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Motivation - Choice of planning horizon

> A key component in the lifetime of an RL agent is the planning horizon H = ﬁ

> The choice of the planning horizon plays an important role
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The Bigger Picture - Problem Setting and Overview
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Research Question

There is a direct correlation between the knowledge acquired by the
agent and the effective planning horizon: the more knowledgeable the
agent, the longer its planning horizon.

Research Question

Can we meta-learn a good initialization of the model across
tasks and adapt the effective planning horizon better?
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Planning with Online Meta-learning: Our Approach

for task t € [T] do

for t** batch of m samples do

Pt(m)=(1- o)=Y X+ o, P |/ regularized least squares minimizer.
vV 7-Se1ection-AProcedure(m, at,01,T, S, A)

T ” Planning(Pt(m)) // V¥ < Yeval

Output: bt A batch within-task RLS Loss

r . "

(Eq. 5) and task-similarity parameter.
Update a1 = > // meta-update mixing rate, plug max(cgxa)

1
z+12(1+1/t)m+1

Update P+l 4, « Welford’s online algorithm((o“o)t,P°=‘+l,P"=‘) /| meta-update AoM

Meta-learn the task similarity and a universal dynamics model
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Planning with Online Meta-learning: Theory Result

> After T tasks, the agent is evaluated via the average planning loss

=720 ||V,

> Average Regret Upper Bound for Planning with Online Meta-Learning (POMRL)
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Planning with Online Meta-learning: Experiments

Does meta-learning a good initialization of dynamics model enables
longer planning horizons and improved planning accuracy?

For initial tasks, an
intermediate value
of gamma is optimal

A better meta-learned
initialization of the
task dynamics, led to
longer effective
planning horizon.
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=>» Meta-reinforcement learning leads to improved planning accuracy. @
=> The more knowledgeable the agent, the longer its planning horizon.



Open Research Questions

> Non-stationary or shifts in underlying task distribution

> Scaling up with meta-gradients.

(ARUBA by Khodak et al. 2019)

> More tractable algorithm with a proxy to planning loss
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https://arxiv.org/pdf/1906.02717.pdf

Adaptive Planning Horizon and Meta-Reinforcement Learning —

Meta-learning a good initialization of the transition model across
similar tasks allows to plan longer ahead.

Our result: L<O ( T

Without meta-learning: £ < O (
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