# Learning general policies and sketches

NeurIPS Workshop GenPlan'23

Hector Geffner RWTH Aachen University Aachen, Germany

> Linköping University Linköping, Sweden

with Blai Bonet, Simon Ståhlberg, Dominik Drexler, and RLeap Team



## Learning High-Level Representations: A Key Challenge in Al

• Learn representations that support **reasoning** and **planning**, that **generalize** and are **reusable**, . . .

- Yoshua Bengio's challenges reflected in title of his IJCAI 2021 talk:
  - System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution generalization and causality
- Yann LeCun's three challenges, AAAI 2020:
  - ▷ AI must learn to represent the world
  - > AI must think and plan in ways compatible with gradient-based learning
  - Al must learn hierarchical representation of action plans

## **Two Approaches to Learning High-Level Representations**

#### Bottom-up approach

- ▶ Representations emerge from **architecture**, loss function, and "right" bias
- Most common approach in deep (reinforcement) learning

#### • Top-down approach

- Representations learned over language with "right" syntax and semantics
- Reasoning, meaningful learning bias, transparency, what vs. how
- Doesn't assume background knowledge; compatible with deep learning

Our focus: top-down representation learning to act and plan

## Three concrete learning problems for acting and planning

- Learning general models
  - Language and semantics
  - Learning: combinatorial approach
- Learning general policies
  - Language and semantics
  - Learning: combinatorial approach and DRL approach
- Learning general subgoal structures (sketches)
  - Language, semantics, width
  - Learning: combinatorial approach

The setting is **classical planning**:

- ▷ factored deterministic MDPs; states given by atoms  $p(c_1, \ldots, c_k)$
- $\triangleright$  fixed set of **domain predicates** p
- $\triangleright$  variable set of objects  $c_1$  that depend on **domain instance**

#### **Learning Problem #1: General Models**

• Problems P specified as instances  $P = \langle D, I \rangle$  of general domain D

- Domain D specified in terms of action schemas and predicates
- ▷ Instance is  $P = \langle D, I \rangle$  where I details objects, init, goal
- E.g., DELIVERY problem where packages to be moved by robot to target cell in grid; any number of packages, any grid size, captured with domain with three **STRIPS action schemas**. Can they be learned, predicates included?

move(c, c') Preconds: atRobot(c), adjacent(c, c') $Effects: atRobot(c'), \neg atRobot(c)$ 

pick(o, c): Preconds: atRobot(c), at(o, c), emptyhand $Effects: held(o), \neg at(o, c), \neg emptyhand$ 

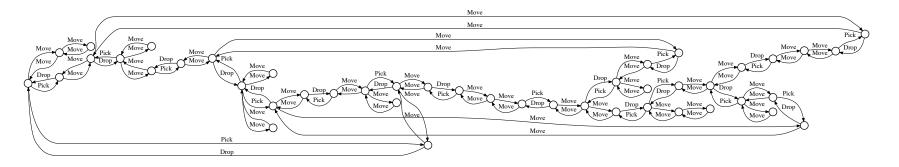
```
drop(o, c):

Preconds: atRobot(c), held(o)

Effects: at(o, c), \neg held(o), emptyhand
```

## **Example:** Learning $P = \langle D, I \rangle$ from Single Graph G

**Input:** State graph G of agent in  $1 \times 3$  grid, moving/picking/dropping 2 pkgs



**Output: Simplest** STRIPS representation  $P = \langle D, I \rangle$  that generates G

```
Move(?to,?from):
    Pre: neq(?to,?from), p5(?to,?from)
    Pre: p2(?from), -p2(?to)
    Eff: -p2(?from), p2(?to)
Pick(?p,?x):
    Pre: p2(?x), p1, -p3(?p), p4(?p,?x)
    Eff: -p1, p3(?p), -p4(?p,?x)
Drop(?p,?x):
    Pre: p2(?x), -p1, p3(?p), -p4(?p,?x)
    Eff: p1, -p3(?p), p4(?p,?x)
```

Interpretation of learned predicates:

- $p_1$ : gripper empty
- $p_2(x)$ : agent at cell x,
- $p_3(p)$ : agent holds pkg p,
- $p_4(p, x)$ : pkg p in cell x
- $p_5(x, y)$ : cell x adj to y
- Domain D correct for **any** grid, **any** # of packages. Structure of nodes uncovered.

