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Learning High-Level Representations: A Key Challenge in AI

• Learn representations that support reasoning and planning, that generalize and
are reusable, . . .

• Yoshua Bengio’s challenges reflected in title of his IJCAI 2021 talk:

. System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution
generalization and causality

• Yann LeCun’s three challenges, AAAI 2020:

. AI must learn to represent the world

. AI must think and plan in ways compatible with gradient-based learning

. AI must learn hierarchical representation of action plans
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Two Approaches to Learning High-Level Representations

• Bottom-up approach

. Representations emerge from architecture, loss function, and “right” bias

. Most common approach in deep (reinforcement) learning

• Top-down approach

. Representations learned over language with “right” syntax and semantics

. Reasoning, meaningful learning bias, transparency, what vs. how

. Doesn’t assume background knowledge; compatible with deep learning

Our focus: top-down representation learning to act and plan
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Three concrete learning problems for acting and planning

• Learning general models

. Language and semantics

. Learning: combinatorial approach

• Learning general policies

. Language and semantics

. Learning: combinatorial approach and DRL approach

• Learning general subgoal structures (sketches)

. Language, semantics, width

. Learning: combinatorial approach

The setting is classical planning:

. factored deterministic MDPs; states given by atoms p(c1, . . . , ck)

. fixed set of domain predicates p

. variable set of objects c1 that depend on domain instance

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 4



Learning Problem #1: General Models

• Problems P specified as instances P = 〈D, I〉 of general domain D

. Domain D specified in terms of action schemas and predicates

. Instance is P = 〈D, I〉 where I details objects, init, goal

• E.g., Delivery problem where packages to be moved by robot to target cell in
grid; any number of packages, any grid size, captured with domain with three
STRIPS action schemas. Can they be learned, predicates included?

move(c, c′)

Preconds: atRobot(c), adjacent(c, c′)

Effects: atRobot(c′), ¬atRobot(c)

pick(o, c):

Preconds: atRobot(c), at(o, c), emptyhand

Effects: held(o), ¬at(o, c), ¬emptyhand

drop(o, c):

Preconds: atRobot(c), held(o)

Effects: at(o, c), ¬held(o), emptyhand
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Example: Learning P = 〈D, I〉 from Single Graph G

Input: State graph G of agent in 1×3 grid, moving/picking/dropping 2 pkgs
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Output: Simplest STRIPS representation P = 〈D, I〉 that generates G

Move(?to, ?from):

Pre: neq(?to, ?from), p5(?to , ?from)

Pre: p2(?from), -p2(?to)

Eff: -p2(?from), p2(?to)

Pick(?p, ?x):

Pre: p2(?x), p1, -p3(?p), p4(?p, ?x)

Eff: -p1, p3(?p), -p4(?p, ?x)

Drop(?p, ?x):

Pre: p2(?x), -p1, p3(?p), -p4(?p, ?x)

Eff: p1, -p3(?p), p4(?p, ?x)

Interpretation of learned predicates:

– p1: gripper empty

– p2(x): agent at cell x,

– p3(p): agent holds pkg p,

– p4(p, x): pkg p in cell x

– p5(x, y): cell x adj to y

• Domain D correct for any grid, any # of packages. Structure of nodes uncovered.
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Learning Problem #1: General Models

• P = 〈D, I〉 defines unique state graph G(P )

• Learning as inverse task: from graphs G1, . . . , Gk, learn problems P = 〈D, Ii〉:

Given graphs G1, . . . , Gk, find simplest instances Pi = 〈D, Ii〉 such that
graphs Gi and G(Pi) are isomorphic, i = 1, . . . , k.

• Problem cast/solved as combinatorial optimization task [Bonet and G., 2020]

• Complexity of Pi determined by # and arities of action schemas and predicates

• Variations: noisy graphs, gray-box states [Rodriguez et al., 2021, Occhipinti et al., 2022]

[Open: How to solve (a version of) this problem using DL/gradient descent?]

