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Main focus of Meta-Learning

e EXcels in adaptation to unseen but similar tasks
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General-Purpose Meta-Learning

Env Distribution

Meta Learner
— General-Purpose Learning Algorithm

Generalize

IDSTA

Can we train an agent that can efficiently in-context learn and act in any environment?




From gradient-based learning ...
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Learned Policy Evolving RL
Gradient Algorithms
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... t0 In-context learning

MetaGenRL, LPG, etc

_ _ Gray-box
Good generalization | | ¢apning b —¢—V,L,
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In-context meta-RL

Black-box function

approximator
e.g. LSTM, Transformer, FWP

(|04, 105 a; ’”i}§=1)

= in-context learning

[Schmidhuber since 1992,
RL2 Duan et al 2016,
Wang et al 2016,
SymLA Kirsch et al 2022,
Adaptive Agents 2023, etc]

Difficult generalization

This paper:
How to fix this?



Automated task / environment generation =
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Google Research

GPICL: From memorization to general learn-to-learn
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Number of tasks

Transformers exhibit three different phases in terms of meta-learned behavior.

Kirsch et al [2022] /



From classification to supervised meta-RL

Adaptation to RL

Instead of training on a supervised dataset ({xl-, yl-}i.\fl,x’) — Y’

Train on RL data ({Si, a,r; di}i.\fl, S) — d
Our recipe: Offline meta-training + augmented RL data & Generalization

Training is offline, but agent can learn online!
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How it works - PPO Data collection

Data Collection

Take a subset
of the collected data

Environment Distribution

PPO update PPO PPO PPO PPO PPO PPO
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How it works - Model learning algorithm

Environment Distribution

Data Collection

Take a subset
of the collected data
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Model an in-context Generally Learning Agents (GLAs) Transformer for z(a | s, 7)
learning algorithm
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How it works - Augmentations

Data Collection Environment Distribution

Projections
to increase
task diversity

Create n tasks { S, &/}

T

Linear observation Linear action
projection with & i projection with A ;

o

Sensor observations & actions

Transition dataset

D = {Sl’ Cli, I’l-, dl}
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How it works - Meta-Testing

Data Collection

Meta-Training

Meta-Testing

Environment Distribution

PPO Training

Training Dataset D = {7}

Projections
to increase
task diversity

Supervised

Transformer-based Meta-Training A o Datacet ) —
Generally Learning Agent (GLAs) ugmented Dataset D = {7}

Inference mode

In-context Reinforcement Learning Test environment
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Evaluation: Single Environment
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Training Dataset D = {r}

In-context learning policies that encode a Supervsed
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Meta-Training
learning algorithm on a specific task Y

Transformer-based
Generally Learning Agent (GLAS)
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Effect of the gap
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Training Dataset D = {r}

PPO update PPO PPO PPO PPO PPO PPO
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Generalize across

environments?
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Introducing random projections

Generalize across
environments?

Early results!
* Longer contexts
* Training dynamics

Test return

Test return
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Training Dataset D = {r}

Projections
to increase
task diversity

Augmented Dataset D = {7}

Supervised
Meta-Training

Transformer-based
Generally Learning Agent (GLAS)

Generalize
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Automated task / environment generation

Env Distribution

— General-Purpose Learning Algorithm
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Where to find me

&% louiskirsch.com

@l ouisKirschAl

Summary:

 We distill an accelerated PPO into a
Transformer

 Strong data augmentation helps the

Transformer implement a general-

purpose online RL algorithm

generalizing across domains

Data Collection

Environment Distribution
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Meta-Training

Transformer-based
Generally Learning Agent (GLAS)

Training Dataset D = {7}

Projections
to increase
task diversity

Meta- Testlngl Inference mode

In-context Reinforcement Lea
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Augmented Dataset D = {7}
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