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Motivation: deep learning and planning?

Use DL to learn policies or heuristics that generalise

▶ to problems of larger size

▶ to problems from different domains

Reduce data and resources needed by DL

▶ exploiting planning representations (PDDL planning)

▶ why relearn what you already know?
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New Contributions

1. domain-independent grounded and lifted planning graphs

2. theoretical results: what heuristics can they learn?

3. implementation: GOOSE planner

4. domain-dependent and -independent learning experiments
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1. New planning graph representations
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▶ graph representations of planning tasks = inputs into GNNs
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STRIPS Learning Graph (SLG)

▶ nodes: propositions + actions

▶ features: node type + presence of proposition in s0 or G

▶ edges: pre - add - del
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Finite domain representation Learning Graph (FLG)

▶ nodes: variables + domain values + actions

▶ features: node type + value in s0 and G

▶ edges: values, pre - effect
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Lifted Learning Graph (LLG)
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▶ graphs encode action schemata instead of actions

▶ only propositions are those in s0 and G

▶ node features and edges encode position of objects in the

predicate arguments
7 / 17



2. Theoretical results: what heuristics can they learn?

hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 2: Expressiveness hierarchy of
MPNNs on graph representations with re-
spect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines rep-
resent new graphs.

We begin with a lower bound on what MPNNs can
learn by showing that they can theoretically learn to
imitate algorithms for computing hmax and hadd on
our grounded graphs with the use of the approximation
theorem for neural networks Cybenko [1989], Hornik
et al. [1989].
Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG},
ε > 0 and h ∈ {hadd, hmax}. Then there exists a set
of parameters Θ for an MPNN FΘ such that for all
planning tasks Π, if naive dynamic programming for
computing h converges within L iterations for Π, and
h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more expressive than STRIPS-HGN. The idea of the
theorem is that STRIPS-HGN discards delete effects which prohibits it from learning h∗. Furthermore,
it is possible to imitate STRIPS-HGN with minor assumptions on MPNN architectures acting on
either of our grounded graphs.
Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let G ∈
{SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there exists parameters
Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems Π1 and
Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot learn hadd or hmax on the lifted LLG graph.
This is due to the graph being too condensed in the lifted version so that MPNNs cannot extract
certain information for computing these heuristics. The proof idea is to find a pair of planning tasks
which appear symmetric to MPNNs in the LLG representation but have different hmax and hadd

values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈

{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗ on any of our graphs. This result is not
unexpected given that the expressiveness of MPNNs is bounded by the graph isomorphism class
GI whose hardness is known to be in the low hierarchy of NP, unlike h+ which is NP-complete.
Similarly to the previous theorem, the proof follows the technique of finding a pair of planning tasks
with different h+ values that are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of h+ or h∗ on all planning problems.
Unfortunately, it is not possible to learn either absolute or relative approximations. We formalise this
in the following theorem, where the proof consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of h+ or h∗). Let h ∈ {h+, h∗}, G ∈
{SLG,FLG,LLG} and c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2)
such that for any set of parameters Θ for an MPNN we do not have

∧
i=1,2 |FΘ(G(Πi))− h(Πi)| ≤ c.

Also, for any set of parameters we do not have
∧

i=1,2 |1−FΘ(G(Πi))/h(Πi)| ≤ c.

One may also ask about the expressiveness of learning a policy. A policy can be learned in one of
several ways. A policy can be induced from a learned heuristic where given a state s we take the
action a whose successor s′ has the lowest heuristic value over all successors from s. To learn a
policy directly on grounded graphs, we can take inspiration from ASNets Toyer et al. [2020] and
predict confidence values in the range from 0 to 1 on grounded action nodes. To learn a policy directly
on lifted graphs, one may take inspiration from the architecture by Karia and Srivastava [2021] which
predicts the schema and the corresponding arguments of an action.

