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Generalization In RL

e Earlier RL agents were trained and tested on the same
setting. Overfitting was appreciated implicitly!

e Generalization to similar but unseen
scenarios/dynamics/tasks.
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Traditional ALE environments

Coinrun Environment Object Manipulation

Environments to evaluate RL generalization




Problem Statement

e Zero-shot generalization to unseen levels of procedurally
generated environments.

e Training on alimited number of levels sampled from the
distribution D while testing on the full distribution.

Bigfish Dodgeball

Example of Procgen Benchmark



Approaches to Use Data Augmentation in RL

/ Data Augmentation A

Reinforcement
Learning
RAD (Laskin et al., 2020)
o0
0 / 0,
q k f
l l Tt ‘/t DrAC 1th ‘/t Regularize the
P policy and value
\ / 71'{ = T th = Vt \ /‘ function

Encoder Momentum Encoder

[ (@) ' =j;’A(U‘)

= o
q Jo\Y% 0‘ - ,"”‘ (] = '")(’q ucs :jlgen?enlalion
T {fiso0; fa} T using UCB
N\ 4

q k = ! > L
< \‘ / ’ Standard RL

e |
| - —_— f . —
Reinforcement : 1 agent
: Contrastive Loss - v
Learning random f
0}

Ot convolution

CURL (Laskin et al., 2020) UCB-DrAC (Raileanu et al., 2021)



Motivation

e Representations of similar states may get pushed apart in
the latent space if contrastive learning is used.

Current Observation

Augmented
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Negative

From different episode

Same spot of the road in different weather condition
From CARLA simulator



RL with Augmentation Invariant
Representation

e Seeks tolearnsimilar latent representation for
augmented observations.

e Alternates optimization between non-contrastive loss
and RL objective.
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Overall Algorithm: RAIR

Algorithm 1 RAIR: Reinforcement learning with Augmentation Invariant Representation

1: Hyperparameters: total number of updates N, replay buffer size T, minibatch size M, encoder
network params ¢, params for actor-critic heads 6, image transformation ¢,- with parameters v;.

2: forn=1;..:; Ndo

3 Collect D = {(s;, as,T¢, S¢41) }; using 7(6)
4 forj=1,....% do

: {(st,a.t,rt,stﬂ)};"il ~ D

6: for:=1.....M do

7 vi ~H

8: zi + fo(si)

9: 2+ Jo(tr(8i3v:))

10: end for

11 J(p) = & M. 1 — coss(2i, %)

12: Train encoder with J(¢)

13: Jppo(0,¢) + J. + a,Ly — a,S;

14: Train full actor-critic network with Jppo (6, ¢)

5 end for
16: end for




Evaluation on Procgen Benchmark:
Crop
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Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for crop data
augmentation in Procgen environments. Mean and standard deviations are
calculated over 5 trials with different seeds.



Evaluation on Procgen Benchmark:
Grayscale
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Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for grayscale
data augmentation in Procgen environments. Mean and standard deviations are
calculated over 5 trials with different seeds.



Evaluation on Procgen Benchmark:
Color Jitter
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Figure: Performance of RAIR (ours) vs. standard PPO, DrAC, and CURL for color jitter
data augmentation in Procgen environments. Mean and standard deviations are
calculated over 5 trials with different seeds.



Takeaways

e Non-contrastive loss with only positive pairs can effectively
facilitate representation learning in RL.

e RAIR canunlock the potential of different data
augmentation techniques as opposed to earlier methods.

e Simpleloss function like L1 loss can be used as similarity metric.
e Using non-contrastive loss as an auxiliary one is often
susceptible to high variance across trials and performance

degradation.

e Momentum encoder is indeed not necessary with
non-contrastive loss.
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