#### **Learning Problem #1: General Models**

- $P = \langle D, I \rangle$  defines unique state graph G(P)
- Learning as **inverse task:** from graphs  $G_1, \ldots, G_k$ , learn problems  $P = \langle D, I_i \rangle$ :

Given graphs  $G_1, \ldots, G_k$ , find **simplest** instances  $P_i = \langle D, I_i \rangle$  such that graphs  $G_i$  and  $G(P_i)$  are isomorphic,  $i = 1, \ldots, k$ .

- Problem cast/solved as combinatorial optimization task [Bonet and G., 2020]
- **Complexity** of  $P_i$  determined by # and arities of action schemas and predicates
- Variations: noisy graphs, gray-box states [Rodriguez et al., 2021, Occhipinti et al., 2022]

[Open: How to solve (a version of) this problem using DL/gradient descent?]

#### Learning Problem #2: General Policies [Bonet, G., 2018]

General policy for achieving clear(x) in Blocks; any instance

- Features  $\Phi = \{H, n\}$ : 'holding' and 'number of blocks above x'
- **Policy**  $\pi$  for class  $Q_{clear}$  of problems with goal clear(x) given by two rules:

$$\{\neg H, n > 0\} \mapsto \{H, n \downarrow\} \qquad ; \qquad \{H, n > 0\} \mapsto \{\neg H\}$$

- Meaning:
  - $\triangleright$  if  $\neg H \& n > 0$ , move to successor state where H holds and n decreases
  - ▷ if H & n > 0, move to successor state where  $\neg H$  holds, n doesn't change
- Semantics of policy  $\pi$  specified by rules  $C_i \mapsto E_i$ :
  - ▷ state transition (s, s') is  $\pi$ -transition iff  $s \models C_i$ , and  $[s, s'] \models E_i$  for some i▷  $\pi$ -trajectories made up of  $\pi$ -transitions, starting at  $s_0$
  - $\triangleright \pi$  solves class of problems Q if, in every  $P \in Q$ , all  $\pi$ -trajectories end in goal

#### **Example 2: Delivery**

- **Domain:** Move packages in  $n \times m$  grid, one by one, to target location
- Features  $\Phi = \{H, p, t, n\}$ : hold, dist. to nearest pkg & target, # undelivered
- General policy  $\pi$ : any # of pkgs and distribution, any grid size

| $\{\neg H, p > 0\} \mapsto \{p \downarrow, t?\}$    | go to nearest package |
|-----------------------------------------------------|-----------------------|
| $\{\neg H, p = 0\} \mapsto \{H, p?\}$               | pick it up            |
| $\{H,t>0\}\mapsto\{t\!\!\downarrow,p?\}$            | go to target cell     |
| $\{H, t = 0\} \mapsto \{\neg H, n \downarrow, p?\}$ | drop package          |

Policy can be shown to be correct, solving any instance.

#### **Learning Problem #2: Min-SAT Encoding** $T(S, \mathcal{F})$

• Inputs to formula  $T = T(\mathcal{S}, \mathcal{F})$ :

**Feature pool**  $\mathcal{F}$  defined from domain predicates and C2 logic

- ▷ State transitions S from the training instances  $P_1, \ldots, P_k$
- Variables in T: Good(s, s'), V(s, d), Select(f) :  $(s, s') \in S$ ,  $f \in \mathcal{F}$ ,  $d \leq d_{max}$
- Formulas in  $T = T(\mathcal{S}, \mathcal{F})$ :
  - 1. Policy closed:  $\bigvee_{(s,s')\in\mathcal{T}} Good(s,s')$ [non-goal, non dead-end s] 2. Policy acyclic:  $Good(s, s'), V(s, d), V(s', d') \supset d' < d$ , [non-goal, non-dead s] 3. Policy safe:  $\neg Good(s, s')$ [non-dead-end, dead-end]
  - [V(s,d) iff V(s) = d, all s]4. Exactly-1 { $V(s,d) : d \le d_{max}$ }

5. Features **distinguishes** good from bad transitions: [(s, s') and (t, t') in S]

$$Good(s, s') \land \neg Good(t, t') \to \bigvee_{f:\Delta_f(s, s') \neq \Delta_f(t, t')} Select(f)$$

**Theorem**: Theory  $T(\mathcal{S}, \mathcal{F})$  is SAT iff there is a policy  $\pi$  over features  $\Phi \subseteq \mathcal{F}$  that solves  $P_1, \ldots, P_n$ . Policy rules from SAT assignment; capture feature changes in the transitions (s, s') labeled good.