6

▶ more expressive than STRIPS-HGN by considering full

planning task information
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2a. Grounded graphs can learn hadd and hmax

Theorem
Let L, B ∈ N, G ∈ {SLG, FLG}, ε > 0 and h ∈ {hadd, hmax}. Then
there exists a set of parameters θ for an MPNN Fθ such that for
all planning tasks Π, if naive dynamic programming for computing
h converges within L iterations for Π, and h(s0) ≤ B, then we have
|h(s0) − Fθ(G(Π))| < ε.

▶ Proof idea: encode Value Iteration into GNNs +

approximation theorem

▶ practicality? not much
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2b. Lifted graphs cannot learn hadd, hmax, h+ and h∗

Theorem
Let h ∈ {hadd, hmax, h+, h∗}. There exists a pair of planning tasks
Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters
Θ for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

▶ Proof idea: counterexample
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(a) LLG of P1.
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(b) LLG of P2.

Figure 5: LLG of problems used in Thm. 4.3 (edges between objects and predicates omitted). Only
colours are known to the WL algorithm, not the node descriptions in the figure. The only difference
between the two graphs lies in the different edges between the top two layers of the graph as
highlighted by the dashed regions. However, they are indistinguishable by the WL algorithm.
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Figure 6: SLG of problems used in the proof of Thm. 4.4. Black edges indicate preconditions and
blue edges indicate add effects.

Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

Proof. Consider the two (delete free) planning problems P1 = ⟨P,A1, s0, G⟩ and P2 =

⟨P,A2, s0, G⟩ with P = {p1, p2, g3, g4}, G = {g3, g4}, s0 = ∅ and action sets A1 = {a(1)i |

16
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2c. Grounded graphs cannot learn h+ and h∗, nor any
approximation

Theorem
Let h ∈ {h+, h∗}, G ∈ {SLG, FLG, LLG} and c > 0. There exists a
pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for
any set of parameters Θ for an MPNN we do not have∧

i=1,2 |FΘ(G(Πi)) − h(Πi)| ≤ c. Also, for any set of parameters
we do not have

∧
i=1,2 |1 − FΘ(G(Πi))/h(Πi)| ≤ c.

▶ Proof idea: class of counterexamples
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Figure 7: SLGs of problems used in the proof of Thm. 4.5 where black edges indicate preconditions
and blue edges indicate add effects.
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Not all hope is lost

▶ possible to learn h∗ for subclasses of planning tasks

▶ do not need perfect predictions

▶ can still perform well on GBFS with inaccurate heuristics
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3. GOOSE architecture

1. states converted to graphs

2. graphs fed into GNN with learned parameters

3. GPU batch evaluate only1 successor states in GBFS

1Doing more is suboptimal. Made worse with lazy evaluation GBFS
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4a. Domain-Independent Learning

▶ train on tasks not from evaluation domain

▶ training: IPC benchmarks \ evaluation domains

▶ testing: number of objects2 from 15-100

Table 1: Left: coverage of planners and GOOSE over various domains. Cell intensities indicate
rank of planner per domain. Right: total coverage normalised per domain of GOOSE over various
parameters and training paradigms, and normalised again by the coverage of the best performing
configuration. Higher scores are better and the maximum score is 1. The best scores column-wise are
highlighted in bold.

GOOSE

bl
in

d

h
F
F

SL
G

FL
G

L
L

G

blocks (90) - 19 14 14 16
ferry (90) - 90 15 6 12
gripper (18) 1 18 4 5 9
n-puzzle (50) - 36 3 3 -
sokoban (90) 74 90 48 42 39
spanner (90) - - - - 10
visitall (90) - 6 44 24 38
visitsome (90) 3 26 37 14 -

domain-dep. domain-ind.

ag
gr

.

