
Learning general policies and sketches

NeurIPS Workshop GenPlan’23

Hector Geffner
RWTH Aachen University

Aachen, Germany

Linköping University
Linköping, Sweden

with Blai Bonet, Simon St̊ahlberg, Dominik Drexler, and RLeap Team

Learning High-Level Representations: A Key Challenge in AI

• Learn representations that support reasoning and planning, that generalize and
are reusable, . . .

• Yoshua Bengio’s challenges reflected in title of his IJCAI 2021 talk:

. System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution
generalization and causality

• Yann LeCun’s three challenges, AAAI 2020:

. AI must learn to represent the world

. AI must think and plan in ways compatible with gradient-based learning

. AI must learn hierarchical representation of action plans

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 2

Two Approaches to Learning High-Level Representations

• Bottom-up approach

. Representations emerge from architecture, loss function, and “right” bias

. Most common approach in deep (reinforcement) learning

• Top-down approach

. Representations learned over language with “right” syntax and semantics

. Reasoning, meaningful learning bias, transparency, what vs. how

. Doesn’t assume background knowledge; compatible with deep learning

Our focus: top-down representation learning to act and plan

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 3

Three concrete learning problems for acting and planning

• Learning general models

. Language and semantics

. Learning: combinatorial approach

• Learning general policies

. Language and semantics

. Learning: combinatorial approach and DRL approach

• Learning general subgoal structures (sketches)

. Language, semantics, width

. Learning: combinatorial approach

The setting is classical planning:

. factored deterministic MDPs; states given by atoms p(c1, . . . , ck)

. fixed set of domain predicates p

. variable set of objects c1 that depend on domain instance

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 4

Learning Problem #1: General Models

• Problems P specified as instances P = 〈D, I〉 of general domain D

. Domain D specified in terms of action schemas and predicates

. Instance is P = 〈D, I〉 where I details objects, init, goal

• E.g., Delivery problem where packages to be moved by robot to target cell in
grid; any number of packages, any grid size, captured with domain with three
STRIPS action schemas. Can they be learned, predicates included?

move(c, c′)

Preconds: atRobot(c), adjacent(c, c′)

Effects: atRobot(c′), ¬atRobot(c)

pick(o, c):

Preconds: atRobot(c), at(o, c), emptyhand

Effects: held(o), ¬at(o, c), ¬emptyhand

drop(o, c):

Preconds: atRobot(c), held(o)

Effects: at(o, c), ¬held(o), emptyhand

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 5

Example: Learning P = 〈D, I〉 from Single Graph G

Input: State graph G of agent in 1×3 grid, moving/picking/dropping 2 pkgs

Move

Pick

Pick

Move

Move

Drop Move

Drop

Move

Move

Move

Drop

Move

Move

Drop

Move

Move

Drop
Pick

Move

Move

Move Drop

Pick

Move
Move

Move

Pick
Move

Pick
Move

Move
Pick

Move
Pick

Move
Move

MoveDrop Move

Move Move
Drop

Move

MoveDrop

Move

Move

Pick

Move

Move

Drop

Move

Pick

Drop

Move

Move

Drop

Pick

Pick

Move

Move

Drop Move

Move

Drop

PickMove

Move

Drop

Move

Move

Move

Pick

Move Move

Move Drop
Move

Drop
Move

Pick Move

Pick

Move

Move

Move

Drop

Pick

Pick

Move

Move

MoveMove

Move

Move

Output: Simplest STRIPS representation P = 〈D, I〉 that generates G

Move(?to, ?from):

Pre: neq(?to, ?from), p5(?to , ?from)

Pre: p2(?from), -p2(?to)

Eff: -p2(?from), p2(?to)

Pick(?p, ?x):

Pre: p2(?x), p1, -p3(?p), p4(?p, ?x)

Eff: -p1, p3(?p), -p4(?p, ?x)

Drop(?p, ?x):

Pre: p2(?x), -p1, p3(?p), -p4(?p, ?x)

Eff: p1, -p3(?p), p4(?p, ?x)

Interpretation of learned predicates:

– p1: gripper empty

– p2(x): agent at cell x,

– p3(p): agent holds pkg p,

– p4(p, x): pkg p in cell x

– p5(x, y): cell x adj to y

• Domain D correct for any grid, any # of packages. Structure of nodes uncovered.

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 6

Learning Problem #1: General Models

• P = 〈D, I〉 defines unique state graph G(P)

• Learning as inverse task: from graphs G1, . . . , Gk, learn problems P = 〈D, Ii〉:

Given graphs G1, . . . , Gk, find simplest instances Pi = 〈D, Ii〉 such that
graphs Gi and G(Pi) are isomorphic, i = 1, . . . , k.

