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The Problem – Zero Shot Generalization in RL
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The Problem – Zero Shot Generalization in RL
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In theory – PAC bounds[1][2] exponential
in #DoF of 𝑃 𝑀

Generalization is Difficult

In practice – easy to “memorize” 
training solutions (Overfitting)

Train



ProcGen benchmark

Cobbe et al. Leveraging procedural generation to benchmark reinforcement learning, 2020

❑ ProcGen generalization benchmark
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ProcGen benchmark

Cobbe et al. Leveraging procedural generation to benchmark reinforcement learning, 2020

❑ ProcGen generalization benchmark – still challenging



Approaches to Generalization

❑ Dominant Approaches 
Inductive bias for a “planning” policy 

• E.g., value iteration network[3]

Issue: Domain-specific 

[3] Tamar et al. Value Iteration Networks. NeurIPS 2016
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❑ Observation – Maximum Entropy
[7]

exploration generalizes
[8]

!

Learning to Explore
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❑ Observation – Maximum Entropy
[7]

exploration generalizes
[8]

!

Max Reward Max Entropy

Why? Exploration behavior harder to memorize!

Learning to Explore

[7] Mutti et al. The importance of non-markovianity in maximum state entropy exploration. ICML 2022
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Ensemble agreement?
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See it in action 

maxEnt starts exploring

Reward ensemble consensus



PPO: Schulman et al., 2017 
UCB-DrAC: Raileanu et al., 2021
IDAAC: Raileanu et al., 2021
LEEP: Ghosh et al., NeurIPS 2021
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IDAAC: Raileanu et al., 2021
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Results



Summary:

❑ Key observation: Maximum-entropy generalizes well

❑ Exp-Gen idea
• Detect uncertainty (ensemble)
• Explore when uncertain
• Otherwise exploit

❑ Exp-Gen sets a new state-of-the-art on ProcGen.

GitHub
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