GOOSE: Learning Domain-Independent Heuristics

Dillon Chen¹, Sylvie Thiébaux^{1,2}, Felipe Trevizan²

¹LAAS-CNRS, ²Australian National University {dillon.chen, sylvie.thiebaux}@laas.fr felipe.trevizan@anu.edu.au

GenPlan 2023

Use DL to learn policies or heuristics that generalise

- ► to problems of larger size
- to problems from different domains

Reduce data and resources needed by DL

- exploiting planning representations (PDDL planning)
- why relearn what you already know?

- 1. domain-independent grounded and lifted planning graphs
- 2. theoretical results: what heuristics can they learn?
- 3. implementation: GOOSE planner
- 4. domain-dependent and -independent learning experiments

1. New planning graph representations

graph representations of planning tasks = inputs into GNNs

STRIPS Learning Graph (SLG)

- nodes: propositions + actions
- features: node type + presence of proposition in s_0 or G
- edges: pre add del

Finite domain representation Learning Graph (FLG)

- nodes: variables + domain values + actions
- features: node type + value in s_0 and G
- edges: values, pre effect

Lifted Learning Graph (LLG)

- graphs encode action schemata instead of actions
- only propositions are those in s₀ and G
- node features and edges encode position of objects in the predicate arguments

2. Theoretical results: what heuristics can they learn?

 more expressive than STRIPS-HGN by considering full planning task information

2a. Grounded graphs can learn h^{add} and h^{max}

Theorem

Let $L, B \in \mathbb{N}$, $\mathcal{G} \in \{SLG, FLG\}$, $\varepsilon > 0$ and $h \in \{h^{add}, h^{max}\}$. Then there exists a set of parameters θ for an MPNN \mathcal{F}_{θ} such that for all planning tasks Π , if naive dynamic programming for computing h converges within L iterations for Π , and $h(s_0) \leq B$, then we have $|h(s_0) - \mathcal{F}_{\theta}(\mathcal{G}(\Pi))| < \varepsilon$.

Proof idea: encode Value Iteration into GNNs +

approximation theorem

practicality? not much

2b. Lifted graphs cannot learn h^{add} , h^{max} , h^+ and h^*

Theorem

Let $h \in \{h^{add}, h^{max}, h^+, h^*\}$. There exists a pair of planning tasks Π_1 and Π_2 with $h(\Pi_1) \neq h(\Pi_2)$ such that for any set of parameters Θ for an MPNN we have $\mathcal{F}_{\Theta}(LLG(\Pi_1)) = \mathcal{F}_{\Theta}(LLG(\Pi_2))$.

Proof idea: counterexample

2c. Grounded graphs cannot learn h^+ and h^* , nor any approximation

Theorem

Let $h \in \{h^+, h^*\}$, $\mathcal{G} \in \{SLG, FLG, LLG\}$ and c > 0. There exists a pair of planning tasks Π_1 and Π_2 with $h(\Pi_1) \neq h(\Pi_2)$ such that for any set of parameters Θ for an MPNN we do not have $\bigwedge_{i=1,2} |\mathcal{F}_{\Theta}(\mathcal{G}(\Pi_i)) - h(\Pi_i)| \leq c$. Also, for any set of parameters we do not have $\bigwedge_{i=1,2} |1 - \mathcal{F}_{\Theta}(\mathcal{G}(\Pi_i))/h(\Pi_i)| \leq c$.

Proof idea: class of counterexamples

- ▶ possible to learn h^* for subclasses of planning tasks
- do not need perfect predictions
- can still perform well on GBFS with inaccurate heuristics

- 1. states converted to graphs
- 2. graphs fed into GNN with learned parameters
- 3. GPU batch evaluate only¹ successor states in GBFS

¹Doing more is suboptimal. Made worse with lazy evaluation GBFS

4a. Domain-Independent Learning

- train on tasks not from evaluation domain
- ▶ training: IPC benchmarks \ evaluation domains
- testing: number of objects² from 15-100

			G	GOOSE			
	blind	$h^{\rm FF}$	SLG	FLG	DLLG		
blocks (90) ferry (90) gripper (18) n-puzzle (50) sokoban (90) spanner (90) visitall (90) visitsome (90)	- 1 - 74 - 3	19 90 18 36 90 - 6 26	14 15 4 3 48 - 44 37	14 6 5 3 42 - 24 14	16 12 9 - 39 10 38 -		

²except *n*-puzzle and Sokoban

4b. Domain-Dependent Learning

- train on tasks from the same evaluation domain
- ▶ training: number of objects³ from 2-10
- testing: number of objects³ from 15-100

			G	GOOSE				
	blind	$h^{\rm FF}$	SLG	FLG	LLG			
blocks (90) ferry (90) gripper (18) n-puzzle (50) sokoban (90) spanner (90) visitall (90) visitsome (90)	- 1 - 74 - 3	19 90 18 36 90 - 6 26	10 33 5 10 52 - 52 78	11 33 9 10 56 - 35 23	29 78 18 1 34 55 39 3			

³except *n*-puzzle and Sokoban

IPC2023 Learning Track Benchmarks

Domain	blind	h^{FF}	GOOSE _{max}	GOOSE _{mean}	Graph Kernels GenPlan23	Graph Kernels ICAPS24
blocksworld	8	28	49	58	49	77
childsnack	9	26	19	20	20	30
ferry	10	68	64	72	74	76
floortile	2	12	-	-	2	2
miconic	30	90	90	90	90	90
rovers	15	34	25	29	45	37
satellite	12	65	31	29	37	57
sokoban	27	36	32	33	37	38
spanner	30	30	30	33	30	74
transport	9	41	38	35	49	32
sum	152	430	378	399	433	513

GOOSE: Learning Domain-Independent Heuristics

1. New graph representations of planning tasks

2. Theoretical Results

			GOOSE						0	GOOS	ĉ
	blind	h^{FF}	SLG	FLG	LLG		blind	h^{PP}	SLG	FLG	LLG
blocks (90) ferry (90)	-	19 90	10 33	11 33	29 78	blocks (90) ferry (90)		19 90	14 15	14 6	16
n-puzzle (50)		36	10	10	18	n-puzzle (50)	-	36	3	3	-
sokoban (90) spanner (90)	74	90 -	52	56 -	34 55	sokoban (90) spanner (90)	74	90 -	48	42	39
visitall (90) visitsome (90)	3	6 26	52 78	35 23	39 3	visitall (90) visitsome (90)	3	6 26	44 37	24 14	38

Domain	blind	$\mu^{\mu\nu}$	GO OSE _{mix}	GO OS Eman	Graph Kernel GenPlan23	Graph Kernel ICAPS24	
blocksworld	8	28	49	58	49	77	
childsnack	9	26	19	20	20	30	
ferry	10	68	64	72	74	76	
floortile	2	12	-	-	2	2	
miconic	30	90	90	90	90	90	
rovers	15	34	25	29	45	37	
satellite	12	65	31	29	37	57	
sokoban	27	36	32	33	37	38	
spanner	30	30	30	33	30	74	
transport	9	41	38	35	49	32	
sum	152	430	378	399	433	513	