s UNIVERSITY OF

Logic, Automata, and Games
in Linear Temporal Logics on Finite Traces

Giuseppe De Giacomo

University of Oxford

GenPlan@NeurlPS2023 — New Orleans, USA
December 16, 2023

UNIVERSITY OF

@) OXTORD

Logic, Automata, and Games

| el N

declarative

in Linear Temporal L~~%-~ -~

Giuseppe |

procedural

ersity-or—~—nrora

automata

GenP|dn@NeUI‘|P32023 - NE reachability /safety
December 16, 2(o

UNIVERSITY OF

o -ﬂ}ﬂ LOR S¥FORD

https://tailor-network.eu/

DECLARATIVE ...
... TO PROCEDURAL

declarative

procedural

S TAILOR

https://tailor-network.eu/

UNIVERSITY OF

OXFORD

Procedural Specs

package (=1} ______
received) 4 E
Get Length
pType
0 mmmn measure std,large,x1 >0
>0, weight

Type Length
} U (m)
length - g -
pWeight | | ="~~~ """"°°°
2 large 1
3 x1 2

Type — pType
Length +— plLength

wrong
input K -

Determine Mod
Length — pLength ctermine Vode

W]\;ig:[g p’://IVe(ijght Length | Weight Mode
ode — sMode vl (kg)

pLength = undef
V pWeight > 10

>0 >0 car, truck
1] (0,1] (0,5] car
2| (1,2] (0, 5] truck
no shipment 3 — (5,10] truck

Mode +— sMode
Weight — pWeight
Consent — consent

consent E Choose Consent
Mode Weight Consent
consent = com consent = owner™.,
U (ke)
sign fetch car,truck >0 none, owner, com
declaration declaration
1 car >6 owner
2 truck >8 com

O ready for shipment

Courtesy of Marco Montali

TAILOR

https://tailor-network.eu/

UNIVERSITY OF

OXFORD

Get Length
pType
Type Length
Type — pType (m)
Length — plLength U
...................... std,large,x1 >0
1 std 0.5
2 large 1
3 x1 2
wrong

gth = undef input
eight > 10

LQ»—) pLength Determine Mode
Weight > pWeight } Length | Weight | Mode
...... M f)de > sMode ul| @ (kg)
"""""""""" >0 >0 car, truck
1| (0,1] (0,5] car
2 (1,2] (0,5] truck
no shipment 3 — (5,10] truck

Weight — pWeight

Mode +— sMode S
Consent +— consent

consent E Choose Consent
Mode Weight Consent

consent = com consent = own

U (kg)

sign fetch car,truck >0 none, owner, com
declaration declaration
1 car >6 owner
2 truck >8 com

ready for shipment

Courtesy of Marco Montali

Sawxd UNIVERSITY OF

&) OXFORD

Traces Allowed by the Specs

A possibly infinite set of finite traces

Courtesy of Marco Montali

ro o[TAILOR

https://tailor-network.eu/

Traces Allowed by the Specs

close a
order pay

order paid

quit

Courtesy of Marco Montali

Sawxd UNIVERSITY OF

&) OXFORD

Traces Allowed by the Specs

Generalisation

Courtesy of Marco Montali

Gwwd UNIVERSITY OF

«%/ OXFORD

e

Courtesy of Marco Montali

Sowd UNIVERSITY OF

8 OXFORD

Declarative (Specifications of) Processes

Our goal

LY Reality
specification

Courtesy of Marco Montali

Sowd UNIVERSITY OF

8 OXFORD

Declarative Processes

In late 2000’s the Business Process Management (BPM) community produced a brilliant idea:
[PesicVanDerAalstO6] [AlbertiEtAlt06] [Montali2010] [PesicBovsnavkiVanDerAalst10]

The idea:

* Give the rules that a process should satisfy
* And nothing else!

* Extract the process from the rules only

Which specs?