## **Experimental Results over Classical Domains**

|                       | S      | $\mathcal{S}/{\sim}$ | $d_{max}$ | $ \mathcal{F} $ | vars         | clauses          | $t_{all}$ | $t_{SAT}$ | $c_{\Phi}$ | $ \Phi $ | $k^*$ | $ \pi_{\Phi} $ |
|-----------------------|--------|----------------------|-----------|-----------------|--------------|------------------|-----------|-----------|------------|----------|-------|----------------|
| $\mathcal{Q}_{clear}$ | 1,161  | 55                   | 7         | 532             | 7.9K         | 243.7 K(242.3 K) | 6         | 1         | 8          | 3        | 4     | 3              |
| $\mathcal{Q}_{on}$    | 1,852  | 329                  | 10        | 1,412           | 17.3 K       | 376.6 K(281.5 K) | 231       | 153       | 13         | 5        | 5     | 7              |
| $\mathcal{Q}_{grip}$  | 1,140  | 61                   | 12        | 835             | 6.5K         | 102.6 K(100.8 K) | 2         | 1         | 9          | 3        | 4     | 4              |
| $\mathcal{Q}_{rew}$   | 432    | 361                  | 15        | 514             | $5.5 { m K}$ | 214.9 K(98.9 K)  | 8         | 1         | 7          | 2        | 6     | 2              |
| $\mathcal{Q}_{deliv}$ | 42,473 | 5442                 | 56        | 1,373           | 753.4K       | 38.2M(23.5M)     | 3071      | 2902      | 30         | 4        | 14    | 6              |
| $\mathcal{Q}_{visit}$ | 2,396  | 310                  | 8         | 188             | 13.9K        | 244.5 K(160.6 K) | 3         | 1         | 7          | 2        | 5     | 1              |
| $\mathcal{Q}_{span}$  | 10,777 | 96                   | 19        | 764             | 85.0K        | 2.2M(2.2M)       | 46        | 2         | 9          | 3        | 6     | 2              |
| $\mathcal{Q}_{micon}$ | 4,706  | 4,636                | 14        | 1,073           | 23.8K        | 23.6M(2.4M)      | 184       | 104       | 11         | 4        | 5     | 5              |
| $\mathcal{Q}_{bw}$    | 2,136  | 2,136                | 7         | 1,766           | 10.9 K       | 4.6M(180.1K)     | 252       | 64        | 10         | 3        | 6     | 1              |

Classes of problems  $\mathcal{Q}_D$  for different planning domains D

Some theories  $T(S, \mathcal{F})$  are very large (38M clauses) but solved

Learned policies for each of the domains can be proved to be correct; but learning doesn't guarantee it

## Learning Problem #3: Subgoal Structures [Bonet and G. 2021]

• **Sketch** of width=2 for Delivery:

 $\{n > 0\} \mapsto \{n \!\!\!\downarrow\} \quad \text{deliver package}$ 

• **Sketch** of width=1:

- $\begin{aligned} \{\neg H\} &\mapsto \{H\} & \text{go and pick package} \\ \{H\} &\mapsto \{\neg H, n \downarrow\} & \text{go and deliver package} \end{aligned}$
- Sketch of width=0 (full policy)

$$\begin{split} \{\neg H, p > 0\} &\mapsto \{p \downarrow, t?\} & \text{go to nearest package} \\ \{\neg H, p = 0\} &\mapsto \{H, p?\} & \text{pick it up} \\ \{H, t > 0\} &\mapsto \{t \downarrow, p?\} & \text{go to target cell} \\ \{H, t = 0\} &\mapsto \{\neg H, n \downarrow, p?\} & \text{drop package} \end{split}$$