L SL
G

FL
G

L
L

G

SL
G

FL
G

L
L

G

m
ea

n

4 0.70 0.71 0.90 0.39 0.24 0.40
8 0.71 0.60 1.00 0.60 0.57 0.12
12 0.62 0.52 0.93 0.64 0.56 0.19
16 0.49 0.42 0.83 0.56 0.46 0.13

m
ax

4 0.78 0.64 0.94 0.53 0.38 0.46
8 0.67 0.53 0.72 0.55 0.41 0.37
12 0.61 0.53 0.76 0.17 0.33 0.31
16 0.66 0.49 0.77 0.13 0.33 0.34

GOOSE configurations perform worse than blind search on Sokoban. Even though it expands fewer
nodes, the runtime cost of computing GOOSE heuristics is too high. This may be due to the difficulty
of the domain (PSPACE-complete) as size increases, given that in problems with similar size to the
training set GOOSE outperforms the other baselines.

STRIPS-HGN solves no problems due to its slow evaluation on CPUs. Our simplified STRIPS-HGN
variant using GNNs, GOOSE with DLG, solves some problems but is not competitive with hFF

except on VisitAll and VisitSome. Lastly, we mention that LAMA Richter and Westphal [2010]
solves almost all of the test problems except Spanner where it solves none. It remains as future work
to extend GOOSE in the planning algorithm side beyond learning heuristics to match the performance
of stronger satisficing planners.

Fig. 4(b) shows the number of node expansions and returned plan quality of the best performing
domain-dependent GOOSE graph, LLG, against hFF. In domains where one planner solves signifi-
cantly more problems than the other, it also has fewer node expansions in several orders of magnitude.
On Gripper, GOOSE has marginally fewer node expansions than hFF until the largest problem with
100 balls, and similarly on Ferry except the size in which GOOSE begins to perform worse is smaller.
We also note that GOOSE generally has higher plan quality than hFF over all problems which both
planners were able to solve.

How useful are learned domain-independent heuristics for search? We again refer to Tab. 1
for the coverage of GOOSE trained with domain-independent heuristics. With the exception of
Sokoban, domain-independent GOOSE outperforms blind search which suggests that the learned
domain-independent heuristics have some informativeness. This is again supported by Fig. 4(a)
which shows that in most domains domain-independent heuristics provide an approximation of h∗

which generally scales linearly with h∗. Most notably, domain-independent SLG outperforms hFF on
VisitAll and VisitSome, and domain-independent LLG is also able to solve some Spanner problems.

The best performing domain-independent GOOSE configuration is the grounded graph SLG. It
provides enough information to learn domain-independent heuristics with MPNNs in comparison to
LLG, but also does not provide too much information to prevent overfitting in comparison to FLG
which computes additional structure. With the exception of n-puzzle, domain-independent GOOSE
with SLG generally returns better quality plans than hFF, and expands fewer nodes on VisitAll,
VisitSome, and more than half the Blocksworld instances which both planners were able to solve. In
terms of overall coverage, domain-independent SLG also outperforms domain-dependent DLG, the
delete free version of SLG and optimised version of STRIPS-HGN. However, domain-independent
GOOSE generally expands more nodes and returns lower quality plans than their domain-dependent
trained variants with the same graph.

How important is finding the right graph neural network parameters? We report the normalised
coverage of GOOSE with number of message passing layers in {4, 8, 12, 16} and both the mean and
max aggregator in Tab. 1. We omitted results with the sum aggregator as it yields unstable training and
poor predictions. Increasing the number of layers theoretically improves informativeness and accuracy

9

2except n-puzzle and Sokoban
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4b. Domain-Dependent Learning

▶ train on tasks from the same evaluation domain

▶ training: number of objects3 from 2-10

▶ testing: number of objects3 from 15-100

Table 1: Left: coverage of planners and GOOSE over various domains. Cell intensities indicate
rank of planner per domain. Right: total coverage normalised per domain of GOOSE over various
parameters and training paradigms, and normalised again by the coverage of the best performing
configuration. Higher scores are better and the maximum score is 1. The best scores column-wise are
highlighted in bold.