* The one most used in formal methods for
specifying process properties
* Linear Time Logic on Finite Traces (LTLf)

In other words:
* Drop explicit representation of process, and

* Use instead LTL formulas to specify the allowed
process traces

Process Imperative Declarative
model specification

Sowd UNIVERSITY OF

#) OXFORD

Declarative Processes

In late 2000’s the Business Process Management (BPM) community produced a brilliant idea:
[PesicVanDerAalstO6] [AlbertiEtAlt06] [Montali2010] [PesicBovsnavkiVanDerAalst10]

The idea:

Give the rules that a process should satisfy
And nothing else!
Extract the process from the rules only

In other words: Automatically synthesize process

from declarative specs

It can be seen as the fulfillment of the CS dream:

Devise a technique for the “mechanical
translation of human-understandable task
specifications to a program that is known to
meet the specifications.” [Vardi - The Siren Song
of Temporal Synthesis 2018] (more later)

Process Imperative Declarative
model specification

UNIVERSITY OF

@) OXTORD

o

TAILOR

https://tailor-network.eu/

(]

Declarative Processes

Originally a controlled set of notable LTL formulas on were proposed for process specification

(and a suitable graphical notation provided) [PesicVanDerAalstO6]
Can we use any LTL formula

: ' 2
Example (Main DECLARE Patterns) as a declarative spect

—
NAME NOTATION LTL;y DESCRIPTION /[
1.x
Existence a Qa a must be executed at least once No! What if the spec Is:
Resp. existence a b Ga D Ob If ais executed, then b must be executed as well GIWG)' S evenfUCl”)' HC'PP)’ e
Response a b O(a D ©Ob) Every time a is executed, b must be executed afterwards [
Precedence a b —bWa b can be executed only if a has been executed before

Yes, if you focus on finite trace!
(Specs in LTLf instead of LTL)

Alt. Response

()

TEDIT

b |O(a D> O(—ai4b)) Every a must be followed by b, without any other a in

Chain Response O(a D Ob) If ais executed then b must be executed next

o

Chain Precedence

(]

O(Ob D a) Task b can be executed only immediately after a

o

Not Coexistence

()

—(Ca AOb) Only one among tasks a and b can be executed

o

Neg. Succession O(a D ~Ob) Task a cannot be followed by b, and b cannot be preceded by a

()

Neg. Chain Succ.

i

[:](a, D Oﬁb) Tasks a and b cannnt he averuted nevt ta sarh ather

Assumes only one activity (proposition) e S ma G. De Glccom.o', R De Mc'lsc'alhs, M. Montali: Reasoning on LTL on Finite
Traces: Insensitivity to Infiniteness. AAAI 2014

UNIVERSITY OF

OXFORD

c 2| TAILOR

https://tailor-network.eu/

FOCUS ON FINITE TRACES

Rigorous guarantees about the behavior of
computational systems

Wide-spread industrial adoption

Main tasks
— Formalisms for specs of dynamic properties:

* E.g., Linear Temporal Logic

— Verification:

* Check if the system satisfies specs.

g

Synthesis:
* Synthesize a system that satisfies specs.

)

Sowd UNIVERSITY OF

8 OXFORD

Formal Methods

AIRBUS

GROUP

Iy
CISCO

awsS AUTOMAT =D

RIASONING GROUP

S= Microsoft

Sowd UNIVERSITY OF

8 OXFORD

Model Checking vs Synthesis

The “big bang” of the application of temporal logic to program verification: Linear
Temporal Logic (LTL) (Pnueli, 1977)

Semantics of LTL is over w-words, i.e., infinite traces

Note:
e Ww-automata algorithms scale well as long as you do not have to determinize @
e For synthesizing strategies/policy determinization is essential @

e In Al are more interested in finite-trace semantics @

Planning in Al:

Is all about having a task specification or “goal” and
producing a “plan” (or strategy or policy) to satisfy the
task in the environment model.

* Which taskse

— A task that terminates!

— Typically, just reaching a certain state in the environment

Why tasks that terminates?
Because it is the agent that is planning /reasoning

If the task would not terminate, the agent would be stuck into doing
the same task forever

But then, why bother with equipping it with a model of the
environment and of the task at all?

