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Main focus of Meta-Learning
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• Excels in adaptation to unseen but similar tasks

Env Distribution A

Meta Learner A 
→ Learning Algorithm A

Env Distribution B

Meta Learner B 
→ Learning Algorithm B

Env Distribution C

Meta Learner C 
→ Learning Algorithm C



General-Purpose Meta-Learning
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Can we train an agent that can efficiently in-context learn and act in any environment?

Env Distribution

Meta Learner 
→ General-Purpose Learning Algorithm

Generalize



From gradient-based learning …
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Learned Policy 
Gradient

Oh et al [NeurIPS 2020]

Evolving RL 
Algorithms

Co-Reyes et al [ICLR 2021]

MetaGenRL

Kirsch et al [ICLR 2020]

Policy πϕ

Learning ϕ ← ϕ − ∇ϕLα

Parameterized 
Objective / Loss function

LossMetaGenRL 
Neural networkLα



… to in-context learning

Gray-box 
Learning ϕ ← ϕ − ∇ϕLα

Black-box function 
approximator 

e.g. LSTM, Transformer, FWP 
 

 
= in-context learning

π(at+1 |ot+1, {oi, ai, ri}t
i=1)

Good generalization

MetaGenRL, LPG, etc In-context meta-RL

{(oi,)ai, ri}t
i=1

[Schmidhuber since 1992, 
RL2 Duan et al 2016, 

Wang et al 2016, 
SymLA Kirsch et al 2022, 

Adaptive Agents 2023, etc]
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Better πϕ Better π

{oi, ai, ri}t
i=1

Difficult generalization
This paper: 

How to fix this?



Automated task / environment generation
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Env Distribution
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GPICL: From memorization to general learn-to-learn
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Learning Generalization Algorithm Description

⤬ No ⤬ No Task memorization

✓ Yes ⤬ No Task identification

✓ Yes ✓ Yes General-purpose 
learning algorithm

Transformers exhibit three different phases in terms of meta-learned behavior.

Examples seen

Pe
rf

or
m

an
ce

Δ

Task 
memorization

Task 
identification Learning to learn

Kirsch et al [2022]



From classification to supervised meta-RL

Adaptation to RL 
Instead of training on a supervised dataset 


Train on RL data                                           


Our recipe: Offline meta-training + augmented RL data → Generalization 

Training is offline, but agent can learn online!

({xi, yi}
ND
i=1, x′￼) ↦ y′￼

({si, ai, ri, di}
ND
i=1, s) ↦ a
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How it works - PPO Data collection

9

Environment Distribution

Training Dataset D̄ = {τ}
PPO TrainingData Collection

Take a subset 
of the collected data

 from τ0 π+0
C

PPO update

 from τ1 π+1
C

PPO

 from τ2 π+2
C

PPO

 from τ3 π+3
C

PPO

 from τ4 π+4
C

PPO

 from τ5 π+5
C

PPO

 from τ6 π+6
C

PPO

 from τ7 π+7
C

…

 from τ0 π+0
C  from τ3 π+3

C  from τ6 π+6
CGap g = 3 Gap g = 3



… 

… 

π+0
C

Policies with 
increasing performance π+g

C π+2g
C

Model an in-context 
learning algorithm

How it works - Model learning algorithm
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Generally Learning Agents (GLAs) Transformer for π(a |s, τ)

s0a0r0d0s1 s1a1r1d1s2 s2a2r2d2s3

a1 a2 a3

s3a3r3d3s4 s4a4r4d4s5 s5a5r5d5s6

a4 a5 a6

Take a subset 
of the collected data  from τ0 π+0

C  from τ3 π+3
C  from τ6 π+6

CGap g = 3 Gap g = 3

Data Collection

Environment Distribution

Training Dataset D̄ = {τ}
PPO Training



How it works - Augmentations
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Environment Distribution

Meta-Training

Training Dataset D̄ = {τ}
PPO Training

Data Collection

Augmented Dataset D = {τ}

Projections 
to increase 
task diversity

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training

Create  tasks n {𝒮j, 𝒜j}n
j=1

Linear projection Dj = {𝒮jsi, 𝒜jai, ri, di}

Linear observation 
projection with 𝒮j

Linear action 
projection with 𝒜j

Transition dataset

D̄ = {si, ai, ri, di}

Sensor observations & actions

Augmented Dataset D = {τ}



How it works - Meta-Testing
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Environment Distribution

Meta-Training

Meta-Testing

Training Dataset D̄ = {τ}
PPO Training

Data Collection

Augmented Dataset D = {τ}

Projections 
to increase 
task diversity

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training

Test environmentIn-context Reinforcement Learning

Inference mode

Generally Learning Agents (GLAs)



Evaluation: Single Environment

In-context learning policies that encode a 
learning algorithm on a specific task
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Training Dataset D̄ = {τ}

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training



Effect of the gap
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 from τ0 π+0
C

PPO update

 from τ1 π+1
C

PPO

 from τ2 π+2
C

PPO

 from τ3 π+3
C

PPO

 from τ4 π+4
C

PPO

 from τ5 π+5
C

PPO

 from τ6 π+6
C

PPO

 from τ7 π+7
C

…

 from τ0 π+0
C  from τ3 π+3

C  from τ6 π+6
CGap g = 3 Gap g = 3

Training Dataset D̄ = {τ}

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training

Generalize across 
environments?



Introducing random projections
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Training Dataset D̄ = {τ}

Augmented Dataset D = {τ}

Projections 
to increase 
task diversity

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training

Generalize across 
environments?

Generalize

Augmented Dataset D = {τ}

Early results! 
* Longer contexts 
* Training dynamics

Pre-trained

Unseen Unseen

Unseen



Automated task / environment generation
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Env Distribution

→ General-Purpose Learning Algorithm



Where to find me
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louiskirsch.com


@LouisKirschAI

Environment Distribution

Meta-Training

Meta-Testing

Training Dataset D̄ = {τ}
PPO Training

Data Collection

Augmented Dataset D = {τ}

Projections 
to increase 
task diversity

Transformer-based 
Generally Learning Agent (GLAs)

Supervised

Meta-Training

Test environmentIn-context Reinforcement Learning

Inference mode

Generally Learning Agents (GLAs)

Summary: 
• We distill an accelerated PPO into a 

Transformer 
• Strong data augmentation helps the 

Transformer implement a general-
purpose online RL algorithm 
generalizing across domains

http://louiskirsch.com
https://twitter.com/LouisKirschAI