Learning general policies and sketches, H. Geffner, NeurIPS Workshop GenPlan’23, 16/12/2023 7



Learning Problem #2: General Policies [Bonet, G., 2018]

General policy for achieving clear(x) in Blocks; any instance

• Features Φ = {H,n}: ’holding’ and ’number of blocks above x’

• Policy π for class Qclear of problems with goal clear(x) given by two rules:

{¬H,n> 0} 7→ {H,n↓} ; {H,n> 0} 7→ {¬H}

• Meaning:

. if ¬H & n > 0, move to successor state where H holds and n decreases

. if H & n > 0, move to successor state where ¬H holds, n doesn’t change

• Semantics of policy π specified by rules Ci 7→ Ei:

. state transition (s, s′) is π-transition iff s |= Ci, and [s, s′] |= Ei for some i

. π-trajectories made up of π-transitions, starting at s0

. π solves class of problems Q if, in every P ∈ Q, all π-trajectories end in goal
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Example 2: Delivery

• Domain: Move packages in n×m grid, one by one, to target location

• Features Φ = {H, p, t, n}: hold, dist. to nearest pkg & target, # undelivered

• General policy π: any # of pkgs and distribution, any grid size

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package

Policy can be shown to be correct, solving any instance.
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Learning Problem #2: Min-SAT Encoding T (S,F)

• Inputs to formula T = T (S,F):

. Feature pool F defined from domain predicates and C2 logic

. State transitions S from the training instances P1, . . . , Pk

• Variables in T : Good(s, s′), V (s, d), Select(f) : (s, s′) ∈ S, f ∈ F , d ≤ dmax
• Formulas in T = T (S,F):

1. Policy closed:
∨

(s,s′)∈T Good(s, s′) [non-goal, non dead-end s]

2. Policy acyclic: Good(s, s′), V (s, d), V (s′, d′) ⊃ d′ < d, [non-goal, non-dead s]

3. Policy safe: ¬Good(s, s′) [non-dead-end, dead-end]

4. Exactly-1 {V (s, d) : d ≤ dmax} [V (s, d) iff V (s) = d, all s]

5. Features distinguishes good from bad transitions: [(s, s′) and (t, t′) in S]

Good(s, s′) ∧ ¬Good(t, t′)→
∨

f :∆f(s,s′) 6=∆f(t,t′)

Select(f)

Theorem: Theory T (S,F) is SAT iff there is a policy π over features Φ ⊆ F that
solves P1, . . . , Pn. Policy rules from SAT assignment; capture feature changes in
the transitions (s, s′) labeled good.
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Experimental Results over Classical Domains

S S/∼ dmax |F| vars clauses tall tSAT cΦ |Φ| k∗ |πΦ|
Qclear 1, 161 55 7 532 7.9K 243.7K(242.3K) 6 1 8 3 4 3
Qon 1, 852 329 10 1, 412 17.3K 376.6K(281.5K) 231 153 13 5 5 7
Qgrip 1, 140 61 12 835 6.5K 102.6K(100.8K) 2 1 9 3 4 4
Qrew 432 361 15 514 5.5K 214.9K(98.9K) 8 1 7 2 6 2
Qdeliv 42, 473 5442 56 1, 373 753.4K 38.2M(23.5M) 3071 2902 30 4 14 6
Qvisit 2, 396 310 8 188 13.9K 244.5K(160.6K) 3 1 7 2 5 1
Qspan 10, 777 96 19 764 85.0K 2.2M(2.2M) 46 2 9 3 6 2
Qmicon 4, 706 4, 636 14 1, 073 23.8K 23.6M(2.4M) 184 104 11 4 5 5
Qbw 2, 136 2, 136 7 1, 766 10.9K 4.6M(180.1K) 252 64 10 3 6 1