Note it is the agent, NOT the designer, who has such a model

UNIVERSITY OF

@) OXTORD

Focus on Finite Traces is Shared by Al

* |n Formal Methods focus on infinite traces
e In Al focus on finite traces LTL = LTLf

N

Model of the Environment

N 002000~

UNIVERSITY OF

@) OXTORD

Linear Time Temporal Logics on Finite Traces

LTLf/LDLf: linear temporal logics on finite traces [DeGiacomoVardi2013]

LTL;: linear time temporal logic on finite traces

Same syntax as standard LTL but interpreted over finite traces

pu=A| @ |1 Ap2| nexty | eventually p | alwaysp | p1 until pa

Examples: eventually A “eventually A" reachability
always A “always A" safety
always(A — eventually B) “always if A then eventually B” reactiveness
A until B “A until B" until
- B until A V always - B “A before B” precedence

A\

LDL;: linear dynamic logic on finite traces

Same syntax as PDL but interpreted over finite traces
pu=tt|A|l-ploiANp2|(p)el|lple pu=A|@?|p1+p2]|p1;p2]p*
Adds the possibility of expressing procedural constraints/goals [Reiter01], [BaierFritzMcllraith07]:

§u:=A|p?|8 +382]|81;82 |8 |if ¢ then §; else 5> | while ¢ do §
where if and while are abbreviations: if ¢ then d;ielse 5 = (¢7; 1) + (—¢7?; 2) and while ¢ do § = (¢7?;6)™; —~p?

4
-

UNIVERSITY OF

@) OXTORD

Linear Time Temporal Logics on Finite Traces

Example

e “All coffee requests from person p will eventually be served”:

always(request,, — eventually coffee,,) [true™](request,, — (true™)coffee,)

® “FEvery time the robot opens door d it closes it immediately after”:

always(open Door ; — next closeDoorg) [true™]([openDoor] closeDoory)

® “Before entering restricted area a the robot must have permission for a":

—inAreaq until getPerm, V always ~inArea, ((minAreay)”)getPerm, V [true™]|—inArea,

e “FEach time the robot enters the restricted area a it must have a new permission for a":

((—inArea,”; getPerm ; —inArea,” ; inAreas; inArea))™ ; —inArea,” Yend
® “At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don’t turn it off":

[true™](if (hot) then
if (—airOn) then turnOnAir
else —turnOffAir) true

TAILOR

https://tailor-network.eu/

entation

LTLf to Automata

DFA are indeed machines and
hence processes!

Key point
LTL¢/LDLs formulas can be translated into a finite-state automaton on finite words A, such that:
t=iffte L(A,)

® in linear time if A, is an Alternating Automata (AFW);
® in exponential time if A, is an Nondeterministic Finite-state Automaton (NFA);

® in double exponential time if A, is an Deterministic Finite-state Automaton (DFA).

We can compile reasoning into automata based procedures!

UNIVERSITY OF

OXFORD

Regular Automata

and, or, not

complete
minimize

trim

Machine

exists

Math

Math

and, or, exists not

and, or, not

exists

UNIVERSITY OF

@) OXTORD

LTLf to Automata

Key point

LTLf/LDL¢ formulas can be translated into deterministic finite state automata (DFA).

tEpiffte L(Ay)

where A, is the DFA ¢ is translated into.

Example (Automata for some LTL¢/LDL; formulas)
e s | ‘ oG
O0(A D O$B) —0

-BUY AV O-B “A before B”

(=B*; A;—~B*; B; B)*; =B™)end
“each time new A before B" (A and B not true simultaneously)

(online software for LTLf2DFA: http: //ltlf2dfa. diag. uniromal. it)
online software for LDLf2DFA: http: // lydia. whitemech. it
(P Y
y

At -
i E=

UNIVERSITY OF

@) OXTORD

Pure Past LTL

2

g

PPLTL is a variant of LTLf that looks at traces backward (from now toward the past)

PPLTL: Pure Past LTL

pu=Al-p|p1Ap2| Op|p1Sp2

® PPLTL has the same expressive power of LTLf.
® The DFA Ag of a PPLTL formula @ is worst-case single exponential (vs double-exponential for LTLf):

» build AFA reading the trace backward (same AFA as for LTLf - linear)
» compute the DFA of the reverse language (single exponential)

® Best algorithm for systematic translation between LTLf and PPLTL is 3EXPTIME,. ..
® . ..but in several significant cases is polynomial, e.g., all DECLARE patterns [GeattiMontaliRivkinArXiv2022].