• Problem cast/solved as combinatorial optimization task [Bonet and G., 2020]

• Complexity of Pi determined by # and arities of action schemas and predicates

• Variations: noisy graphs, gray-box states [Rodriguez et al., 2021, Occhipinti et al., 2022]

[Open: How to solve (a version of) this problem using DL/gradient descent?]

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 7

Learning Problem #2: General Policies [Bonet, G., 2018]

General policy for achieving clear(x) in Blocks; any instance

• Features Φ = {H,n}: ’holding’ and ’number of blocks above x’

• Policy π for class Qclear of problems with goal clear(x) given by two rules:

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

• Meaning:

. if ¬H & n > 0, move to successor state where H holds and n decreases

. if H & n > 0, move to successor state where ¬H holds, n doesn’t change

• Semantics of policy π specified by rules Ci 7→ Ei:

. state transition (s, s′) is π-transition iff s |= Ci, and [s, s′] |= Ei for some i

. π-trajectories made up of π-transitions, starting at s0

. π solves class of problems Q if, in every P ∈ Q, all π-trajectories end in goal

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 8

Example 2: Delivery

• Domain: Move packages in n×m grid, one by one, to target location

• Features Φ = {H, p, t, n}: hold, dist. to nearest pkg & target, # undelivered

• General policy π: any # of pkgs and distribution, any grid size

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package

Policy can be shown to be correct, solving any instance.

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 9

Learning Problem #2: Min-SAT Encoding T (S,F)

• Inputs to formula T = T (S,F):

. Feature pool F defined from domain predicates and C2 logic

. State transitions S from the training instances P1, . . . , Pk

• Variables in T : Good(s, s′), V (s, d), Select(f) : (s, s′) ∈ S, f ∈ F , d ≤ dmax
• Formulas in T = T (S,F):

1. Policy closed:
∨

(s,s′)∈T Good(s, s′) [non-goal, non dead-end s]

2. Policy acyclic: Good(s, s′), V (s, d), V (s′, d′) ⊃ d′ < d, [non-goal, non-dead s]

3. Policy safe: ¬Good(s, s′) [non-dead-end, dead-end]

4. Exactly-1 {V (s, d) : d ≤ dmax} [V (s, d) iff V (s) = d, all s]

5. Features distinguishes good from bad transitions: [(s, s′) and (t, t′) in S]

Good(s, s′) ∧ ¬Good(t, t′)→
∨

f :∆f(s,s′) 6=∆f(t,t′)

Select(f)

Theorem: Theory T (S,F) is SAT iff there is a policy π over features Φ ⊆ F that
solves P1, . . . , Pn. Policy rules from SAT assignment; capture feature changes in
the transitions (s, s′) labeled good.

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 10

Experimental Results over Classical Domains

S S/∼ dmax |F| vars clauses tall tSAT cΦ |Φ| k∗ |πΦ|
Qclear 1, 161 55 7 532 7.9K 243.7K(242.3K) 6 1 8 3 4 3
Qon 1, 852 329 10 1, 412 17.3K 376.6K(281.5K) 231 153 13 5 5 7
Qgrip 1, 140 61 12 835 6.5K 102.6K(100.8K) 2 1 9 3 4 4
Qrew 432 361 15 514 5.5K 214.9K(98.9K) 8 1 7 2 6 2
Qdeliv 42, 473 5442 56 1, 373 753.4K 38.2M(23.5M) 3071 2902 30 4 14 6
Qvisit 2, 396 310 8 188 13.9K 244.5K(160.6K) 3 1 7 2 5 1
Qspan 10, 777 96 19 764 85.0K 2.2M(2.2M) 46 2 9 3 6 2
Qmicon 4, 706 4, 636 14 1, 073 23.8K 23.6M(2.4M) 184 104 11 4 5 5
Qbw 2, 136 2, 136 7 1, 766 10.9K 4.6M(180.1K) 252 64 10 3 6 1

Classes of problems QD for different planning domains D

Some theories T (S,F) are very large (38M clauses) but solved

Learned policies for each of the domains can be proved to be correct; but
learning doesn’t guarantee it

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 11

Learning Problem #3: Subgoal Structures [Bonet and G. 2021]

• Sketch of width=2 for Delivery:

{n> 0} 7→ {n↓} deliver package

• Sketch of width=1:

{¬H} 7→ {H} go and pick package

{H} 7→ {¬H,n↓} go and deliver package

• Sketch of width=0 (full policy)

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package

• Language of sketches is same language of policies: rules Ci 7→ Ei

• Semantics of sketches slightly different:

