

European Research Council Established by the European Commission

ExpGen: Explore to Generalize

Ev Zisselman, Itai Lavie, Daniel Soudry, Aviv Tamar

NeurIPS 2023

The Problem – Zero Shot Generalization in RL

Train

$$\lim_{N \to P(M) \to P(M) \to P(M) \to P(m) = \sum_{i=1}^{N} \mathbb{E}_{\pi;M_i} \left[\sum_{t=0}^{T} C(s_t, a_t) \right]$$

Given N trai $M_1, M_2, ..., N$

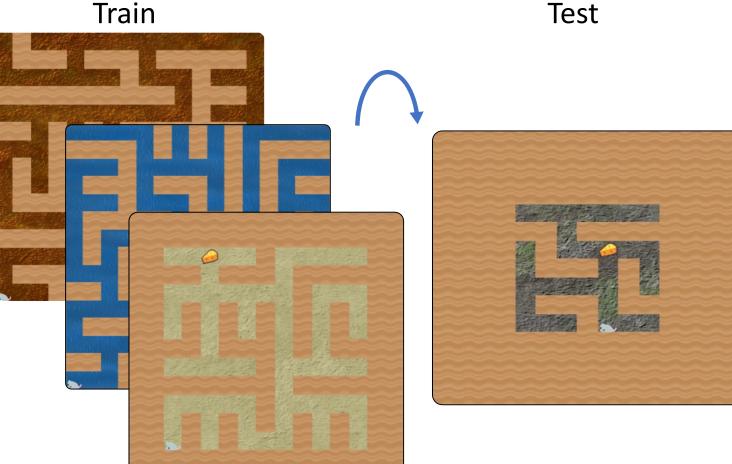
$$\mathcal{L}_{emp}(\pi) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\pi;M_i} \left[\sum_{t=0}^{T} \mathcal{C}(s_t, a_t) \right]$$

The Problem – Zero Shot Generalization in RL

Generalization is Difficult

In practice – easy to "memorize" training solutions (Overfitting)

In theory – PAC bounds^{[1][2]} exponential in #DoF of P(M)

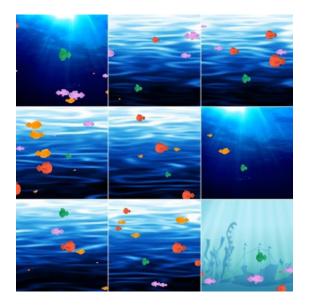


[1] Tamar, Soudry, Zisselman. Regularization Guarantees Generalization in Bayesian Reinforcement Learning through Algorithmic Stability. AAAI 2022
 [2] Rimon, Tamar, Adler. Meta Reinforcement Learning with Finite Training Tasks - a Density Estimation Approach. NeurIPS 2022

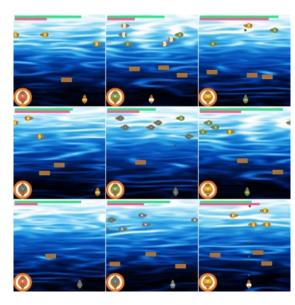
ProcGen generalization benchmark

ProcGen generalization benchmark

BigFish



Plunder



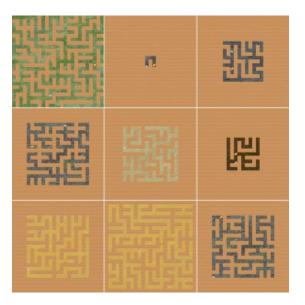
ProcGen generalization benchmark

Jumper

Climber

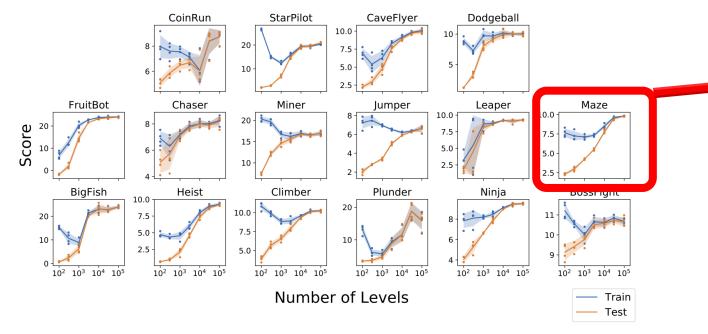
□ ProcGen generalization benchmark

Maze



Heist

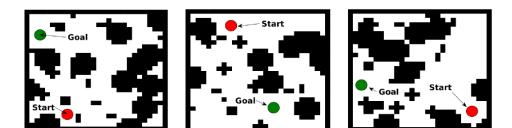
ProcGen generalization benchmark – still challenging