TAILOR

https://tailor-network. eu/

Pure Past LTL

UNIVERSITY OF

@) OXTORD

Actually PPLTL formulas can be evaluated in a dynamic programming method using only two instants:

* Now
* One step in the past (prev)

Current and Previous Instants

PPLTL formulas can be evaluated considering only the current and previous instants:

elalCAN - oy |
eval(@so, IIhow, Hprev)
eval(=0, Mo, e)
eval(yp1 A 92, now, Hprev)
eval(p1 V ¢2, now, Hprev)
eval(p1 8 Y2, M now; Hprev)

A if variable “A" is true in I,

O if variable “"©¢" is true in Iy ey

Seval(o0l ne ey)

e'val(cpl, Inow, Hprev)) A eval(cpz, Inow, Hp're'v)
eval(ﬁpl, Hnow, Hprev)) W eval((P2, Hnow, Hprev)
eval([902 \% (‘Pl N 9(901 S ‘P2))]a 0w, Hp'rev)

Remember that the fixpoint equation for 1 S 2 is
p1Sp2=p2 V(1 ANO(p1S¢92)).

UNIVERSITY OF

@) OXTORD

Pure Past LTL

As a result one can built a symbolic DFA in linear timel

Symbolic DFA

As = (AP, PP, T1° Trans, Final)

prev?
where

® AP set of boolean variable, one for each atomic proposition, representing which propositions are true/false in the
current instant;

® PP set of boolean variable, one component for each sub-formulas the form ©¢ in Fisher-Ladner closure of @,
representing which formulas were true/false at the previous instant;

° ngev = (false, ..., false), initially all formulas of the form ©¢ are false
& Frans(llnon, ey) = Frans: (I 5.0 I e) X< Brans,, (I 0.0, Wy e) Within = |15 |:1at where for each
variable"Sy;":

Trans; (Hnow, Hp'r‘ev) = eval(@z’, IMnow, Hprev)

. Final(nnow> Hprev) = eva’l(q)a Hnow, HP'f‘e'v)

Important: Ag is linear in ®.
y

Sowd UNIVERSITY OF

8 OXFORD

Several Applications of LTLf/PPLTL Specs

Many Applications:

* Planning for temporally extended goals

* Several forms of Synthesis

| |

: i

e MDP with non-Markovian rewards : DFA i
|

* Reinforcement Learning for non-Markovian : i

tasks E[FOND Synthesis] !

* Declarative Process Specification in BPM E !

|

i MDP BPM i
|

: = i

| RL |

| |

e e e e - e e e o e e e e e e e e e e — — — —

S TAILOR

DECLARATIVE ...
... TO PROCEDURAL ...
... 10 GAMES

declarative

procedural

Sowd UNIVERSITY OF

8 OXFORD

Specify Models and Tasks as Processes in Formal Methods

Specify ENV and TASK as with

* Environment Model (ENV) formalism used in Formal Methods e.g.,

— Spec. of environment possible behaviors LTL/LTL

(ENV)
— Think of each behavior as a choice function
resolving nondeterminism of a

nondeterministic domain —
— ENV expressed as

* nondeterministic planning domains Model of the Environment

* LTL/LTLf specifications
~_

‘O
 Agent’s Task (TASK/GOAL) "'
— Spec. of agent’s task
L— TASK expressed in LTL/LTLf j

* Find agent’s plan/behavior/policy /strategy that fulfills Find agent’s strategy thatis
TASK against all behaviors of ENV winning against ENV

UNIVERSITY OF

e [TAILOR '#) OXFORD

https://tailor-network.eu/

Nondeterministic Domains as Deterministic Automata

Nondeterministic domain (including initial state)

D = (27, A, s¢, 8, a) where:
® F fluents (atomic propositions)
® A actions (atomic symbols)
27 set of states
so initial state (initial assignment to fluents)

a(s) C A represents action preconditions

4(s,a,s’) with a € a(s) represents action effects (including frame).

Automaton Ap for D is a DFAll!

Ap = (2794, (27 U {sinit}), Sinit, 0, F) where:
2FUA

alphabet (actions A include dummy start action)

27 U {sinit} set of states

Sinit dummy initial state

F = 27 (all states of the domain are final)

p(s,|a, s’]) = s’ with a € a(s), and 6(s, a, s’) p(8init, [start, so]) = so

(notation: [a, s’] stands for {a} U s’)
v

UNIVERSITY OF

@) OXTORD

2% TAILOR
) https://tailor-network.eu, /

Nondeterministic Domains as Deterministic Automata

Example (Simplified Yale shooting domain)

® Domain D:

® DFA Ap:

wait/shoot,
la, w,!d

UNIVERSITY OF

@) OXTORD

Planning in Nondeterministic Domains for Reachability Goals
Planning in nondeterministic domains

® Set the arena formed by all traces that satisfy both the DFA Ap for D and the DFA for &G where G is the goal.

