

Towards General-Purpose In-Context Learning Agents

Generalization in Planning 2023

Louis Kirsch, James Harrison, C. Daniel Freeman, Jascha Sohl-Dickstein, Jürgen Schmidhuber

Main focus of Meta-Learning

Excels in adaptation to unseen but similar tasks

Env Distribution C

Meta Learner C → Learning Algorithm C

General-Purpose Meta-Learning

Can we train an agent that can efficiently in-context learn and act in any environment?

From gradient-based learning ...

Kirsch et al [ICLR 2020]

Oh et al [NeurIPS 2020]

Learned Policy Gradient

Evolving RL Algorithms

Co-Reyes et al [ICLR 2021]

... to in-context learning

MetaGenRL, LPG, etc

 $\{(o_i, a_i, r_i\}_{i=1}^t$

Good generalization

Gray-box Learning $\phi \leftarrow \phi - \nabla_{\phi} L_{\alpha}$

Better π_{ϕ}

In-context meta-RL

Black-box function approximator e.g. LSTM, Transformer, FWP $\pi(a_{t+1} | o_{t+1}, \{o_i, a_i, r_i\}_{i=1}^t)$

= in-context learning

[Schmidhuber since 1992, **RL²** Duan et al 2016, Wang et al 2016, SymLA Kirsch et al 2022, Adaptive Agents 2023, etc]

Difficult generalization This paper: How to fix this?

Automated task / environment generation

Env Distribution

GPICL: From memorization to general learn-to-learn

Transformers exhibit three different phases in terms of meta-learned behavior.

Kirsch et al [2022]

Google Research

From classification to supervised meta-RL

Adaptation to RL

Instead of training on a supervised of

Train on RL data

Our recipe: Offline meta-training + augmented RL data → Generalization

Training is offline, but agent can learn online!

$$\begin{aligned} \text{dataset} \left(\{x_i, y_i\}_{i=1}^{N_D}, x'\right) &\mapsto y' \\ \left(\{s_i, a_i, r_i, d_i\}_{i=1}^{N_D}, s\right) &\mapsto a \end{aligned}$$

How it works - PPO Data collection

How it works - Model learning algorithm

10

How it works - Augmentations

Data Collection

Meta-Training

Sensor observations & actions

Transition dataset

 $\overline{D} = \{s_i, a_i, r_i, d_i\}$

11

How it works - Meta-Testing

Data Collection

Meta-Training

Meta-Testing

12

Evaluation: Single Environment

In-context learning policies that encode a learning algorithm on a specific task

Continuous Control: Ant-v4 3000 2000 Test return GLAs PPO 1000 Random policy 0 -100020 30 5 10 15 25 0 Episodes

Effect of the gap

Introducing random projections

Generalize across environments?

Early results!

- * Longer contexts
- **Training dynamics** *

Automated task / environment generation

→ General-Purpose Learning Algorithm

Where to find me

Summary:

- We distill an accelerated PPO into a Transformer
- Strong data augmentation helps the **Transformer implement a general**purpose online RL algorithm generalizing across domains

Data Collection