Classes of problems QD for different planning domains D

Some theories T (S,F) are very large (38M clauses) but solved

Learned policies for each of the domains can be proved to be correct; but
learning doesn’t guarantee it
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Learning Problem #3: Subgoal Structures [Bonet and G. 2021]

• Sketch of width=2 for Delivery:

{n> 0} 7→ {n↓} deliver package

• Sketch of width=1:

{¬H} 7→ {H} go and pick package

{H} 7→ {¬H,n↓} go and deliver package

• Sketch of width=0 (full policy)

{¬H, p> 0} 7→ {p↓, t?} go to nearest package

{¬H, p= 0} 7→ {H, p?} pick it up

{H, t> 0} 7→ {t↓, p?} go to target cell

{H, t= 0} 7→ {¬H,n↓, p?} drop package

• Language of sketches is same language of policies: rules Ci 7→ Ei

• Semantics of sketches slightly different:

. In state si where Ci holds, reach subgoal si+1 s.t. [si, si+1] |= Ei

. If sketch is terminating and subproblems have width ≤ k, problems solvable
by SIWR algorithm in time exp(k)
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Learning Sketches [Drexler et al., 2022]

• Given a domain D, training instances P1, . . . , Pn, a pool of features F , and
bound k, find min-cost sketch R over F such that

. Subproblems induced by R on each Pi have all width bounded by k,

. Sketch R is terminating (structurally acyclic)

• Learning task model and solved as combinatorial optimization problem in Clingo
[Gebser, Kaufmann, Schaub 2012]

• E.g., sketch given by rules {¬H} 7→ {H} and {H} 7→ {¬H,n↓} learned in this
way
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Last Twist: General policies via DRL and GNNs

• Can we learn general policies using deep (reinforcement) learning?

• Before, they were learned them by solving Min-SAT problem T (S,F):

. S: set of state transitions (s, s′) over small instances

. F : pool of features derived from domain predicates and C2 logic

• C2 is fragment of first-order logic that uses two variables only

• Interestingly, tight correspondence known between C2 and GNNs

• Idea: Represent policy π(s′|s;w) with GNN; learn w parameters with RL

. Before: explicit pool of features; now, GNN takes care of features

. Before: π constrained to solve training instances; now, penalize π if it doesn’t
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GNN + Actor-Critic for Gen Policies [St̊ahlberg et al., 2023]

Domain Coverage (%) Domain Coverage (%)

Blocks 100% Delivery 100%
Gripper 100% Miconic 100%
Visitall 100% Grid 70%

Logistics 36% Spanner 68%

• Nearly perfect general policies obtained in several domains (100%)

• But the interesting part is the failure in three marked domains, as it has nothing
to do with RL algorithm:

. C2/GNN expressivity not enough: binary relations need to be composed

. Generality-optimality tradeoff: can’t have both in some domains

• By addressing these two problems, 100% coverage over all domains obtained

(unlikely to get similar results without understanding these problems)
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Summary: Top-down representation learning to act and plan

• Three learning problems in planning:

. Learning general models

. Learning general policies

. Learning general subgoal structures (sketches)

• Two methods:

. Combinatorial optimization: Min-SAT, Clingo

. Continuous optimization: deep (reinforcement) learning

• Potential benefits of top-down approaches (vs. bottom-up):

. Transparency, structural generalization; distinction what/how, reuse, . . .
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Pool of Features F : From Domain predicates and C2 Logic

• Fixed grammar generates new predicates from domain and goal predicates p, pG

• Unary predicates called concepts C; binary predicates, roles (description logics)

• Denotation (extension) of concept C in state s, C(s): objects “in” C

• Features from concepts C: nC(s) = |C(s)|; pC(s)=> iff |C(s)| > 0

• Complexity of unary predicate (“concept”) given by number of grammar rules used

• Pool F obtained from concepts of complexity bounded by a parameter

• Grammar: borrowed from “description logics”, a C2 logic

. Primitive: Cp given by domain predicates p and “goal predicates” pG (p in goal)