Cobbe et al. Leveraging procedural generation to benchmark reinforcement learning, 2020

Dominant Approaches Inductive bias for a "planning" policy

• E.g., value iteration network^[3] Issue: Domain-specific

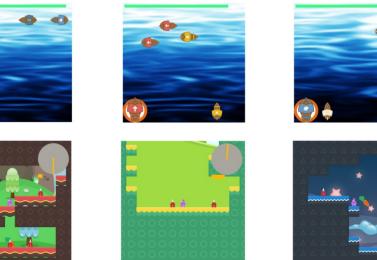


Dominant Approaches Inductive bias for a "planning" policy

E.g., value iteration network^[3] • Issue: Domain-specific

Invariant policies

• To appearance (e.g., augmentation UCB-DrAC^[4])



Plunder

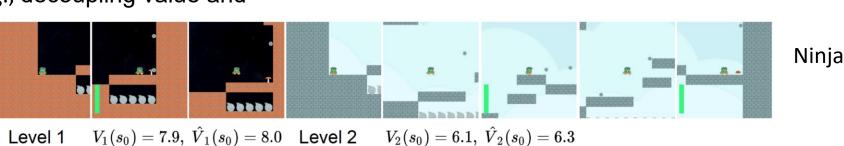
Jumper

Dominant Approaches Inductive bias for a "planning" policy

E.g., value iteration network^[3] • Issue: Domain-specific

Invariant policies

- To appearance (e.g., augmentation UCB-DrAC^[4])
- To length of tasks (e.g., decoupling value and ٠ policy IDAAC^[5])



[3] Tamar et al. Value Iteration Networks. NeurIPS 2016

[4] Raileanu et al. Automatic data augmentation for generalization in reinforcement learning. NeurIPS 2021

[5] Raileanu and Fergus. Decoupling value and policy for generalization in reinforcement learning. ICML 2021

Jumper

Plunder

Dominant Approaches Inductive bias for a "planning" policy

• E.g., value iteration network^[3] Issue: Domain-specific

Invariant policies

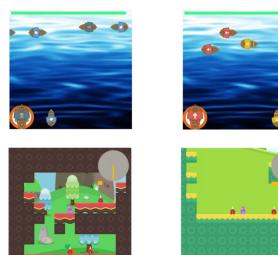
- To appearance (e.g., augmentation UCB-DrAC^[4])
- To length of tasks (e.g., decoupling value and policy IDAAC^[5])

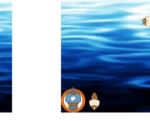
\rightarrow Not enough for <u>All Tasks</u>

[3] Tamar et al. Value Iteration Networks. NeurIPS 2016

[4] Raileanu et al. Automatic data augmentation for generalization in reinforcement learning. NeurIPS 2021

[5] Raileanu and Fergus. Decoupling value and policy for generalization in reinforcement learning. ICML 2021





Plunder

Jumper

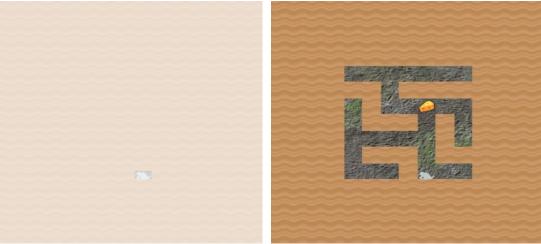
Dominant Approaches Inductive bias for a "planning" policy

• E.g., value iteration network^[3] Issue: Domain-specific

Invariant policies

- To appearance (e.g., augmentation UCB-DrAC^[4])
- To length of tasks (e.g., decoupling value and policy IDAAC^[5])

Hidden Maze Experiment



\rightarrow Not enough for <u>All Tasks</u>

[3] Tamar et al. Value Iteration Networks. NeurIPS 2016

[4] Raileanu et al. Automatic data augmentation for generalization in reinforcement learning. NeurIPS 2021

[5] Raileanu and Fergus. Decoupling value and policy for generalization in reinforcement learning. ICML 2021

