ [s]F

• Some action is optimal at every s′ ∈ [s]F

• Features F are policy irrelevant at s

When should we ignore a set of features F at a state s?

([s]F is the set of states obtained from s by varying over F )
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Robust action-value comparison via sampling
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Robust action-value comparison via sampling

Q(s′, a)
?

≥ Q(s′, a′)

• Compare samples of estimates, not individual estimates!
• Method 1: Statistical hypothesis testing

◦ Solve task repeatedly with a value-based RL algorithm
◦ Low computational but high sample complexity

• Method 2: Monte Carlo simulation
◦ Construct a Bayesian model from an experience trace
◦ Low sample but high computational complexity

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.10/20



Partial state abstractions

Are features F relevant at state s?

↓
At what states is each set of features relevant?

• Train a binary classifier for certain sets of features
• Learn when each set of features is irrelevant
• Naive application: ignore F at classified states

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.11/20



Transferring abstractions to novel domains

• Sources of error for straightforward state aggregation
◦ Statistical testing error
◦ Generalization error of the learned classifiers
◦ Novelty in the transfer domain
◦ Disruption of value-function semantics!

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.12/20



Results in the Taxi domain

• Original 5 × 5 domain
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Conclusions

• Abstraction discovery as problem reformulation
• A new basis for state abstraction: policy irrelevance

◦ Statistical testing methods
◦ Trajectory-based discovery algorithm

• Safe transfer of state abstractions to novel domains
◦ Encapsulation inside temporal abstractions
◦ Synergy of temporal and state abstractions

Nicholas K. Jong and Peter Stone, Learning Agents Research Group – p.16/20



Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone

Causal Dynamics Learning for Task-
Independent State Abstraction 
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dense dynamics model

5

only keep causal edges, robust to outliers, 
e.g., clock outliers won’t affect door A & B prediction

generalizes badly
due to spurious correlation

Motivation

causal dynamics learning (CDL)



6

S: state space (known, high-level variables are given)

We leave handling low-level, partially-observable state 

space (e.g., images) as future work.

A: action space (known)

P: transition probability (not known)

Problem Setup



Goals

1. Learn a causal dynamics model from transition 

data

are parents of     during the data generation 

process.
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Goals

1. Learn a causal dynamics model from transition 

data

2. Split state variables into three categories

Sc: space of controllable state variables

Sr: space of action-relevant state variables

Si: space of action-irrelevant state variables

8

Problem Setup



9

Problem Setup

Goals

1. Learn a causal dynamics model from transition 

data

2. Split state variables into three categories

3. Derive a state abstraction by omitting action-

irrelevant state variables



Goals

1. Learn a causal dynamics model from transition 

data

2. Split state variables into three categories

3. Derive a state abstraction by omitting action-

irrelevant state variables

4. Use the abstracted causal dynamics to learn 

(many) downstream tasks
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Problem Setup



Bisimulation[1] : bisimulation considers two states the same                         if

11
[1] Ravindran, B., 2004; Li, L., 2009

Related Work
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● Bisimulation is reward-specific (applicable to limited tasks).
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Compared to CDL,

● Bisimulation is reward-specific and thus applicable to limited tasks.

● Most bisimulation work still uses dense dynamics, leading to poor generalization.

bisimulation CDL

Related Work
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Method

So far, the key of CDL is to learn a causal dynamics model.



So far, the key of CDL is to learn a causal dynamics model.

Specifically, for each state variable    , how to determine if a 

state variable     is one of its parents?
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Method

Learn and predict                        &                                 using generative models, but 

there will be       models to train... 



Learning                        &                                 needs to train       models.

With a mask        and an element-wise maximum module, one network can represent all 

generative models in the form of                .
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After training, to represent the causal model                     , we can adjust the 

mask to select causal parents of     only.

23

Method
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Causal Dynamics 
Learning 

(CDL)

Data collection policy

transition buffer 

Learn causal dynamics

Build the causal graph and state abstraction Learn downstream tasks with 
the abstracted causal dynamics
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Does each baseline learn a causal model?

MLP: multi-layer perceptron

[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020

Experiments
Baselines



Synthesized environment 
– with different underlying graphs
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Synthesized environment 
– with different underlying graphs
– as action changes the color of one node, colors of all its descendants will also 

change.

Action-irrelevant variables: positions sampled from N(0, 0.01).

26

Experiments
Chemical Environment[4]

[4] Ke et al., Neurips 2021.
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State Variables:
- end-effector (eef)
- gripper (grp)
- the movable object (mov)
- the unmovable object (unm)
- the randomly moving object (rand)
- non-interactable markers (mkr1-3)

Action dimensions:
- end-effector target
- gripper open/close
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At the object level, the learned dependence is (subjectively) 
reasonable.

Results
Causal Graph Accuracy
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Results
Causal Graph Accuracy
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Results
Dynamics Generalization

Causal dynamics generalizes 

best in unseen states.
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Results
Dynamics Generalization

Causal Dynamics Learning (Ours)

Regularization

Graph Neural Network

Modular

Monolithic

ID: in-distribution states

OOD: out-of-distribution states

Causal dynamics generalizes 

best in unseen states.



Scale to high-dimensional observations (e.g. images)?

- Learn disentangled representations, then learn dynamics in the representation 

space

Causal dependencies are learned globally only.

- Learning local independencies to further sparsify the dynamics.

32

Limitations and Future Directions



Contact Information:
Zizhao Wang: zizhao.wang@utexas.edu

Link to the Paper: https://arxiv.org/pdf/2206.13452.pdf Scan to read the paper

Causal Dynamics Learning for Task-
Independent State Abstraction 

Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone



State Abstraction Discovery for Generalization

Learn which state variables to ignore (and when)

− based on policy irrelevance (IJCAI 2005)

− based on causal dynamics (ICML 2022)

Peter Stone Abstraction Discovery UTAustin, SonyAI 5



Causal Dynamics Learning for

Task-Independent State Abstractions

Peter Stone

Learning Agents Research Group (LARG)

Department of Computer Science

The University of Texas at Austin

(also Executive Director of Sony AI America)

Peter Stone Abstraction Discovery UTAustin, SonyAI 6
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