® Compute a winning strategy. (EXPTIME-complete in D, constant in G)

Example (Simplified Yale shooting domain)
A'D A<>—-a

wait, a, w, !d

alive true
‘ not alive .

ait/shoot,
la, w,!d

A'D X Aoﬁa:

wait, a, w, !d '

a
w
start, a, w,!d] shoot, !a, w, !d strategy
0
wait tnit, O — start
shoot, a, w, !d shoot, la, w, !d a,w, d, 0 — shoot
" a, ~w, ~d, 0 — shoot
discard, a, w,d d —a, w, ~d, 1 —* win!
0

UNIVERSITY OF

@) OXTORD

Planning in Nondeterministic Domains for Arbitrary LTLf Goals
In general, we need first to determinize the NFA for LTL¢/LDL¢ formula

NFA for CO—a

23

corresponding DFA

ok

(DFA can be exponential in NFA in general)

Example (Simplified Yale shooting domain)

wait/shoot,

la, w,!d

wait/shoot,
la, w,!d

> shoot, !a, w, !d
Ap X Aon-a: -
shoot, a, lw, Id shoot, !a, w, |d

Jo

A<>l:|—ua

nota
nota .

strategy

init, O
a,w, 0d,0
a, w, d, 0
Wk ATy @k AL

{114

start
shoot
shoot
win!

UNIVERSITY OF

@) OXTORD

Planning in Nondeterministic Domains for LTLf Goals

DFA games This is the game area, in which

t and il play!
A DFA game G = (2794, S, sinit, 0, F), is such that: elefEulelife e A el b

® F controlled by environment; A controlled by agent; :

FUA
® 2 , alphabet of game; It is not only the domain, but it
® S, states of game; is obtained from the domain
® s.init, initial state of game; and the DFA of the formula

® 0:S X 27YA _, S, transition function of the game: given current state s and a choice of action a and resulting
fluents values E the resulting state of game is o(s, [a, E]) = s;

F’, final states of game, where game can be considered terminated.

Winning Strategy:

® A play is winning for the agent if such a play leads from the initial to a final state.

® A strategy for the agent is a function f : (2]:)* — A that, given a history of choices from the environment,
decides which action A to do next.

® A winning strategy is a strategy f : (27)* — A such that for all traces 7 with a; = f (7 |:) we have that 7 leads
to a final state of G.

o

UNIVERSITY OF

) OXFORD

Planning in Nondeterministic Domains for LTLf Goals
Winning states for DFA games

Let denote the set of final states of G as:
[Fl={s€S|sk F}
and let's define the (adversarial preimage of a set £ the following function:

PreAdv(E) = {s € S| 3a € a(s).Vs' € S.6(s,a,s') D s’ € &}
Compute the set Win of winning states of DFA game, i.e., states from which the agent can reach the Tinal states F', by least-fixpoint:

® Wino = [F] (the final states) %aldzl[:F%
® Win;; 1 = Win; U PreAdv(Win;) while (W # Wy14){
® Win = Uz Win, %o:ld: :;/‘E[J/PreAdv(W)
Seturn W
4

(Computing Win is linear in the number of states in G)

Computing the winning strategy

Let's define w : S — 24 as: w(s) = {a € a(s) | if s € Win;;1 — Win; then Vs'.5(s,a,s’) D s’ € Win;}
® Every way of restricting w(s) to return only one action (chosen arbitrarily) gives a winning strategy for G.

® Note s is a state of the game! not of the domain only!
To phrase w wrt the domain only, we need to return a stateful transducer with transitions from the game.

UNIVERSITY OF

Su f’b,
I3 TAILOR [#) OXFORD

Planning in Nondeterministic Domains for LTLf Goals

It's a game agent vs env!

FOND for LTL; goals :

Build the arena
* Play to win!