. In state si where Ci holds, reach subgoal si+1 s.t. [si, si+1] |= Ei

. If sketch is terminating and subproblems have width ≤ k, problems solvable
by SIWR algorithm in time exp(k)

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 12

Learning Sketches [Drexler et al., 2022]

• Given a domain D, training instances P1, . . . , Pn, a pool of features F , and
bound k, find min-cost sketch R over F such that

. Subproblems induced by R on each Pi have all width bounded by k,

. Sketch R is terminating (structurally acyclic)

• Learning task model and solved as combinatorial optimization problem in Clingo
[Gebser, Kaufmann, Schaub 2012]

• E.g., sketch given by rules {¬H} 7→ {H} and {H} 7→ {¬H,n↓} learned in this
way

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 13

Last Twist: General policies via DRL and GNNs

• Can we learn general policies using deep (reinforcement) learning?

• Before, they were learned them by solving Min-SAT problem T (S,F):

. S: set of state transitions (s, s′) over small instances

. F : pool of features derived from domain predicates and C2 logic

• C2 is fragment of first-order logic that uses two variables only

• Interestingly, tight correspondence known between C2 and GNNs

• Idea: Represent policy π(s′|s;w) with GNN; learn w parameters with RL

. Before: explicit pool of features; now, GNN takes care of features

. Before: π constrained to solve training instances; now, penalize π if it doesn’t

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 14

GNN + Actor-Critic for Gen Policies [St̊ahlberg et al., 2023]

Domain Coverage (%) Domain Coverage (%)

Blocks 100% Delivery 100%
Gripper 100% Miconic 100%
Visitall 100% Grid 70%

Logistics 36% Spanner 68%

• Nearly perfect general policies obtained in several domains (100%)

• But the interesting part is the failure in three marked domains, as it has nothing
to do with RL algorithm:

. C2/GNN expressivity not enough: binary relations need to be composed

. Generality-optimality tradeoff: can’t have both in some domains

• By addressing these two problems, 100% coverage over all domains obtained

(unlikely to get similar results without understanding these problems)

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 15

Summary: Top-down representation learning to act and plan

• Three learning problems in planning:

. Learning general models

. Learning general policies

. Learning general subgoal structures (sketches)

• Two methods:

. Combinatorial optimization: Min-SAT, Clingo

. Continuous optimization: deep (reinforcement) learning

• Potential benefits of top-down approaches (vs. bottom-up):

. Transparency, structural generalization; distinction what/how, reuse, . . .

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 16

References

References

[Barceló et al., 2020] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P. (2020). The
logical expressiveness of graph neural networks. In ICLR.

[Bonet and Geffner, 2018] Bonet, B. and Geffner, H. (2018). Features, projections, and representation change for
generalized planning. In Proc. IJCAI, pages 4667–4673.

[Bonet and Geffner, 2020a] Bonet, B. and Geffner, H. (2020a). Learning first-order symbolic representations for
planning from the structure of the state space. In Proc. ECAI.

[Bonet and Geffner, 2020b] Bonet, B. and Geffner, H. (2020b). Qualitative numeric planning: Reductions and
complexity. Journal of AI Research, 69:923–961.

[Bonet and Geffner, 2021] Bonet, B. and Geffner, H. (2021). General policies, representations, and planning width. In
Proc. AAAI, pages 11764–11773.

[Drexler et al., 2021] Drexler, D., Seipp, J., and Geffner, H. (2021). Expressing and exploiting the common subgoal
structure of classical planning domains using sketches. In Proc. KR, pages 258–268.

[Drexler et al., 2022] Drexler, D., Seipp, J., and Geffner, H. (2022). Learning sketches for decomposing planning
problems into subproblems of bounded width. In Proc. ICAPS.

[Fern et al., 2006] Fern, A., Yoon, S., and Givan, R. (2006). Approximate policy iteration with a policy language bias:
Solving relational markov decision processes. Journal of Artificial Intelligence Research, 25:75–118.

[Francès et al., 2021] Francès, G., Bonet, B., and Geffner, H. (2021). Learning general planning policies from small
examples without supervision. In Proc. AAAI, pages 11801–11808.

[Grohe, 2020] Grohe, M. (2020). The logic of graph neural networks. In Proc. of the 35th ACM-IEEE Symp. on Logic
in Computer Science.

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 17

[Khardon, 1999] Khardon, R. (1999). Learning action strategies for planning domains. Artificial Intelligence,
113:125–148.

[Mart́ın and Geffner, 2000] Mart́ın, M. and Geffner, H. (2000). Learning generalized policies from planning examples
using concept languages. In Proc. KR.

[St̊ahlberg et al., 2023] St̊ahlberg, S., Bonet, B., and Geffner, H. (2023). Learning general policies with policy gradient
methods. In Proc. KR.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.

[Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural networks for
maximum constraint satisfaction. Frontiers in artificial intelligence, 3:98.

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 18

Pool of Features F : From Domain predicates and C2 Logic

• Fixed grammar generates new predicates from domain and goal predicates p, pG

• Unary predicates called concepts C; binary predicates, roles (description logics)

• Denotation (extension) of concept C in state s, C(s): objects “in” C

• Features from concepts C: nC(s) = |C(s)|; pC(s)=> iff |C(s)| > 0

• Complexity of unary predicate (“concept”) given by number of grammar rules used

• Pool F obtained from concepts of complexity bounded by a parameter

• Grammar: borrowed from “description logics”, a C2 logic

. Primitive: Cp given by domain predicates p and “goal predicates” pG (p in goal)

. Universal: Cu contains all objects

. Negation: ¬C contains Cu \ C

. Intersection: C u C ′

. Quantified: ∃R.C={x : ∃y[R(x, y) ∧ C(y)]} and ∀R.C={x : ∀y[R(x, y) ∧ C(y)]}

. Roles (binary predicates): Rp, R−1
p , R+

p , and [R−1
p]+

• Additional distance features dist(C1, R, C2) for conceptsC1 andC2 and roleR that evaluates

to d in state s iff minimum R-distance between object in C1 to object in C2 is d

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 19

Learning Hierarchical Policies [Drexler, Seipp, G. 2023]

n0: {¬G} 7→ {G}

n1: {u> 0} 7→ {u↓}

n2: {¬H,u> 0} 7→ {H} n3: {H,u> 0} 7→ {¬H,u↓}

n4: {¬H, p> 0} 7→ {p↓} n5: {¬H, p= 0} 7→ {H, p?} n6: {H, t> 0} 7→ {t↓} n7: {H, t= 0} 7→ {¬H}

Hierarchical policy for Q = QDelivery:

• Every node n has a sketch rule r(n) and a class Qn of subproblems

• Qn determined by rule r(n) and parent Qn′. For root, Qn = Q.

. Qn forced to have smaller width than parent Qn′

. Qn has width zero iff n is a leaf

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 20

GNN-like net that maps STRIPS states s into fs(o) = fsL(o)

1. Input: State s (set of atoms true in s), set of objects

2. Output: Embeddings fL(o) for each object o

3. f0(o) ∼ 0k for each object o ∈ s
4. For i ∈ {0, . . . , L− 1}
5. For each atom q := p(o1, . . . , om) true in state s:

6. mq,o := [MLPp(fi(o1), . . . , fi(om))]j

7. For each object o in state s:

8. fi+1(o) := MLPU

(
fi(o), agg({{mq,o|o ∈ q}})

)
• Value and policy learned from embeddings fs(o) = fL(o) for each object o

• Objects o change from instance to instance but domain predicates p fixed

• One MLPp, for each domain predicate p; single MLPU

• Relational GNN-like architecture as STRIPS states not graphs but rel structures

• Messages exchanged among objects o through the atoms where they appear in s

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 21

From the Object Embeddings fsL(o) to V (s) and π(s′|s)

Value function V (s) and policy π(s′|s) from embeddings fs(o) = fL(o):

• Value function V (s) = V (s;w) outputs single scalar through MLP as:

V (s) = MLP
(∑

o∈O f
s(o)

)
• Stochastic policy π(s′|s) = π(s′|s;w) selects successor states s′ by computing

logits for pairs (s, s′) and passing them through softmax :

logit(s′|s) = MLP1

(∑
o∈OMLP2(fs(o), fs

′
(o))

)
,

π(s′|s) ∝ exp
(
logit(s′|s)

)

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 22

Training the General Policy Functions by DRL – Actor-Critic

1. Input: Training MDPs {Mi}i, each with state priors pi
2. Input: Value function V (s) with parameter ω

3. Input: Policy π(s′|s) with parameter θ

4. Input: Differentiable policy π(s|s′) with parameter θ

5. Input: Diff. value function V (s) with parameter ω

6. Parameters: Step sizes α, β > 0, discount factor γ

7. Initialize parameters θ and ω

8. Loop forever:

9. Sample MDP index i ∈ {1, . . . , N}
10. Sample non-goal state S in Mi with probability pi
11. Sample successor state S′ with probability π(S′|S)

12. Let δ = 1 + γV (S′)− V (S)

13. ω ← ω + βδ∇V (S)

14. θ ← θ − αδ∇ log π(S′|S)

15. If S′ is a goal state, ω ← ω − βV (S′)∇V (S′)

Standard Actor-Critic RL algorithm, baseline V (S), where policy does not select
actions but state transitions, and action costs are all 1

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 23