- Language of sketches is same language of policies: rules  $C_i \mapsto E_i$
- **Semantics** of sketches slightly different:
  - ▷ In state  $s_i$  where  $C_i$  holds, reach **subgoal**  $s_{i+1}$  s.t.  $[s_i, s_{i+1}] \models E_i$
  - ▷ If sketch is terminating and subproblems have width ≤ k, problems solvable by SIW<sub>R</sub> algorithm in time exp(k)

## Learning Sketches [Drexler et al., 2022]

- Given a domain D, training instances  $P_1, \ldots, P_n$ , a pool of features  $\mathcal{F}$ , and bound k, find min-cost sketch R over  $\mathcal{F}$  such that
  - $\triangleright$  Subproblems induced by R on each  $P_i$  have all width bounded by k,
  - Sketch R is terminating (structurally acyclic)
- Learning task model and solved as combinatorial optimization problem in Clingo [Gebser, Kaufmann, Schaub 2012]
- E.g., sketch given by rules  $\{\neg H\} \mapsto \{H\}$  and  $\{H\} \mapsto \{\neg H, n\downarrow\}$  learned in this way

## Last Twist: General policies via DRL and GNNs

- Can we learn general policies using **deep (reinforcement) learning**?
- Before, they were learned them by solving **Min-SAT problem**  $T(S, \mathcal{F})$ :
  - ▷ S: set of state transitions (s, s') over small instances
     ▷ F: pool of features derived from domain predicates and C2 logic
- C2 is fragment of first-order logic that uses two variables only
- Interestingly, tight correspondence known between C2 and GNNs
- Idea: Represent policy  $\pi(s'|s;w)$  with GNN; learn w parameters with RL
  - **Before:** explicit pool of features; now, GNN takes care of features
  - **Before:**  $\pi$  constrained to solve training instances; now, penalize  $\pi$  if it doesn't

## **GNN** + Actor-Critic for Gen Policies [Ståhlberg et al., 2023]

| Domain    | Coverage (%) | Domain   | Coverage (%) |
|-----------|--------------|----------|--------------|
| Blocks    | 100%         | Delivery | 100%         |
| Gripper   | 100%         | Miconic  | 100%         |
| Visitall  | 100%         | Grid     | 70%          |
| Logistics | 36%          | Spanner  | 68%          |

- Nearly **perfect general policies** obtained in several domains (100%)
- But the interesting part is the failure in three marked domains, as it has nothing to do with RL algorithm:
  - C2/GNN expressivity not enough: binary relations need to be composed
  - **Generality-optimality tradeoff**: can't have both in some domains
- By addressing these two problems, 100% coverage over all domains obtained

(unlikely to get similar results without **understanding** these problems)

### Summary: Top-down representation learning to act and plan

#### • Three learning problems in planning:

- Learning general models
- Learning general policies
- Learning general subgoal structures (sketches)

#### • Two methods:

- Combinatorial optimization: Min-SAT, Clingo
- Continuous optimization: deep (reinforcement) learning
- **Potential benefits** of top-down approaches (vs. bottom-up):
  - Transparency, structural generalization; distinction what/how, reuse, ....

