Reinforcement Learning with Augmentation Invariant Representation: A Non-contrastive Approach

Nasik Muhammad Nafi

William Hsu

Department of Computer Science, Kansas State University

GenPlan Workshop at NeurIPS 2023

Generalization in RL

- Earlier RL agents were trained and tested on the same setting. Overfitting was appreciated implicitly!
- Generalization to similar but unseen scenarios/dynamics/tasks.

Traditional ALE environments

Coinrun Environment

Object Manipulation

Environments to evaluate RL generalization

Problem Statement

- **Zero-shot generalization** to unseen levels of procedurally generated environments.
- Training on a limited number of levels sampled from the distribution \mathcal{D} while testing on the full distribution.

Heist

Bigfish

Dodgeball

Jumper

Example of Procgen Benchmark

Approaches to Use Data Augmentation in RL

Motivation

• Representations of similar states may get pushed apart in the latent space if contrastive learning is used.

Current Observation

From different episode

Augmented

Same spot of the road in different weather condition From CARLA simulator

RL with Augmentation Invariant Representation

- Seeks to learn similar latent representation for augmented observations.
- Alternates optimization between non-contrastive loss and RL objective.

Overall Algorithm: RAIR

Algorithm 1 RAIR: Reinforcement learning with Augmentation Invariant Representation

1: Hyperparameters: total number of updates N, replay buffer size T, minibatch size M, encoder network params ϕ , params for actor-critic heads θ , image transformation t_r with parameters v_i .

```
2: for n = 1, ..., N do
           Collect \mathcal{D} = \{(s_t, a_t, r_t, s_{t+1})\}_{t=1}^T using \pi(\theta)
 3:
           for j = 1, \ldots, \frac{T}{M} do
 4:
                 \{(s_t, a_t, r_t, s_{t+1})\}_{t=1}^M \sim \mathcal{D}
 5:
                 for i = 1, ..., M do
 6:
 7:
                      v_i \sim \mathcal{H}
                       z_i \leftarrow f_\phi(s_i)
 8:
                      \hat{z_i} \leftarrow f_\phi(t_r(s_i; v_i))
 9:
                 end for
10:
                 J(\phi) = \frac{1}{M} \sum_{i=1}^{M} 1 - \cos_s(z_i, \hat{z}_i)
11:
                 Train encoder with J(\phi)
12:
                 J_{PPO}(\theta,\phi) \leftarrow J_{\pi} + \alpha_{\rm v} L_{\rm V} - \alpha_{\pi} S_{\pi}
13:
                 Train full actor-critic network with J_{PPO}(\theta, \phi)
14:
15:
           end for
16: end for
```

Evaluation on Procgen Benchmark: Crop

Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for *crop* data augmentation in Procgen environments. Mean and standard deviations are calculated over 5 trials with different seeds.

Evaluation on Procgen Benchmark: Grayscale

Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for *grayscale* data augmentation in Procgen environments. Mean and standard deviations are calculated over 5 trials with different seeds.

Evaluation on Procgen Benchmark: Color Jitter

Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for *color jitter* data augmentation in Procgen environments. Mean and standard deviations are calculated over 5 trials with different seeds.

Takeaways

- Non-contrastive loss with only positive pairs can effectively facilitate representation learning in RL.
- RAIR can unlock the potential of different data augmentation techniques as opposed to earlier methods.
- Simple loss function like L1 loss can be used as similarity metric.
- Using non-contrastive loss as an auxiliary one is often susceptible to high variance across trials and performance degradation.
- Momentum encoder is indeed not necessary with non-contrastive loss.

Thank You!