GOOSE

bl
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d

h
F
F

SL
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FL
G

L
L

G

blocks (90) - 19 10 11 29
ferry (90) - 90 33 33 78
gripper (18) 1 18 5 9 18
n-puzzle (50) - 36 10 10 1
sokoban (90) 74 90 52 56 34
spanner (90) - - - - 55
visitall (90) - 6 52 35 39
visitsome (90) 3 26 78 23 3
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ag
gr

.

L SL
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FL
G

L
L
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SL
G
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m
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n

4 0.70 0.71 0.90 0.39 0.24 0.40
8 0.71 0.60 1.00 0.60 0.57 0.12
12 0.62 0.52 0.93 0.64 0.56 0.19
16 0.49 0.42 0.83 0.56 0.46 0.13

m
ax

4 0.78 0.64 0.94 0.53 0.38 0.46
8 0.67 0.53 0.72 0.55 0.41 0.37
12 0.61 0.53 0.76 0.17 0.33 0.31
16 0.66 0.49 0.77 0.13 0.33 0.34

GOOSE configurations perform worse than blind search on Sokoban. Even though it expands fewer
nodes, the runtime cost of computing GOOSE heuristics is too high. This may be due to the difficulty
of the domain (PSPACE-complete) as size increases, given that in problems with similar size to the
training set GOOSE outperforms the other baselines.

STRIPS-HGN solves no problems due to its slow evaluation on CPUs. Our simplified STRIPS-HGN
variant using GNNs, GOOSE with DLG, solves some problems but is not competitive with hFF

except on VisitAll and VisitSome. Lastly, we mention that LAMA Richter and Westphal [2010]
solves almost all of the test problems except Spanner where it solves none. It remains as future work
to extend GOOSE in the planning algorithm side beyond learning heuristics to match the performance
of stronger satisficing planners.

Fig. 4(b) shows the number of node expansions and returned plan quality of the best performing
domain-dependent GOOSE graph, LLG, against hFF. In domains where one planner solves signifi-
cantly more problems than the other, it also has fewer node expansions in several orders of magnitude.
On Gripper, GOOSE has marginally fewer node expansions than hFF until the largest problem with
100 balls, and similarly on Ferry except the size in which GOOSE begins to perform worse is smaller.
We also note that GOOSE generally has higher plan quality than hFF over all problems which both
planners were able to solve.

How useful are learned domain-independent heuristics for search? We again refer to Tab. 1
for the coverage of GOOSE trained with domain-independent heuristics. With the exception of
Sokoban, domain-independent GOOSE outperforms blind search which suggests that the learned
domain-independent heuristics have some informativeness. This is again supported by Fig. 4(a)
which shows that in most domains domain-independent heuristics provide an approximation of h∗

which generally scales linearly with h∗. Most notably, domain-independent SLG outperforms hFF on
VisitAll and VisitSome, and domain-independent LLG is also able to solve some Spanner problems.

The best performing domain-independent GOOSE configuration is the grounded graph SLG. It
provides enough information to learn domain-independent heuristics with MPNNs in comparison to
LLG, but also does not provide too much information to prevent overfitting in comparison to FLG
which computes additional structure. With the exception of n-puzzle, domain-independent GOOSE
with SLG generally returns better quality plans than hFF, and expands fewer nodes on VisitAll,
VisitSome, and more than half the Blocksworld instances which both planners were able to solve. In
terms of overall coverage, domain-independent SLG also outperforms domain-dependent DLG, the
delete free version of SLG and optimised version of STRIPS-HGN. However, domain-independent
GOOSE generally expands more nodes and returns lower quality plans than their domain-dependent
trained variants with the same graph.

How important is finding the right graph neural network parameters? We report the normalised
coverage of GOOSE with number of message passing layers in {4, 8, 12, 16} and both the mean and
max aggregator in Tab. 1. We omitted results with the sum aggregator as it yields unstable training and
poor predictions. Increasing the number of layers theoretically improves informativeness and accuracy
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IPC2023 Learning Track Benchmarks
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GOOSE: Learning Domain-Independent Heuristics
1. New graph representations of planning tasks

2. Theoretical Results 3./4. GOOSE + experiments

hmax/add
STRIPS-HGN

h+
h∗

LLG

SLG
FLG

Figure 2: Expressiveness hierarchy of
MPNNs on graph representations with re-
spect to STRIPS-HGN and the heuristics
hmax, hadd, h+ and h∗. Bold outlines rep-
resent new graphs.