Dominant Approaches Inductive bias for a "planning" policy

• E.g., value iteration network^[3] Issue: Domain-specific

Invariant policies

- To appearance (e.g., augmentation UCB-DrAC^[4])
- To length of tasks (e.g., decoupling value and policy IDAAC^[5])

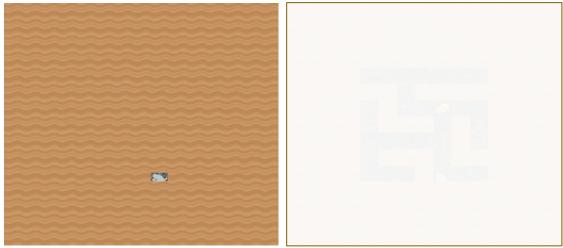
\rightarrow Not enough for <u>All Tasks</u>

[3] Tamar et al. Value Iteration Networks. NeurIPS 2016

[4] Raileanu et al. Automatic data augmentation for generalization in reinforcement learning. NeurIPS 2021

[5] Raileanu and Fergus. Decoupling value and policy for generalization in reinforcement learning. ICML 2021

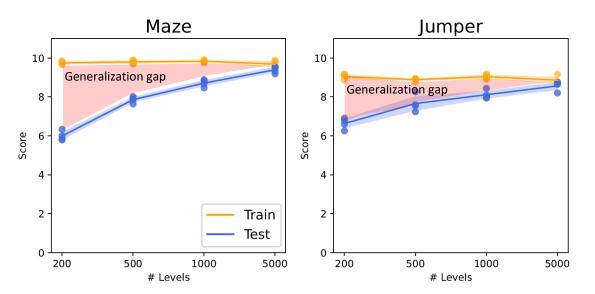
Hidden Maze Experiment





Learning to Explore

□ Observation – Maximum Entropy^[7] exploration generalizes^[8] !

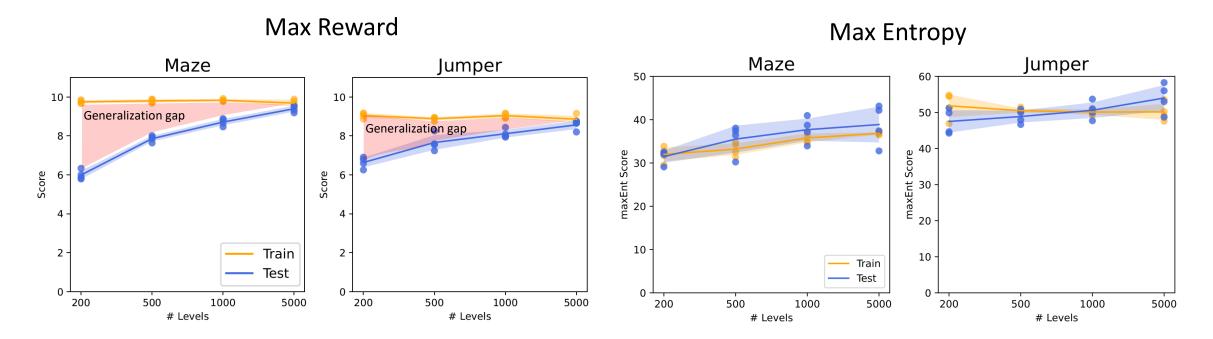


Max Reward

[7] Mutti et al. The importance of non-markovianity in maximum state entropy exploration. ICML 2022[8] Zisselman, Lavie, Soudry, Tamar. NeurIPS 2023

Learning to Explore

□ Observation – Maximum Entropy^[7] exploration generalizes^[8] !



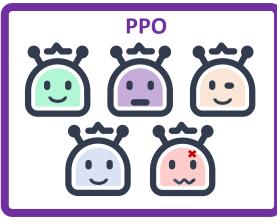
Why? Exploration behavior harder to memorize!

