The Effective Horizon Explains Deep RL Performance in Stochastic Environments

Cassidy Laidlaw

with Banghua Zhu, Anca Dragan, and Stuart Russell

Center for Human-Compatible Artificial Intelligence Strategic exploration algorithms

Simple function

classes

Theory

Laidlaw et al. 2023

???

Random exploration

Deep neural networks

Practice

Previous work

In many common MDPs, acting greedily with respect to the **random policy's Qfunction** gives an **optimal policy**.

Previous work: the Greedy Over Random Policy (GORP) algorithm

Initial state s_0 Commit to the action with the highest If acting greedily on the estimated Q-value a_1 a_3 random policy's Qfunction is optimal, a_2 **GORP** will find an optimal policy.

m random rollouts after each action

GORP solves **73%** of the environments in BRIDGE.

But when we add sticky actions to make these environments **stochastic**, GORP only solves **19%**.

- In deterministic environments, an **open-loop plan or sequence of actions** is enough.
- But in stochastic environments, we need a closed loop plan—a policy.

Fit \hat{Q}_{rand} to $(s_1, a_1, \Sigma R)$ triples via **regression**

If our regressed Q-function generalizes well in-distribution, then at most initial states we can choose an optimal action!

By committing to **acting greedily on the estimated Q-function** for the first timestep, we can reach a **fixed distribution** over states at the second timestep.

• Repeat the process to regression the random policy's Q-function at the second timestep, and so on!

Generalizing the surprising property

- Let Q₁ be the Q-function of the random policy
- Let Q_{k+1} be the result of applying one step of Q value iteration (QVI) to Q_k

We say an MDP is k-QVI-solvable if acting greedily with respect to Q_k is optimal.

Generalizing the surprising property

- Let Q₁ be the Q-function of the random policy
- Let Q_{k+1} be the result of applying one step of Q value iteration (QVI) to Q_k

We say an MDP is k-QVI-solvable if acting greedily with respect to Q_k is optimal.

If an MDP is *k*-QVI-solvable, define its *k*-gap as

$$\Delta_k = \inf_{(t,s) \in [T] \times S} [\max_{a^* \in \mathcal{A}} Q_k^t(s,a^*) - \max_{a \notin arg \max Q_k^t(s,a)} Q_k^t(s,a)].$$

The stochastic effective horizon

$$\bar{H}_k = k + \log_A 1/\Delta_k^2$$

The stochastic effective horizon is $\bar{H} = \min_k \bar{H}_k$

Proposition: the (deterministic) effective horizon is upper bounded by the stochastic E.H. up to log factors.

The sample complexity of SQIRL

Theorem: if an MDP is k-QVI-solvable, then the sample complexity of SQIRL for finding an ε -optimal policy is at most

$$\tilde{O}(k T^3 A^{\bar{H}_k} a^{2(k-1)} D / \varepsilon)$$

Constants depending on "regression oracle"

For comparison, GORP's sample complexity is $\tilde{O}(k T^2 A^{\bar{H}_k})$.

The sample complexity of SQIRL

Setting	Sample complexity bounds	
	Strategic exploration	SQIRL (ours)
Tabular MDP	$\tilde{O}(TSA/\epsilon^2)$	Õ(kT³SA ^{Ĥ_k+1} /ε)
Linear MDP	$\tilde{O}(T^2 d^2 / \varepsilon^2)$	Õ(kT³dA ^Ĥ ҝ/ε)
Q-functions with finite pseudo-dimension		Õ(k5 ^k T³dA ^Ĥ «/ε)

Experimental results

Algorithm	Num. envs. solved
PPO	98
DQN	78
SQIRL	77
GORP	29

Experimental results

Experimental results

Strategic exploration algorithms

Laidlaw et al. 2023

Random exploration

Deep neural networks

Practice

Simple function classes

Theory

SQIRL + stochastic effective horizon

The Effective Horizon Explains Deep RL Performance in Stochastic Environments

Cassidy Laidlaw, Banghua Zhu, Stuart Russell, and Anca Dragan

arxiv.org/abs/2312.08369