We begin with a lower bound on what MPNNs can
learn by showing that they can theoretically learn to
imitate algorithms for computing hmax and hadd on
our grounded graphs with the use of the approximation
theorem for neural networks Cybenko [1989], Hornik
et al. [1989].
Theorem 4.1 (MPNNs can learn hadd and hmax on
grounded graphs). Let L,B ∈ N, G ∈ {SLG,FLG},
ε > 0 and h ∈ {hadd, hmax}. Then there exists a set
of parameters Θ for an MPNN FΘ such that for all
planning tasks Π, if naive dynamic programming for
computing h converges within L iterations for Π, and
h(s0) ≤ B, then we have |h(s0)−FΘ(G(Π))| < ε.

MPNNs acting on SLG and FLG are strictly more expressive than STRIPS-HGN. The idea of the
theorem is that STRIPS-HGN discards delete effects which prohibits it from learning h∗. Furthermore,
it is possible to imitate STRIPS-HGN with minor assumptions on MPNN architectures acting on
either of our grounded graphs.
Theorem 4.2 (MPNNs on grounded graphs are strictly more expressive than STRIPS-HGN). Let G ∈
{SLG,FLG}. Given any set of parameters Θ for a STRIPS-HGN model SΘ, there exists parameters
Φ for an MPNN FΦ such that for any pair of planning tasks Π1 and Π2 where SΘ(Π1) ̸= SΘ(Π2),
we have FΦ(G(Π1)) ̸= FΦ(G(Π2)). Furthermore, there exists a pair of planning problems Π1 and
Π2 such that there exists Φ where FΦ(G(Π1)) ̸= FΦ(G(Π2)) but SΘ(Π1) = SΘ(Π2) for all Θ.

The first of our negative results is that MPNNs cannot learn hadd or hmax on the lifted LLG graph.
This is due to the graph being too condensed in the lifted version so that MPNNs cannot extract
certain information for computing these heuristics. The proof idea is to find a pair of planning tasks
which appear symmetric to MPNNs in the LLG representation but have different hmax and hadd

values.
Theorem 4.3 (MPNNs cannot learn hadd and hmax on lifted graphs). Let h ∈

{
hadd, hmax

}
. There

exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that for any set of parameters Θ
for an MPNN we have FΘ(LLG(Π1)) = FΘ(LLG(Π2)).

Next, we have that MPNNs cannot learn h+ and thus h∗ on any of our graphs. This result is not
unexpected given that the expressiveness of MPNNs is bounded by the graph isomorphism class
GI whose hardness is known to be in the low hierarchy of NP, unlike h+ which is NP-complete.
Similarly to the previous theorem, the proof follows the technique of finding a pair of planning tasks
with different h+ values that are indistinguishable by MPNNs on any of our graphs.
Theorem 4.4 (MPNNs cannot learn h+ or h∗ with our graphs). Let h ∈ {h+, h∗} and G ∈
{SLG,FLG,LLG}. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2) such that
for any set of parameters Θ for an MPNN we have FΘ(G(Π1)) = FΘ(G(Π2)).

One may ask if it is possible to learn any approximation of h+ or h∗ on all planning problems.
Unfortunately, it is not possible to learn either absolute or relative approximations. We formalise this
in the following theorem, where the proof consists of a class of planning task pairs generalising the
previous example.
Theorem 4.5 (MPNNs cannot learn any approximation of h+ or h∗). Let h ∈ {h+, h∗}, G ∈
{SLG,FLG,LLG} and c > 0. There exists a pair of planning tasks Π1 and Π2 with h(Π1) ̸= h(Π2)
such that for any set of parameters Θ for an MPNN we do not have

∧
i=1,2 |FΘ(G(Πi))− h(Πi)| ≤ c.