## References

#### References

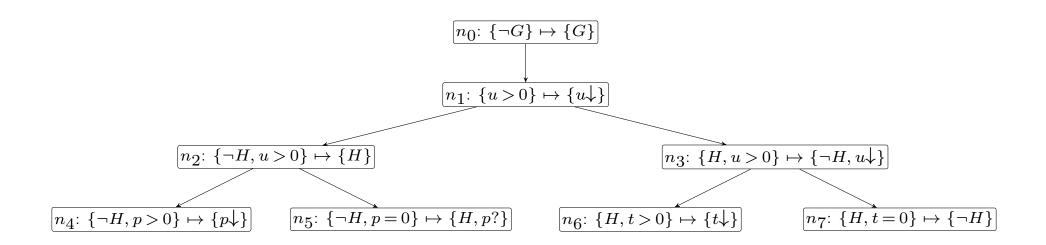
- [Barceló et al., 2020] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P. (2020). The logical expressiveness of graph neural networks. In *ICLR*.
- [Bonet and Geffner, 2018] Bonet, B. and Geffner, H. (2018). Features, projections, and representation change for generalized planning. In *Proc. IJCAI*, pages 4667–4673.
- [Bonet and Geffner, 2020a] Bonet, B. and Geffner, H. (2020a). Learning first-order symbolic representations for planning from the structure of the state space. In *Proc. ECAI*.
- [Bonet and Geffner, 2020b] Bonet, B. and Geffner, H. (2020b). Qualitative numeric planning: Reductions and complexity. *Journal of AI Research*, 69:923–961.
- [Bonet and Geffner, 2021] Bonet, B. and Geffner, H. (2021). General policies, representations, and planning width. In *Proc. AAAI*, pages 11764–11773.
- [Drexler et al., 2021] Drexler, D., Seipp, J., and Geffner, H. (2021). Expressing and exploiting the common subgoal structure of classical planning domains using sketches. In *Proc. KR*, pages 258–268.
- [Drexler et al., 2022] Drexler, D., Seipp, J., and Geffner, H. (2022). Learning sketches for decomposing planning problems into subproblems of bounded width. In *Proc. ICAPS*.
- [Fern et al., 2006] Fern, A., Yoon, S., and Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving relational markov decision processes. *Journal of Artificial Intelligence Research*, 25:75–118.
- [Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning policies from small examples without supervision. In *Proc. AAAI*, pages 11801–11808.
- [Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In *Proc. of the 35th ACM-IEEE Symp. on Logic in Computer Science*.

- [Khardon, 1999] Khardon, R. (1999). Learning action strategies for planning domains. *Artificial Intelligence*, 113:125–148.
- [Martín and Geffner, 2000] Martín, M. and Geffner, H. (2000). Learning generalized policies from planning examples using concept languages. In *Proc. KR*.
- [Ståhlberg et al., 2023] Ståhlberg, S., Bonet, B., and Geffner, H. (2023). Learning general policies with policy gradient methods. In *Proc. KR*.
- [Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
- [Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural networks for maximum constraint satisfaction. *Frontiers in artificial intelligence*, 3:98.

## Pool of Features $\mathcal{F}$ : From Domain predicates and C2 Logic

- Fixed grammar generates new predicates from domain and goal predicates p, p<sub>G</sub>
- Unary predicates called concepts C; binary predicates, roles (description logics)
- Denotation (extension) of concept C in state s, C(s): objects "in" C
- Features from concepts C:  $n_C(s) = |C(s)|$ ;  $p_C(s) = \top$  iff |C(s)| > 0
- Complexity of unary predicate ("concept") given by number of grammar rules used
- **Pool**  $\mathcal{F}$  obtained from concepts of complexity bounded by a parameter
- Grammar: borrowed from "description logics", a C2 logic
  - $\triangleright$  Primitive:  $C_p$  given by domain predicates p and "goal predicates"  $p_G$  (p in goal)
  - $\triangleright$  Universal:  $C_u$  contains all objects
  - $\triangleright$  Negation:  $\neg C$  contains  $C_u \setminus C$
  - $\triangleright$  Intersection:  $C \sqcap C'$
  - ▷ Quantified:  $\exists R.C = \{x : \exists y [R(x, y) \land C(y)]\}$  and  $\forall R.C = \{x : \forall y [R(x, y) \land C(y)]\}$
  - ▷ Roles (binary predicates):  $R_p$ ,  $R_p^{-1}$ ,  $R_p^+$ , and  $[R_p^{-1}]^+$
- Additional **distance features**  $dist(C_1, R, C_2)$  for concepts  $C_1$  and  $C_2$  and role R that evaluates to d in state s iff minimum R-distance between object in  $C_1$  to object in  $C_2$  is d

### Learning Hierarchical Policies [Drexler, Seipp, G. 2023]



Hierarchical policy for  $Q = Q_{Delivery}$ :

- Every node n has a sketch rule r(n) and a class  $\mathcal{Q}_n$  of subproblems
- $Q_n$  determined by **rule** r(n) and **parent**  $Q_{n'}$ . For root,  $Q_n = Q$ .
  - ▷  $Q_n$  forced to have smaller width than parent  $Q_{n'}$ ▷  $Q_n$  has width zero iff n is a leaf

