DeepMind

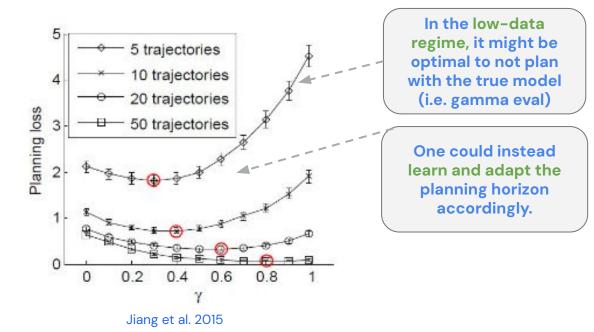
POMRL: No-Regret Learning-to-Plan with Increasing Horizons

Khimya Khetarpal^{*}, Claire Vernade^{*}, Brendan O' Donoghue, Satinder Singh & Tom Zahavy

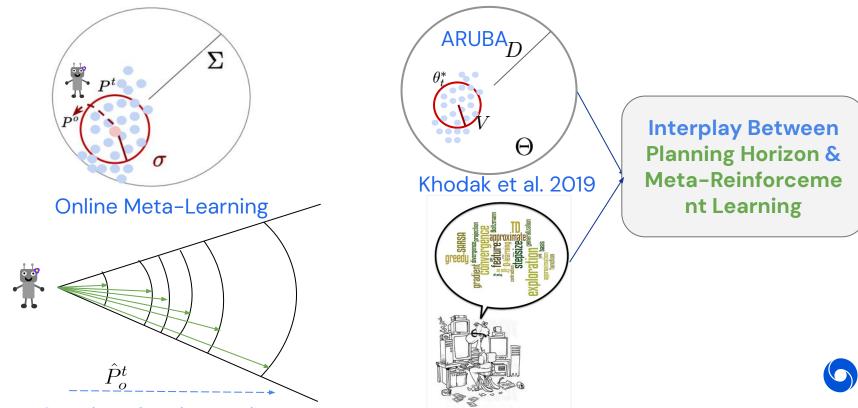
GenPlan Workshop, 2023 @ NeurIPS

Motivation - Choice of planning horizon

- > A key component in the lifetime of an RL agent is the planning horizon $H = \frac{1}{1 \gamma}$
- > The choice of the planning horizon plays an important role



The Bigger Picture - Problem Setting and Overview



Dong et al. 2021

Growing Planning Horizon

Research Question

There is a direct correlation between the knowledge acquired by the agent and the effective planning horizon: the **more knowledgeable the agent, the longer its planning horizon**.

Research Question

Can we meta-learn a good initialization of the model across tasks and adapt the effective planning horizon better?

Planning with Online Meta-learning: Our Approach

for task $t \in |T|$ do for t^{th} batch of m samples do $$\begin{split} \hat{P^t}(m) &= (1-\alpha_t) \frac{1}{m} \sum_{i=1}^m X_i + \alpha_t \hat{P}^{o,t} \quad // \text{ regularized least squares minimizer.} \\ \gamma^\star \leftarrow \gamma \text{-Selection-Procedure}(m, \alpha_t, \sigma_t, T, S, A) \end{split}$$ $\pi^{\star}_{\hat{P}^{t},\gamma} \leftarrow \texttt{Planning}(\hat{P}^{t}(m)) \quad // \forall \gamma \leq \gamma_{\texttt{eval}}$ Output: $\pi^{\star}_{\hat{p}^{t},\gamma}$ A batch within-task RLS Loss Update $\hat{P}^{o,t+1}, \hat{\sigma}_{t+1} \leftarrow \texttt{Welford's online algorithm}((\hat{\sigma}_o)_t, \hat{P}^{o,t+1}, \hat{P}^{o,t})$ meta-update AoM (Eq. 5) and task-similarity parameter. Update $\alpha_{t+1} = \frac{1}{\hat{\sigma}_{t+1}^2(1+1/t)m+1}$ // meta-update mixing rate, plug max($\sigma_{S \times A}$) Meta-learn the task similarity and a universal dynamics model

Planning with Online Meta-learning: Theory Result

> After T tasks, the agent is evaluated via the average planning loss

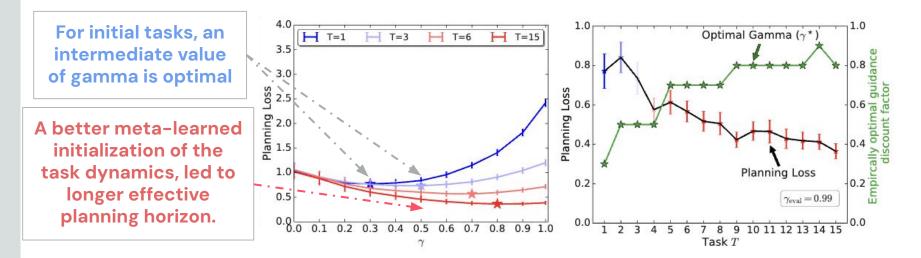
$$\bar{\mathcal{L}} = \frac{1}{T} \sum_{t=1}^{T} \left| \left| V_{P^{t},\gamma_{\text{eval}}}^{\pi_{P^{t},\gamma_{\text{eval}}}^{*}} - V_{P^{t},\gamma_{\text{eval}}}^{\pi_{\hat{P}^{t},\gamma}^{*}} \right| \right|_{\infty}$$

Average Regret Upper Bound for Planning with Online Meta-Learning (POMRL)

Our result:
$$\bar{\mathcal{L}} \leq \tilde{O}\left(\frac{\sigma}{\sqrt{T}} + \frac{\Sigma}{\sqrt{mT}}\right)$$
 Task Similarity
#Tasks
Without meta-learning: #Samples per task
 $\bar{\mathcal{L}} \leq \tilde{O}\left(\frac{\Sigma}{\sqrt{m}}\right)$

Planning with Online Meta-learning: *Experiments*

Does meta-learning a good initialization of dynamics model enables longer planning horizons and improved planning accuracy?



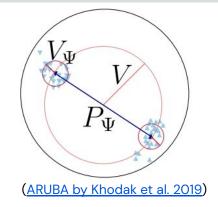
→ Meta-reinforcement learning leads to improved planning accuracy.

→ The more knowledgeable the agent, the longer its planning horizon.

Open Research Questions

> Non-stationary or shifts in underlying task distribution

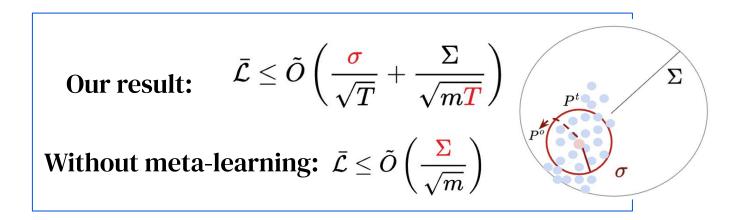
Scaling up with meta-gradients.



> More tractable algorithm with a proxy to planning loss

tl;dr Adaptive Planning Horizon and Meta-Reinforcement Learning -

Meta-learning a good initialization of the transition model across similar tasks allows to plan longer ahead.



Come to our poster for more details!