Also, for any set of parameters we do not have
∧

i=1,2 |1−FΘ(G(Πi))/h(Πi)| ≤ c.

One may also ask about the expressiveness of learning a policy. A policy can be learned in one of
several ways. A policy can be induced from a learned heuristic where given a state s we take the
action a whose successor s′ has the lowest heuristic value over all successors from s. To learn a
policy directly on grounded graphs, we can take inspiration from ASNets Toyer et al. [2020] and
predict confidence values in the range from 0 to 1 on grounded action nodes. To learn a policy directly
on lifted graphs, one may take inspiration from the architecture by Karia and Srivastava [2021] which
predicts the schema and the corresponding arguments of an action.

6

Table 1: Left: coverage of planners and GOOSE over various domains. Cell intensities indicate
rank of planner per domain. Right: total coverage normalised per domain of GOOSE over various
parameters and training paradigms, and normalised again by the coverage of the best performing
configuration. Higher scores are better and the maximum score is 1. The best scores column-wise are
highlighted in bold.
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4 0.78 0.64 0.94 0.53 0.38 0.46
8 0.67 0.53 0.72 0.55 0.41 0.37
12 0.61 0.53 0.76 0.17 0.33 0.31
16 0.66 0.49 0.77 0.13 0.33 0.34

GOOSE configurations perform worse than blind search on Sokoban. Even though it expands fewer
nodes, the runtime cost of computing GOOSE heuristics is too high. This may be due to the difficulty
of the domain (PSPACE-complete) as size increases, given that in problems with similar size to the
training set GOOSE outperforms the other baselines.

STRIPS-HGN solves no problems due to its slow evaluation on CPUs. Our simplified STRIPS-HGN
variant using GNNs, GOOSE with DLG, solves some problems but is not competitive with hFF

except on VisitAll and VisitSome. Lastly, we mention that LAMA Richter and Westphal [2010]
solves almost all of the test problems except Spanner where it solves none. It remains as future work
to extend GOOSE in the planning algorithm side beyond learning heuristics to match the performance
of stronger satisficing planners.

Fig. 4(b) shows the number of node expansions and returned plan quality of the best performing
domain-dependent GOOSE graph, LLG, against hFF. In domains where one planner solves signifi-
cantly more problems than the other, it also has fewer node expansions in several orders of magnitude.
On Gripper, GOOSE has marginally fewer node expansions than hFF until the largest problem with
100 balls, and similarly on Ferry except the size in which GOOSE begins to perform worse is smaller.
We also note that GOOSE generally has higher plan quality than hFF over all problems which both
planners were able to solve.

How useful are learned domain-independent heuristics for search? We again refer to Tab. 1
for the coverage of GOOSE trained with domain-independent heuristics. With the exception of
Sokoban, domain-independent GOOSE outperforms blind search which suggests that the learned
domain-independent heuristics have some informativeness. This is again supported by Fig. 4(a)
which shows that in most domains domain-independent heuristics provide an approximation of h∗

which generally scales linearly with h∗. Most notably, domain-independent SLG outperforms hFF on
VisitAll and VisitSome, and domain-independent LLG is also able to solve some Spanner problems.

The best performing domain-independent GOOSE configuration is the grounded graph SLG. It
provides enough information to learn domain-independent heuristics with MPNNs in comparison to
LLG, but also does not provide too much information to prevent overfitting in comparison to FLG
which computes additional structure. With the exception of n-puzzle, domain-independent GOOSE
with SLG generally returns better quality plans than hFF, and expands fewer nodes on VisitAll,
VisitSome, and more than half the Blocksworld instances which both planners were able to solve. In
terms of overall coverage, domain-independent SLG also outperforms domain-dependent DLG, the
delete free version of SLG and optimised version of STRIPS-HGN. However, domain-independent
GOOSE generally expands more nodes and returns lower quality plans than their domain-dependent
trained variants with the same graph.

