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My Research Question

To what degree can autonomous
intelligent agents learn in the presence of
teammates and/or adversaries in real-time,
dynamic domains?
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State Abstraction Discovery for Generalization
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State Abstraction Discovery for Generalization

@ Learn which state variables to ignore (and when)
— based on policy irrelevance (IUCAI 2005)
— based on causal dynamics (ICML 2022)
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State Abstraction Discovery from Irrelevant State Variables
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Reinforcement Learning

action
a;

{ Environment ]

* Task: Maximize rewards in an unknown environment

* Only given: the state-action interface

* Much research: learn policies given an arbitrary interfaces
* QOur research: discover interfaces that are easier to learn

|
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Value-Based RL

4 )

State

Reward

- Agent

Action

N J
Learn: a control policy

“What action should | choose In each state?”
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Value-Based RL
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Action
v |
Move Pass Shoot
\ Y

Learn: @ : S x A—R

“How much reward can | earn starting at s by choosing a?”
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Value-Based RL
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Learn: QZFl><F2><F3><F4><F5XF6><F7XF8XF9><A%R

In practice: high-dimensional state spaces
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Value-Based RL
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Learn: Q:F1><F2><F4XF5XF9><A—>R

State abstraction: ignore the irrelevant dimensions
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State abstraction as qualitative knowledge

* Traditional sources of abstraction
° Prior knowledge from a human
© Computation from a given model
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State abstraction as qualitative knowledge

* Traditional sources of abstraction
° Prior knowledge from a human
© Computation from a given model

* Automatic discovery?
© But discovering structure is harder than learning policies
° QOur approach: knowledge transfer

1. Discover abstractions in easy domains
2. Transfer abstractions to hard domains

|
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

* Prior work
o ... If the states share the same abstract one-step model.
© Requires the true model of the environment
° Depends on the global abstraction
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Policy irrelevance: A new basis for state abstraction

When should we ignore a feature?

* Prior work
o ... If the states share the same abstract one-step model.
© Requires the true model of the environment
° Depends on the global abstraction

* Our work
o ... If the states share the same optimal action.
© Requires a learned policy for the environment
° Independent of abstraction at other states

|
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The Taxi domain

®* Four features . .

° Taxi x coordinate a
° Taxi y coordinate

o Current passenger location r
© Passenger destination
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The Taxi domain

®* Four features . .

° Taxi x coordinate

° Taxi y coordinate

o Current passenger location

© Passenger destination r

* Six actions: North, South, East, West, Pick Up, Put Down
* Optimal policy:

© Navigate to the passenger’s location

° Pick up the passenger

© Navigate to the passenger’s destination
° Put down the passenger

|
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. ..
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Policy irrelevance in the Taxi domain

Relevance of the passenger destination. ..
* When the passenger is not inside the taxi
* When the passenger is inside the taxi
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Policy irrelevance with real data

Relevance of the passenger destination. ..
* When the policy is learned from data
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Policy irrelevance with real data

Relevance of the passenger destination. ..
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Policy irrelevance with real data

Relevance of the passenger destination. ..
When the policy is learned from data

12.09 | 13.12 9.44 |

! ! !
12.39__0 13£'O 9]f_0
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Policy irrelevance from action-value comparisons

Q(s',a) > Q(s', a)

When should we ignore a set of features F' at a state s?
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Policy irrelevance from action-value comparisons

Va' Q(s',a) > Q(s',d’)

e Action a is better than action «’ at state s’
* Action a is optimal at state s’

When should we ignore a set of features F' at a state s?
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Policy irrelevance from action-value comparisons

Vs' € [s]lp Va' Q(s',a) > Q(s',d)

* Action a is better than action o’ at state s’
* Action a is optimal at state s’
* Action a is optimal at every state s’ € [s|g
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Policy irrelevance from action-value comparisons

Jda Vs’ € [s]p Va' Q(s',a) > Q(s',d)

* Action « is better than action «’ at state s’
* Action a is optimal at state s’

* Action a is optimal at every state s’ € [s|g
* Some action is optimal at every s’ € [s]g
* Features F' are policy irrelevant at s

When should we ignore a set of features F' at a state s?

([s|F is the set of states obtained from s by varying over F')
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Robust action-value comparison via sampling

Qs a) > Q(s', d')
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Robust action-value comparison via sampling
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* Compare samples of estimates, not individual estimates!
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Robust action-value comparison via sampling

{?

Q(s',a) > Q(', a')

* Compare samples of estimates, not individual estimates!