[7] Mutti et al. The importance of non-markovianity in maximum state entropy exploration. ICML 2022[8] Zisselman, Lavie, Soudry, Tamar. NeurIPS 2023

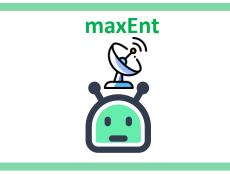
Max-Reward Ensemble

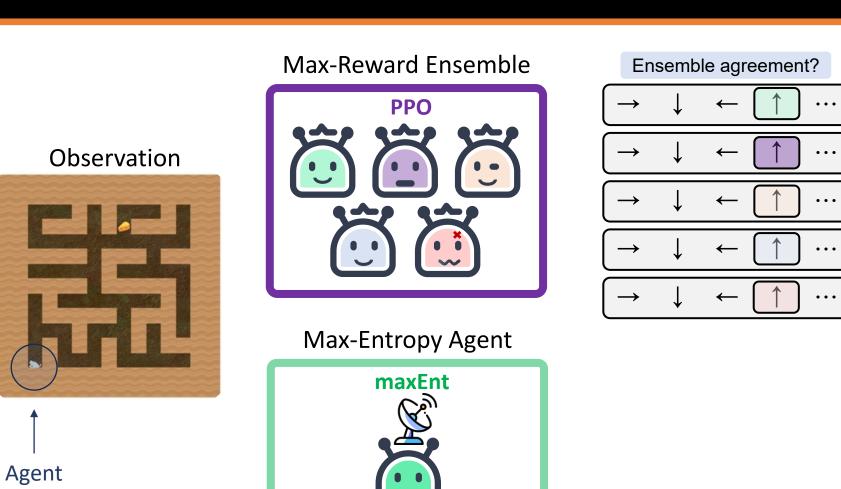
Observation

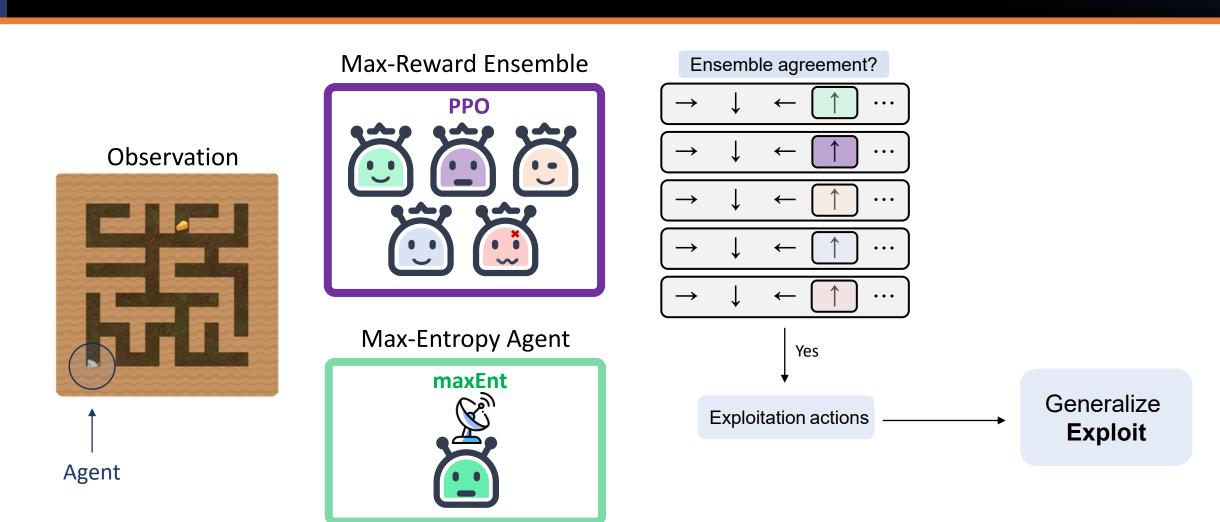
Agent

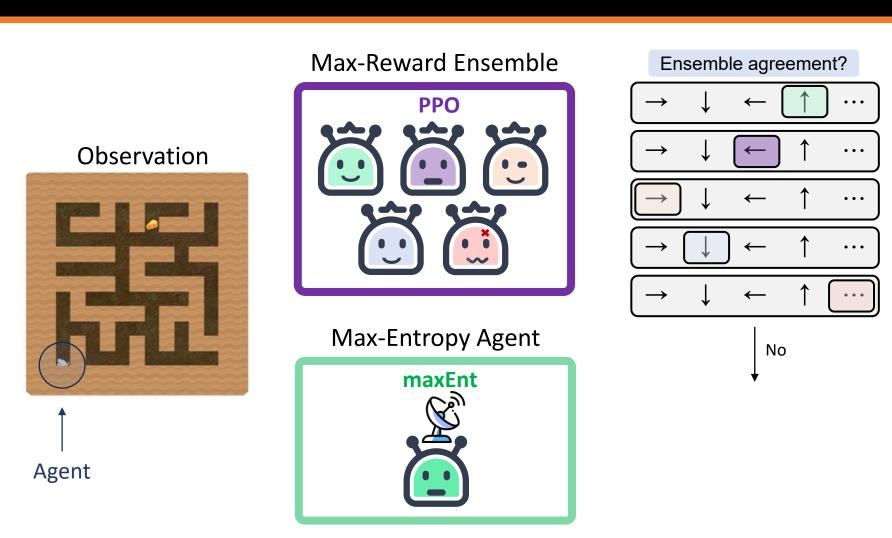


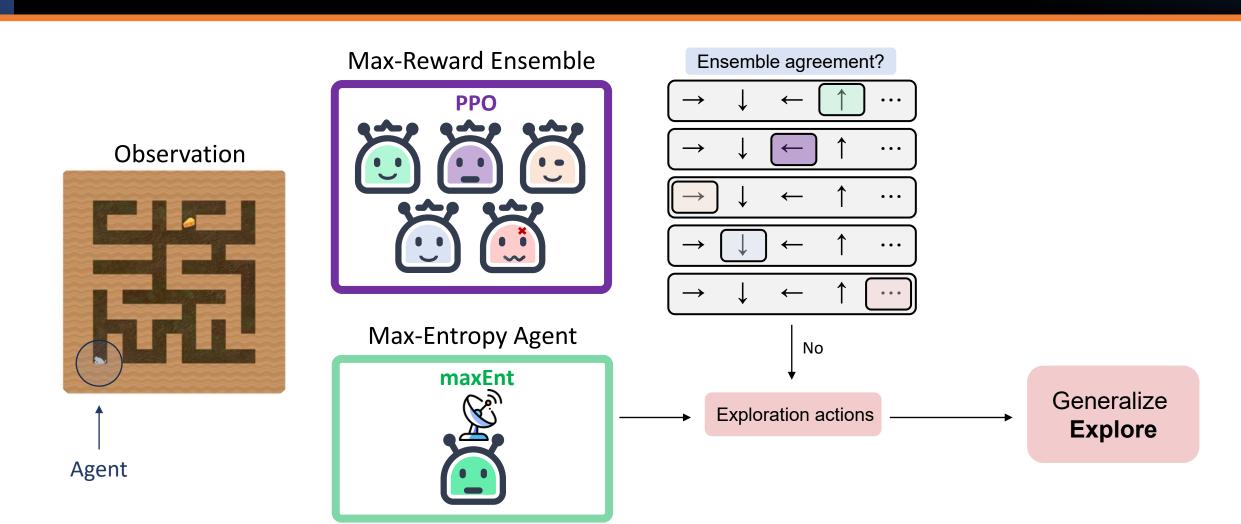
Max-Entropy Agent