How important is finding the right graph neural network parameters? We report the normalised
coverage of GOOSE with number of message passing layers in {4, 8, 12, 16} and both the mean and
max aggregator in Tab. 1. We omitted results with the sum aggregator as it yields unstable training and
poor predictions. Increasing the number of layers theoretically improves informativeness and accuracy

9

Table 1: Left: coverage of planners and GOOSE over various domains. Cell intensities indicate
rank of planner per domain. Right: total coverage normalised per domain of GOOSE over various
parameters and training paradigms, and normalised again by the coverage of the best performing
configuration. Higher scores are better and the maximum score is 1. The best scores column-wise are
highlighted in bold.
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GOOSE configurations perform worse than blind search on Sokoban. Even though it expands fewer
nodes, the runtime cost of computing GOOSE heuristics is too high. This may be due to the difficulty
of the domain (PSPACE-complete) as size increases, given that in problems with similar size to the
training set GOOSE outperforms the other baselines.

STRIPS-HGN solves no problems due to its slow evaluation on CPUs. Our simplified STRIPS-HGN
variant using GNNs, GOOSE with DLG, solves some problems but is not competitive with hFF

except on VisitAll and VisitSome. Lastly, we mention that LAMA Richter and Westphal [2010]
solves almost all of the test problems except Spanner where it solves none. It remains as future work
to extend GOOSE in the planning algorithm side beyond learning heuristics to match the performance
of stronger satisficing planners.

Fig. 4(b) shows the number of node expansions and returned plan quality of the best performing
domain-dependent GOOSE graph, LLG, against hFF. In domains where one planner solves signifi-
cantly more problems than the other, it also has fewer node expansions in several orders of magnitude.
On Gripper, GOOSE has marginally fewer node expansions than hFF until the largest problem with
100 balls, and similarly on Ferry except the size in which GOOSE begins to perform worse is smaller.
We also note that GOOSE generally has higher plan quality than hFF over all problems which both
planners were able to solve.

How useful are learned domain-independent heuristics for search? We again refer to Tab. 1
for the coverage of GOOSE trained with domain-independent heuristics. With the exception of
Sokoban, domain-independent GOOSE outperforms blind search which suggests that the learned
domain-independent heuristics have some informativeness. This is again supported by Fig. 4(a)
which shows that in most domains domain-independent heuristics provide an approximation of h∗

which generally scales linearly with h∗. Most notably, domain-independent SLG outperforms hFF on
VisitAll and VisitSome, and domain-independent LLG is also able to solve some Spanner problems.

The best performing domain-independent GOOSE configuration is the grounded graph SLG. It
provides enough information to learn domain-independent heuristics with MPNNs in comparison to
LLG, but also does not provide too much information to prevent overfitting in comparison to FLG
which computes additional structure. With the exception of n-puzzle, domain-independent GOOSE
with SLG generally returns better quality plans than hFF, and expands fewer nodes on VisitAll,
VisitSome, and more than half the Blocksworld instances which both planners were able to solve. In
terms of overall coverage, domain-independent SLG also outperforms domain-dependent DLG, the
delete free version of SLG and optimised version of STRIPS-HGN. However, domain-independent
GOOSE generally expands more nodes and returns lower quality plans than their domain-dependent
trained variants with the same graph.

How important is finding the right graph neural network parameters? We report the normalised
coverage of GOOSE with number of message passing layers in {4, 8, 12, 16} and both the mean and
max aggregator in Tab. 1. We omitted results with the sum aggregator as it yields unstable training and
poor predictions. Increasing the number of layers theoretically improves informativeness and accuracy
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ferry 10 68 64 72 74 76
floortile 2 12 - - 2 2
miconic 30 90 90 90 90 90
rovers 15 34 25 29 45 37

satellite 12 65 31 29 37 57
sokoban 27 36 32 33 37 38
spanner 30 30 30 33 30 74

transport 9 41 38 35 49 32
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