/

Algorithm: FOND for LTL¢/LDL¢ goals

1: Given a [FOND domain 'D]and an LTLf /LDLy goal ¢
2: Compute DFA A, for ¢ (double exponential)

3: Compute(product of D and A,](polynomial)
4
5:

Synthesize winning strategy for DFA game (linear)
Return strategy

Theorem ([DeGiacomoRubinlJCAI18]) i

. Same as classic FOND
FOND for LTL¢ /LDL goals is: —

® EXPTIME-complete in the domain (assuming a logarithmic representation as in PDDL);
® 2EXPTIME-complete in the goal.

Note we have separated costs in the model (DOM) and the task GOAL!
(c.f. data vs query complexity in Databases)

UNIVERSITY OF

Su 3"0,
I3 TAILOR [#) OXFORD

Planning in Nondeterministic Domains for et Goals

It's a game agent vs env!

FOND for LTLy goals * Build the arena
* Play to win!
. /
Algorithm: FOND for LTL ¢, PPLTL jgoals
Given a [FOND domain 'D]and an LTLf /LDLy goal ¢ I

1:

2: Compute DFA A, for ¢ (double exponential) single exp for PPLTL
3: Compute(product of D and A,](polynomial)
4
5:

Synthesize winning strategy for DFA game (linear)
Return strategy

Theorem ([DeGiacomoRubinlJCAI18]) i

. Same as classic FOND
FOND for LTL¢ /LDL goals is: —

® EXPTIME-complete in the domain (assuming a logarithmic representation as in PDDL);
® 2EXPTIME-complete in the goal. EXPTIME-complete for PPLTL |

—

Note we have separated costs in the model (DOM) and the task GOAL!
(c.f. data vs query complexity in Databases)

UNIVERSITY OF

@) OXTORD

Planning in Nondeterministic Domains for i /Goals

It's a game agent vs env!

FOND for LTL; goals .

Build the arena

° in!
1. Given a FOND domain D and an PPLTL formula ¢ \ e

2. Compute the symbolic DFA A, for ¢ (linear)

- using quoted subformulas as fluent
3. Encode the symbolic DFA A, in FOND (linear)

- requires conditional effects

4. Plan for the propositional goal “¢” (exponential)
5. Return (strong /strong cyclic) plan. /
Theorem ([DeGiacomoRubinIJCAI18]) i

. Same as classic FOND
FOND for LTL¢ /LDL goals is: —

® EXPTIME-complete in the domain (assuming a logarithmic representation as in PDDL);
® 2EXPTIME-complete in the goal. EXPTIME-complete for PPLTL |

—

Note we have separated costs in the model (DOM) and the task GOAL!
(c.f. data vs query complexity in Databases)

Sowd UNIVERSITY OF

%) OXFORD

https://tailor-network.eu/

DECLARATIVE ...
... TO PROCEDURAL ...
... TO GAMES

DECLARATIVE CONTROL
IN RL

declarative

procedural

c 2| TAILOR

https://tailor-network.eu/

Merging:
®* Learning agent
— Does reinforcement
learning
— Possibly deep
reinforcement learning

®* Reasoning agent
— Does reasoning
— Possibly on temporal
specification as in formal
methods

features action

> Learning Agent

A
rewards

Rewards
Extractor

Combining Learning and Reasoning

>
fluents

Reasoning Agent

Fluent
Extractor

action

R

Environment

Action

Actuator |

"4

action

Reasoning Agent

¢ rewards from reasoning

action

Learning Agent

Features . Action ¢
Extractor Environment Actuator
fluents
P>
features
Fluents < Features
Extractor Extractor

rewards from environment

Rewards

| Extractor |

v

Action
Actuator

Action
Controller

Environment

UNIVERSITY OF

@) OXTORD

Reinforcement Learning with LTLf non-Markovian Rewards

Michael Littman @ 1JCAl 2015:
“Coming up with rewards in MDPs is

too difficult! We need help from KR!”
MDPs with non-Markovian rewards fiuents | Fonson
easoning Agent
i rewards from reasoning
* Learning agent: M = (S,y, Aug, TTag, B4G) _ features Loarning Agent action
MDP without rewards

* Reasoning agent: R = (L, {(y:,7i)}ixq)
©i in LTLf /LDLf 0 Ry (SagyAsg)* =R

non-Markovian rewards!