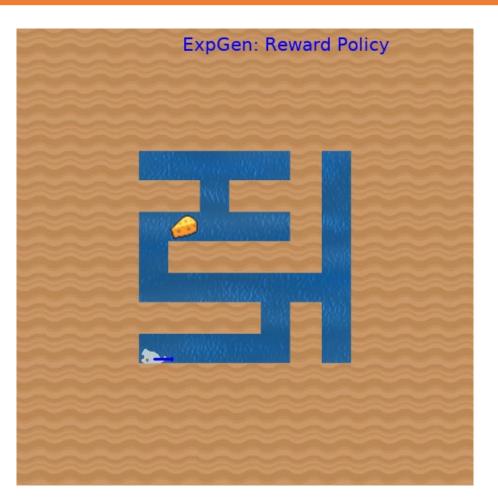


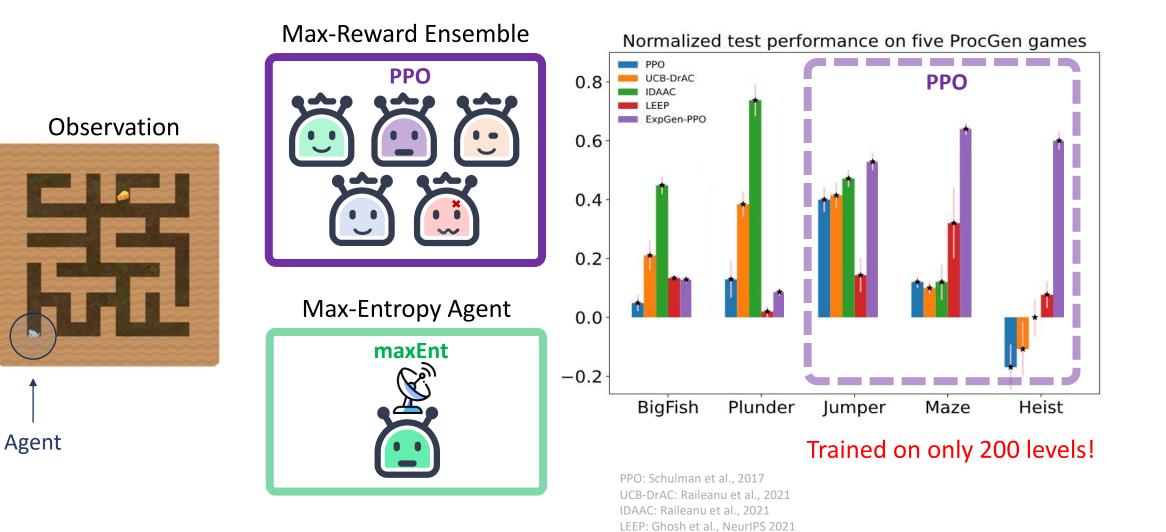


See it in action

maxEnt starts exploring

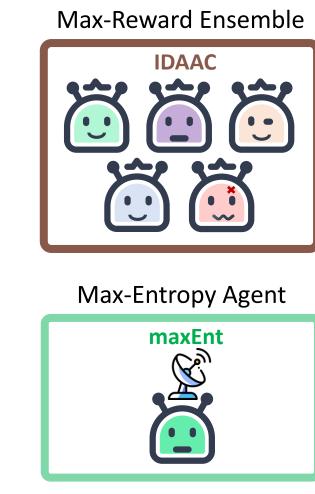
Reward ensemble consensus





Observation

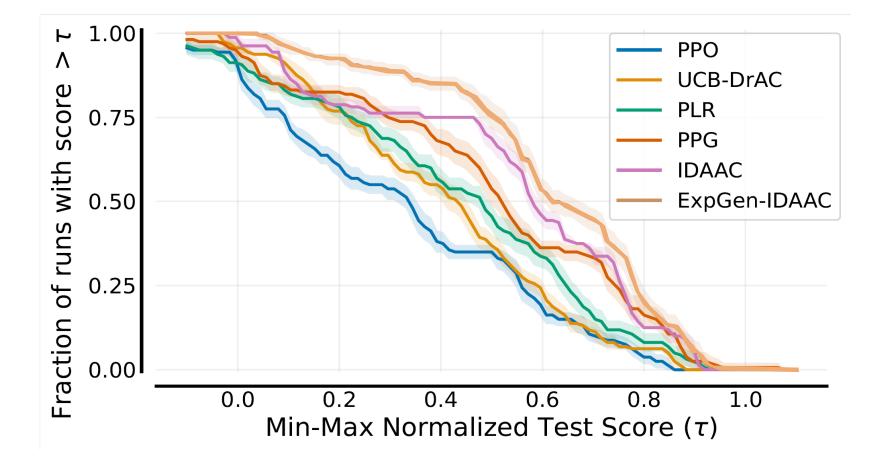
Agent



Normalized test performance on all ProcGen games 1.2 -PPO IDAAC **New SOTA on ProcGen** ExpGen+IDAAC 1.0 -0.8 0.6 0.4 0.2 0.0 -0.2 -Nini⁸ Bossfight Coinque Starpiot averbade ball under wine same and starped and starpion heist heist under PPO: Schulman et al., 2017

IDAAC: Raileanu et al., 2021

Results



Summary:

□ Key observation: Maximum-entropy generalizes well

- Exp-Gen idea
 - Detect uncertainty (ensemble)
 - Explore when uncertain
 - Otherwise exploit
- Exp-Gen sets a new state-of-the-art on ProcGen.

Reference Ev Zisselman, Itai Lavie, Daniel Soudry, Aviv Tamar Explore to Generalize in Zero-Shot RL NeurIPS 2023 Thank you!