. Universal: Cu contains all objects

. Negation: ¬C contains Cu \ C

. Intersection: C u C ′

. Quantified: ∃R.C={x : ∃y[R(x, y) ∧ C(y)]} and ∀R.C={x : ∀y[R(x, y) ∧ C(y)]}

. Roles (binary predicates): Rp, R−1
p , R+

p , and [R−1
p ]+

• Additional distance features dist(C1, R, C2) for conceptsC1 andC2 and roleR that evaluates

to d in state s iff minimum R-distance between object in C1 to object in C2 is d
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Learning Hierarchical Policies [Drexler, Seipp, G. 2023]

n0: {¬G} 7→ {G}

n1: {u> 0} 7→ {u↓}

n2: {¬H,u> 0} 7→ {H} n3: {H,u> 0} 7→ {¬H,u↓}

n4: {¬H, p> 0} 7→ {p↓} n5: {¬H, p= 0} 7→ {H, p?} n6: {H, t> 0} 7→ {t↓} n7: {H, t= 0} 7→ {¬H}

Hierarchical policy for Q = QDelivery:

• Every node n has a sketch rule r(n) and a class Qn of subproblems

• Qn determined by rule r(n) and parent Qn′. For root, Qn = Q.

. Qn forced to have smaller width than parent Qn′

. Qn has width zero iff n is a leaf
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GNN-like net that maps STRIPS states s into fs(o) = fsL(o)

1. Input: State s (set of atoms true in s), set of objects

2. Output: Embeddings fL(o) for each object o

3. f0(o) ∼ 0k for each object o ∈ s
4. For i ∈ {0, . . . , L− 1}
5. For each atom q := p(o1, . . . , om) true in state s:

6. mq,o := [MLPp(fi(o1), . . . , fi(om))]j

7. For each object o in state s:

8. fi+1(o) := MLPU

(
fi(o), agg({{mq,o|o ∈ q}})

)
• Value and policy learned from embeddings fs(o) = fL(o) for each object o

• Objects o change from instance to instance but domain predicates p fixed

• One MLPp, for each domain predicate p; single MLPU

• Relational GNN-like architecture as STRIPS states not graphs but rel structures

• Messages exchanged among objects o through the atoms where they appear in s
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From the Object Embeddings fsL(o) to V (s) and π(s′|s)

Value function V (s) and policy π(s′|s) from embeddings fs(o) = fL(o):

• Value function V (s) = V (s;w) outputs single scalar through MLP as:

V (s) = MLP
(∑

o∈O f
s(o)

)
• Stochastic policy π(s′|s) = π(s′|s;w) selects successor states s′ by computing

logits for pairs (s, s′) and passing them through softmax :

logit(s′|s) = MLP1

(∑
o∈OMLP2(fs(o), fs

′
(o))

)
,

π(s′|s) ∝ exp
(
logit(s′|s)

)
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Training the General Policy Functions by DRL – Actor-Critic

1. Input: Training MDPs {Mi}i, each with state priors pi
2. Input: Value function V (s) with parameter ω

3. Input: Policy π(s′|s) with parameter θ

4. Input: Differentiable policy π(s|s′) with parameter θ

5. Input: Diff. value function V (s) with parameter ω

6. Parameters: Step sizes α, β > 0, discount factor γ

7. Initialize parameters θ and ω

8. Loop forever:

9. Sample MDP index i ∈ {1, . . . , N}
10. Sample non-goal state S in Mi with probability pi
11. Sample successor state S′ with probability π(S′|S)

12. Let δ = 1 + γV (S′)− V (S)

13. ω ← ω + βδ∇V (S)

14. θ ← θ − αδ∇ log π(S′|S)

15. If S′ is a goal state, ω ← ω − βV (S′)∇V (S′)

Standard Actor-Critic RL algorithm, baseline V (S), where policy does not select
actions but state transitions, and action costs are all 1
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