* Method 1: Statistical hypothesis testing
© Solve task repeatedly with a value-based RL algorithm
° Low computational but high sample complexity

* Method 2: Monte Carlo simulation
© Construct a Bayesian model from an experience trace
° Low sample but high computational complexity

|
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Partial state abstractions

Are features F' relevant at state s?

l

At what states Is each set of features relevant?

* Train a binary classifier for certain sets of features
* Learn when each set of features is irrelevant
* Naive application: ignore F' at classified states

|
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Transferring abstractions to novel domains

* Sources of error for straightforward state aggregation
o Statistical testing error

°o Generalization error of the learned classifiers
° Novelty in the transfer domain
° Disruption of value-function semantics!

|
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Results in the Taxi domain

* QOriginal 5 x 5 domain
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Conclusions

* Abstraction discovery as problem reformulation

* A new basis for state abstraction: policy irrelevance
o Statistical testing methods
° Trajectory-based discovery algorithm

e Safe transfer of state abstractions to novel domains
° Encapsulation inside temporal abstractions
© Synergy of temporal and state abstractions

|
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Real-world dynamics are usually sparse.
- The transition of each state variable only depends on a few state variables.

For example, for an environment with a robot, two doors and a clock on the wall:
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B Motivation

dense dynamics model
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B Motivation

dense dynamics model

t t+1

generalizes badly
due to spurious correlation

causal dynamics learning (CDL)

H—D

t t+1

only keep causal edges, robust to outliers,
e.g., clock outliers won’t affect door A & B prediction



¥ Problem Setup

<SS, AP >

S: state space (known, high-level variables are given)
We leave handling low-level, partially-observable state
space (e.g., images) as future work.

A: action space (known)

P: transition probability (not known)

elelolololo
OOOOE



¥ Problem Setup

Goals
1. Learn a causal dynamics model from transition
data

d .
P(St+1 |3t: a't) — Hzil ‘P(S;LH-l ‘PASi )
PA ; are parents of st during the data generation
process.

:



¥ Problem Setup

Goals
1. Learn a causal dynamics model from transition
data

2. Split state variables into three categories
S=8°XS°X S§*

: space of state variables
: space of state variables
: space of action-irrelevant state variables
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¥ Problem Setup

Goals

1.

2.

Learn a causal dynamics model from transition
data

Split state variables into three categories
Derive a state abstraction by omitting action-
irrelevant state variables

1
'St >S4

2 2
St > 8111

3 3
St > Sii1

4 4
St > S8i11

5 5
St > 8141

SN ON

1
St > St

2 2
S¢ > 8511

3 3
S¢ ™ 8i 11

4 4
St > 811



¥ Problem Setup

Goals
1. Learn a causal dynamics model from transition
data
2. Split state variables into three categories
3. Derive a state abstraction by omitting action-
irrelevant state variables
4. Use the abstracted causal dynamics to learn

(many) downstream tasks

causal
dynamics

reward
learning

4 4
St > 8¢ 11

\_

task A

task B

L

planning method
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¥ Related Work

Bisimulation! ¢ : bisimulation considers two states the same ¢(z) = ¢(x') if

R(z,a) = R(2',a),
Z P(z"|xz,a) = Z P(z"|x’, a)

x'’ep—1(s) z'’€p1(s)

[1] Ravindran, B., 2004; Li, L., 2009
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¥ Related Work

Compared to CDL,
e Bisimulation is reward-specific (applicable to limited tasks).
e.g., the bisimulation abstraction learned from “opening door A” can’t be used for
“opening door B.

7 t+1
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¥ Related Work

Compared to CDL,
e Bisimulation is reward-specific and thus applicable to limited tasks.

In contrast, CDL’s abstraction can be applied to a larger range of tasks.
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¥ Related Work

Compared to CDL,

e Bisimulation is reward-specific and thus applicable to limited tasks.

e Most bisimulation work still uses dense dynamics, leading to poor generalization.

bisimulation

CDL

t t+1

14



¥ Method

So far, the key of CDL is to learn a causal dynamics model.

P(3t+1 |Sta a't) — Hfil P(Si+1 |PAsi )

¢
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¥ Method

So far, the key of CDL is to learn a causal dynamics model.
P(3t+1 |Sta a't) — Hfil ,P(Si-|—1 |PAsi )

Specifically, for-each state variable sj, how to determine if a
state variable s* is one of its parents?

N
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N
N
N
N
N
N
3
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N
~
~
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=" e
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.
.
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. se
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¥ Method

Key idea: determine if the causal edge s — sf 1 Exists with a conditional
independence test.

Skipping assumptions and proofs,
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Theorem 1
5§ 4L 57, |{s:/5}, ac}, then s} — ],
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¥ Method

Key idea: determine if the causal edge si — 3£+1 exists with a conditional
independence test.