N

Fluents Features Action
Extractor Extractor Actuator

* Mapping between S;;and L Environment

We can define equivalent MDP over an extended
state space and do standard RL

Double state representation
(restraining bolts)

* Learning agent: M = (Say, Aug, T7ag, B4

MDP without rewards

* Reasoning agent: R = (£, {(vi,7:)}ixq)

©; in LTLf /LDLf D Ry : (Sug,Aug)* = R

non-Markovian rewards!
L]
— e

We can define equivalent MDP over an extended
state space and do standard RL

Restraining Bolts as Reasoning Agents

fluents

Reasoning Agent
(Restraining Bolt)

¢ rewards from reasoning

features
—_—

Learning Agent

UNIVERSITY OF

@) OXTORD

action

Features

Extractor
— 4

Fluents

Extractor

TN

Environment

Action
Actuator

game program™

BREAKOUT"

Use with Paddle Controllers

| Cxe622

Label, Progrom & Audiovisual © 1978 ATARI, INC

Learning Agent
— Features: paddle position, ball speed/position
— Actions: move the paddle

— R e L brielcistit

Restraining Bolt (Reasoning Agent)
— Rewards: break one column at the time left to right (all
bricks in column i must be removed before completing
any other column | > i)
— Fluents: bricks/columns status (broken /not broken)

Example: Breakout

UNIVERSITY OF

OXFORD

fluents > Reasoning Agent
(Restraining Bolt)
¢ rewards from reasoning
features action
—> Learning Agent
Features Action ‘
Extractor Actuator
- Environment
Fluents
Extractor

https: / /sites.google.com /diag.uniroma.it/restraining-bolt

Sowd UNIVERSITY OF

8 OXFORD

The Agent Ignores the Fluents!

How the agent sees
How the world is Y
the world

Controlling RL with Logic for Safety

The idea of restraining bolt can be subscribed to that part of research generated by the urgency of
providing safety guarantees to Al techniques based on learning.

@ S. Russell, D. Dewey, and M. Tegmark. Research priorities for robust and beneficial artificial
intelligence. Al Magazine, 36(4), 2015.

@ ACM U.S. Public Policy Council and ACM Europe Policy Committee. Statement on algorithmic
transparency and accountability. ACM, 2017.

e D. Hadfield-Menell, A. D. Dragan, P. Abbeel, and S. J. Russell. The off-switch game. In IJCAI 2017.

@ D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mane. Concrete problems in
Al safety. CoRR, abs/1606.06565, 2016.

@ Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Konighofer, Scott Niekum, Ufuk
Topcu: Safe Reinforcement Learning via Shielding. AAAI 2018.

@ Min Wen, Rudiger Ehlers, Ufuk Topcu: Correct-by-synthesis reinforcement learning with temporal
logic constraints IROS 2015.

UNIVERSITY OF

@) OXTORD

“The mostimportant book | have re:
—Daniel Kahneman, authorof THIN

Human
Compatible

ARTIFICIAL INTELLIGENCE
AND THE
PROBLEM OF CONTROL

Shields

“ESeliiprogrami
Sy

=T

Separate representations

® KR-based agent
® RL-based agent

Shielded execution
® KR-based agent acts as a monitor

® |t disallows forbidden actions

Very related to “Framed Autonomy” in ABPMS, see

Al-Augmented Business Process Management Systems: A Research
Manifesto ACM Transaction on Management Information Systems, 2023

== Restraining Bolts as Shields for Frame

UNIVERSITY OF

@) OXTORD

POSS(O,h) iff h = D115

fluents

KR-based Monitor
(Restraining Bolt as Shield)

features
—_—

Learning Agent

actions

Features

Extractor

Fluents

Extractor

T rewards

Rewards

o | Extractor [

Environment

> Action
Selector
Action ¢
Actuator

N. Alechina, M. Dastani, G. De Giacomo, B. Logan, G. Perelli,
G. Varricchione. Pure-Past Action Masking, AAAI2024

UNIVERSITY OF

OXFORD

It has profound implication in

Conclusion

how we can represent services

declarative
Powerful formal framework for
controller synthesis

procedural

automata

The instantiation on LTLf /PPLTL is

particularly effective reachabilty /safety
games