**GNN-like net that maps STRIPS states** s into  $f^{s}(o) = f_{L}^{s}(o)$ 

- 1. Input: State s (set of atoms true in s), set of objects
- 2. **Output:** Embeddings  $f_L(o)$  for each object o
- 3.  $f_0(o) \sim \mathbf{0}^k$  for each object  $o \in s$

4. For 
$$i \in \{0, ..., L-1\}$$

5. For each **atom**  $q := p(o_1, \ldots, o_m)$  true in state s:

6. 
$$m_{q,o} := [\mathbf{MLP}_p(f_i(o_1), \dots, f_i(o_m))]_j$$

8. 
$$f_{i+1}(o) := \mathbf{MLP}_U(f_i(o), agg(\{\!\!\{m_{q,o} | o \in q\}\!\!\}))$$

- Value and policy learned from embeddings  $f^s(o) = f_L(o)$  for each object o
- Objects o change from instance to instance but **domain predicates** p fixed
- One  $\mathbf{MLP}_p$ , for each **domain predicate** p; single  $\mathbf{MLP}_U$
- **Relational** GNN-like architecture as **STRIPS states** not graphs but rel structures
- Messages exchanged among objects o through the atoms where they appear in s

#### From the Object Embeddings $f_L^s(o)$ to V(s) and $\pi(s'|s)$

Value function V(s) and policy  $\pi(s'|s)$  from embeddings  $f^s(o) = f_L(o)$ :

• Value function V(s) = V(s; w) outputs single scalar through MLP as:

$$V(s) = \mathbf{MLP}\left(\sum_{o \in O} f^s(o)\right)$$

• Stochastic policy  $\pi(s'|s) = \pi(s'|s;w)$  selects successor states s' by computing *logits* for pairs (s,s') and passing them through *softmax*:

$$\begin{aligned} \log \mathsf{it}(s'|s) &= \mathbf{MLP}_1 \left( \sum_{o \in O} \mathbf{MLP}_2(f^s(o), f^{s'}(o)) \right), \\ \pi(s'|s) \propto \ \exp \left( \mathsf{logit}(s'|s) \right) \end{aligned}$$

#### **Training the General Policy Functions by DRL – Actor-Critic**

| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | <b>Input:</b> Training MDPs $\{M_i\}_i$ , each with state priors $p_i$<br><b>Input:</b> Value function $V(s)$ with parameter $\omega$<br><b>Input:</b> Policy $\pi(s' s)$ with parameter $\theta$<br><b>Input:</b> Differentiable policy $\pi(s s')$ with parameter $\theta$<br><b>Input:</b> Diff. value function $V(s)$ with parameter $\omega$<br><b>Parameters:</b> Step sizes $\alpha, \beta > 0$ , discount factor $\gamma$ |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.                               | Initialize parameters $	heta$ and $\omega$                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.                               | Loop forever:                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9.                               | Sample MDP index $i \in \{1, \dots, N\}$                                                                                                                                                                                                                                                                                                                                                                                          |
| 10.                              | Sample non-goal state $S$ in $M_i$ with probability $p_i$                                                                                                                                                                                                                                                                                                                                                                         |
| 11.                              | Sample successor state $S'$ with probability $\pi(S' S)$                                                                                                                                                                                                                                                                                                                                                                          |
| 12.                              | Let $\delta = 1 + \gamma V(S') - V(S)$                                                                                                                                                                                                                                                                                                                                                                                            |
| 13.                              | $\omega \leftarrow \omega + \beta \delta \nabla V(S)$                                                                                                                                                                                                                                                                                                                                                                             |
| 14.                              | $\theta \leftarrow \theta - \alpha \delta \nabla \log \pi(S' S)$                                                                                                                                                                                                                                                                                                                                                                  |
| 15.                              | If $S'$ is a goal state, $\omega \leftarrow \omega - \beta V(S') \nabla V(S')$                                                                                                                                                                                                                                                                                                                                                    |

Standard Actor-Critic RL algorithm, baseline V(S), where policy does not select actions but state transitions, and action costs are all 1