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Previous work

In many common MDPs, acting greedily 
with respect to the random policy’s Q-

function gives an optimal policy.
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Previous work: the Greedy Over Random 
Policy (GORP) algorithm

Initial state s0

m random rollouts 
after each action

Commit to the action 
with the highest 
estimated Q-value

If acting greedily on the 
random policy’s Q-
function is optimal, 
GORP will find an 
optimal policy.



From deterministic to stochastic

GORP solves 73% of the environments in BRIDGE.

But when we add sticky actions to make these environments 
stochastic, GORP only solves 19%.



From deterministic to stochastic

● In deterministic environments, an open-loop plan or sequence of 
actions is enough.

● But in stochastic environments, we need a closed loop plan—a 
policy.



From deterministic to stochastic
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Fit Q̂rand to (s1, a1, Σ R)
triples via regression

If our regressed Q-function 
generalizes well in-distribution, 
then at most initial states we can 
choose an optimal action!



From deterministic to stochastic

By committing to acting greedily on the estimated Q-function for the 
first timestep, we can reach a fixed distribution over states at the second 
timestep.
● Repeat the process to regression the random policy’s Q-function at the 

second timestep, and so on!



Generalizing the surprising property
● Let Q1 be the Q-function of the random policy
● Let Qk+1 be the result of applying one step of Q value iteration (QVI) to Qk

We say an MDP is k-QVI-solvable if acting greedily with respect to Qk is optimal.



Shallow Q-iteration via RL (SQIRL)

GORP SQIRL



Generalizing the surprising property
● Let Q1 be the Q-function of the random policy
● Let Qk+1 be the result of applying one step of Q value iteration (QVI) to Qk

We say an MDP is k-QVI-solvable if acting greedily with respect to Qk is optimal.

If an MDP is k-QVI-solvable, define its k-gap as

Δk = inf(t, s)∈[T]×𝒮 [ maxa*∈𝒜Qkt(s, a*) − maxa∉arg max Qₖᵗ(s, a) Qkt(s, a) ].



The stochastic effective horizon

H̄k = k + logA 1/Δk2

Proposition: the (deterministic) effective horizon is upper 
bounded by the stochastic E.H. up to log factors.

The stochastic effective horizon is

H̄ = mink H̄k 



The sample complexity of SQIRL

Theorem: if an MDP is k-QVI-solvable, then the sample 
complexity of SQIRL for finding an ε-optimal policy is at most

Õ(k T3 AH̄ₖ ɑ2(k-1) D / ε)

For comparison, GORP’s sample complexity is Õ(k T2 AH̄ₖ).

Constants depending on 
“regression oracle”



The sample complexity of SQIRL

Setting
Sample complexity bounds

Strategic exploration SQIRL (ours)

Tabular MDP Õ(TSA/ε2) Õ(kT3SAH̄ₖ+1/ε)

Linear MDP Õ(T2d2/ε2) Õ(kT3dAH̄ₖ/ε)

Q-functions with finite 
pseudo-dimension — Õ(k5kT3dAH̄ₖ/ε)



Experimental results

Algorithm Num. envs. solved

PPO 98

DQN 78

SQIRL 77

GORP 29
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