Theorem 1 If s }4{ Sii1118t/84,ai}, then sp — 83 ;.

In other words, is si needed to predict sgﬂ?

P(3§+1 8¢, ) = P(3g+1 |{3t/3§a a:})

18



¥ Method

Learn and predict p(.‘sj;rl 8¢, a:) & p(sf+1 [{s/s'}+, a;) using generative models, but
there will be dZ, models to train...

19



¥ Method

Learning p(sgﬂ\st,at) & p(sfﬂ\{s/si }t,at) needs to train d5 models.
With a mask Mj and an element-wise maximum module, one network can represent all
generative models in the form of p(s; . ;|-).

20



¥ Method

: J j i S )
Learning p(s;, (8¢, at) & p(8;,11{8/s" }+,at) needs to train d models.
With M ] and an element-wise maximum module, one network can represent all models.
J
For example, to represent p(s;, ;|s¢,a:),
inputs

a¢
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Learning p(s;_ 1 |s¢,a:) & p(si.;[{s/5'}+,at) needs to train d5 models.
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¥ Method

After training, to represent the causal model p(sf " |PAf ), we can adjust the
mask to select causal parents of s’ only.
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¥ Experiments
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1
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—
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MLP: multi-layer perceptron

at

Modular

MLP

MLP

MLP

[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020

Baselines
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> St+1

> 811
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¥ Experiments
Baselines

Monolithic Modular Regularization!?!
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MLP: multi-layer perceptron

[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020



¥ Experiments
Baselines
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1 1 d c 1
: i Lo :
! d 1 : d 1
] MLP > g, i : by g%s .
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MLP: multi-layer perceptron

[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020
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Does each baseline learn a causal model?
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[2] Wang et al., Neurips 2021. [3] Kipf et al., ICLR 2020
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B Experiments
Chemical Environmentl4]

Synthesized environment
— with different underlying graphs

O-O~0O~0

chain

>

collider full

[4] Ke et al., Neurips 2021.
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¥ Experiments

Chemical Environment“!

Synthesized environment
— with different underlying graphs

— as action changes the color of one node, colors of all its descendants will also

change.

O-O-0-0

chain

collider full

collider

[4] Ke et al., Neurips 2021.

%D D/é

—>

O
>

O

O

action: set square to red
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B Experiments
Chemical Environmentl4]

Synthesized environment

— with different underlying graphs
— as action changes the color of one node, colors of all its descendants will also

change.
Action-irrelevant variables: positions sampled from N(O, 0.01).

0000 o) S

DZ<> 4
%}@ SIS

collider full :
collider action: set square to red

[4] Ke et al., Neurips 2021.
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State Variables:
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B Experiments
Manipulation Environment

State Variables:

- end-effector (eef)

- gripper (grp)

- the movable object (mov)

- the unmovable object (unm)

- the randomly moving object (rand)
- non-interactable markers (mkr'-9)

Action dimensions:
- end-effector target
- gripper open/close
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B Results

Causal Graph Accuracy

At the object level, the learned dependence is (subjectively)
reasonable.

mkr >mkr?
mkr > mkrj
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B Results

Causal Graph Accuracy

Table 1. Causal Graph Accuracy (in %) for CDL and Reg

Environment CDL (Ours) Reg
Chemical (Collider) 100.0 =0.0 994 +£04
Chemical (Chain) 100.0 = 0.1 99.7 £0.1
Chemical (Full) 99.1 + 0.1 977+ 04
Manipulation 90.2 03 844 +0.5
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B Results

Dynamics Generalization

Causal dynamics generalizes
best in unseen states.
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B Results

Dynamics Generalization

chemical (collider)
97 94 97 96 97 97 g4

. . 65
Causal dynamics generalizes
best in unseen states.
[ Causal Dynamics Learning (Ours)
Regularization

Graph Neural Network
B Modular chemical (full)
Bl Monolithic 77 43 76 75 76

W

mean accuracy
mean accuracy

ID: in-distribution states
OOQOD: out-of-distribution states

mean accuracy
log-likelihood

I

chemical (chain)
g 137172

I5_

manipulation

I~
D

15151

I‘,

-1751
-295

=

ID 00D
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¥ Limitations and Future Directions

Scale to high-dimensional observations (e.g. images)?

- Learn disentangled representations, then learn dynamics in the representation
space

Causal dependencies are learned globally only.

- Learning local independencies to further sparsify the dynamics.
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State Abstraction Discovery for Generalization

@ Learn which state variables to ignore (and when)
— based on policy irrelevance (IUCAI 2005)
— based on causal dynamics (ICML 2022)

Peter Stone Abstraction Discovery UTAustin, SonyAl 5
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