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Previous work

In many common MDPs, acting greedily
with respect to the random policy's Q-
function gives an optimal policy.



Previous work: the Greedy Over Random
Policy (GORP) algorithm

Initial state so Commit to the action
If acting greedily on the with the highest
random policy’s Q- a as estimated Q-value
function is optimal, a,
GORP wiill find an
optimal policy.
]

m random rollouts
after each action



From deterministic to stochastic
GORP solves 73% of the environments in BRIDGE.

But when we add sticky actions to make these environments
stochastic, GORP only solves 19%.



From deterministic to stochastic

e In deterministic environments, an open-loop plan or sequence of
actions is enough.

e But in stochastic environments, we need a closed loop plan—a
policy.



From deterministic to stochastic

S1 S1 S1 F|t Qrand tO (31 y a1 y Z R)
a; a; a; triples via regression
If our regressed Q-function
generalizes well in-distribution,
then at most initial states we can

choose an optimal action!



From deterministic to stochastic

By committing to acting greedily on the estimated Q-function for the
first timestep, we can reach a fixed distribution over states at the second

timestep.
e Repeat the process to regression the random policy’s Q-function at the

second timestep, and so on!



Generalizing the surprising property

o Let Q be the Q-function of the random policy
e Let Q.1 be the result of applying one step of Q value iteration (QVI) to Qi

We say an MDP is k-QVI-solvable if acting greedily with respect to Q, is optimal.

I PPO fails
B PPO succeeds
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Min. value of k s.t. acting greedily

on Q" achieves >95% optimal return



Shallow Q-iteration via RL (SQIRL)

GORP SQIRL
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Generalizing the surprising property

o Let Q bethe Q-function of the random policy
e Let Q. be the result of applying one step of Q value iteration (QVI) to Q,

We say an MDP is k-QVI-solvable if acting greedily with respect to Qy is optimal.

If an MDP is k-QVI-solvable, define its k-gap as

Ak = imc(t‘, S)E[T]xS [ MaXy+eq th(S, a¥) - MaXagarg max Q.(s, a) th(S, a) J.



The stochastic effective horizon

J — 2
A, =k +log, 1/A,
The stochastic effective horizon is

I:I — m|nk I:Ik

Proposition: the (deterministic) effective horizon is upper
bounded by the stochastic E.H. up to log factors.



The sample complexity of SQIRL

Theorem: if an MDP is k-QVI-solvable, then the sample
complexity of SQIRL for finding an e-optimal policy is at most

O(k T3 AFja2k-) D

[ €)

Constants depending on
“regression oracle”

For comparison, GORP’s sample complexity is O(k T2 Af%).



The sample complexity of SQIRL

Sample complexity bounds

Setting
Strategic exploration SQIRL (ours)
Tabular MDP O(TSA/s2) O(KT3SAF+[g)
Linear MDP O(T2d?/2) O(KkT3dAF/g)
Q-functions with finite _ O(K5KT3dAP )

pseudo-dimension




Experimental results

Algorithm Num. envs. solved
PPO o8
DQN 78
SQIRL 77

GORP 29



Experimental results
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Experimental results

Beam Rider Breakout
5k - 250 -
N | e ooeAnbe,
T T 0 B T
0 10M 0 10M
Qbert Seaquest
10k - 10k 7
0 _l—f'o/Ml 0 s T
0 10M 0 10M

SQIRL. = PPO

Pong

20 -—r-—-—T
O -

-20 4, .

0 10M

Space Invaders

1k -

500 _W

I
0 10M
— DQN




Strategic Laidlaw et al.

exploration 2023
algorithms

Random exploration

—N .-
. Simple function SQIRL + Deep neural networks
classes stochastic ™,

effective

horizon

Practice




The Effective Horizon Explains Deep RL
Performance in Stochastic Environments

Cassidy Laidlaw, Banghua Zhu, Stuart Russell, and Anca Dragan

arxiv.org/abs/2312.08369




