Value-Based Abstractions for Planning Amy Zhang

What makes representations amenable to planning?

- Structured by reachability
- Value functions make good heuristics
- How do we get good value functions for every possible downstream planning task?

Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging Geometric Structure in Goal-Conditioned Problems

> Value Implicit Pre-training (VIP): Learning Value-based Abstractions with Action-free Offline GCRL

Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging Geometric Structure in Goal-Conditioned Problems

> Value Implicit Pre-training (VIP): Learning Value-based Abstractions with Action-free Offline GCRL

What makes representations amenable to planning? Sampling Learning $\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & &$

• Plan2vec is built upon the idea that for a collection of images with a local metric d, the graph G weighted by d is embedded by a Riemann manifold, the metric of which is the shortest-path-distance D.

Plan2Vec

Plan2vec treats the construction of the graph as a semi-supervised problem With 3 steps:

- 1. Learn a local metric
- 2. Build a graph
- 3. Perform heuristic search

Learning a Local Metric and Building a Graph

• Temporal contrastive loss

$$L_{\text{NCE}} = -\log \frac{\exp S(x, x^{+})}{\exp S(x, x^{+}) + \sum_{i}^{k} \exp S(x, x_{i}^{-})}$$

- S is reachability
- Add edges between nodes when distance is smaller than some threshold

Heuristic Search

- We see global structure in learned representation (bottom left)
- Good heuristic: cheaper planning cost and higher success

Key Takeaways and Insights

- Build a graph from data
- Use Dijkstra's to construct a global metric and latent representation space.
- Learning an accurate local metric is hard!

Connecting the Dots

	Success Rate (%)						
Street Learn	Tiny	Small	Medium				
Plan2vec (Ours)	92.2 ± 2.9	57.2 ± 4.3	51.4 ± 6.9				
SPTM (1-step)	31.5 ± 5.8	19.3 ± 5.8	20.2 ± 5.2				
VAE	25.5 ± 5.6	14.4 ± 4.8	16.9 ± 5.5				
Random	19.9 ± 5.4	12.0 ± 5.2	12.7 ± 4.6				
	-	-					

Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging Geometric Structure in Goal-Conditioned Problems

> Value Implicit Pre-training (VIP): Learning Value-based Abstractions with Action-free Offline GCRL

Goal-Reaching Reinforcement Learning

Goal-Reaching Reinforcement Learning + Structures via Quasimetric Embeddings

<u>Quasimetric RL</u>: pull apart state-goal for global distances

Given ways to sample (e.g., from a dataset / replay buffer)

 $\begin{array}{l} (s,a,s',\mathrm{cost}) \sim p_{\mathrm{transition}} \\ s \sim p_{\mathrm{state}} \\ s_{\mathrm{goal}} \sim p_{\mathrm{goal}}, \end{array}$

(transitions) (random state) (random goal)

<u>Quasimetric RL (QRL)</u> optimizes a Quasimetric embedding d_{θ} as (negated) value function:

 $\max_{\theta} \mathbb{E}_{\substack{s \sim p_{\text{state}}\\g \sim p_{\text{goal}}}} [d_{\theta}(s,g)] \qquad (\text{maximize over all pairs})$ subject to $\mathbb{E}_{(s,a,s',\text{cost}) \sim p_{\text{transition}}} [\text{relu}(d_{\theta}(s,s') - \text{cost})^2] \leq \epsilon^2 \qquad (\text{not overestimate local cost})$

QRL Recovers Global Distances (Thm. 2&3; ICML 23)

With sufficient data and model capacity, QRL recovers optimal value fn. for any MDP.

Only **ORL** recovers optimal goal-reaching value fn.

ORL learns an Optimal-Decision-Aware Representation

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang

Benchmarking **ORL** (offline decision-making)

Offline RL. Maze2D: Guide a ball through a maze toward target location.

Benchmarking **ORL** (offline decision-making)

Offline RL.

Maze2D: Guide a ball through a maze toward target location.

ORL learns policy network by bp-ing through latent world model.

			Er Q	nsemble -Learning	Planning		Trajectory Modelling	
	Environment	QRL	Contrastive RL	MSG (#critic = 64)	MSG + HER (#critic = 64)	MPPI with GT Dynamics	Diffuser	Diffuser with Handcoded Controller
Single-Goal	large	185.26 ± 28.46	81.65 ± 43.79	159.30 ± 49.40	59.26 ± 46.70	5.1	7.98 ± 1.54	128.13 ± 2.59
	medium	148.48 ± 46.75	10.11 ± 0.99	57.00 ± 17.20	75.77 ± 9.02	10.2	9.48 ± 2.21	127.64 ± 1.47
	umaze	47.40 ± 23.72	95.11 ± 46.23	101.10 ± 26.30	55.64 ± 31.82	33.2	44.03 ± 2.25	113.91 ± 3.27
	Average	127.05	62.29	105.80	63.56	16.17	20.50	123.23
Multi-Goal	large	199.19 ± 4.07	172.64 ± 5.13	_	44.57 ± 25.30	8	13.09 ± 1.00	146.94 ± 2.50
	medium	161.91 ± 8.10	137.01 ± 6.26		99.76 ± 9.83	15.4	19.21 ± 3.56	119.97 ± 1.22
	umaze	134.11 ± 12.56	142.43 ± 11.99	—	27.90 ± 10.39	41.2	56.22 ± 3.90	128.53 ± 1.00
	Average	165.07	150.69		57.41	21.53	29.51	131.81

Benchmarking **ORL** (offline decision-making)

Offline RL.

Maze2D: Guide a ball through a maze toward target location.

ORL learns policy network by bp-ing through latent world model.

			Ensemble Q-Learning Plannir			+ QRL V	Tra Mo	ijectory odelling	RL V*	
	Environment	QRL	Contrastive RL	MSG (#critic = 64)	MSG + HER (#critic = 64)	MPPI with GT Dynamics	MPPI with QRL Value	Diffuser	Diffuser with QRL Value Guidance	Diffuser with Handcoded Controller
Single-Goal	large	185.26 ± 28.46	81.65 ± 43.79	159.30 ± 49.40	59.26 ± 46.70	5.1	4.67 ± 5.31	7.98 ± 1.54	11.33 ± 1.48	128.13 ± 2.59
	medium	148.48 ± 46.75	10.11 ± 0.99	57.00 ± 17.20	75.77 ± 9.02	10.2	60.89 ± 40.38	9.48 ± 2.21	10.52 ± 3.26	127.64 ± 1.47
	umaze	47.40 ± 23.72	95.11 ± 46.23	101.10 ± 26.30	55.64 ± 31.82	33.2	45.88 ± 9.32	44.03 ± 2.25	42.19 ± 4.23	113.91 ± 3.27
	Average	127.05	62.29	105.80	63.56	16.17	37.15	20.50	21.35	123.23
Multi-Goal	large	199.19 ± 4.07	172.64 ± 5.13	_	44.57 ± 25.30	8	54.04 ± 7.47	13.09 ± 1.00	21.78 ± 2.86	146.94 ± 2.50
	medium	161.91 ± 8.10	137.01 ± 6.26	—	99.76 ± 9.83	15.4	71.24 ± 6.69	19.21 ± 3.56	33.68 ± 2.82	119.97 ± 1.22
	umaze	134.11 ± 12.56	142.43 ± 11.99	—	27.90 ± 10.39	41.2	84.72 ± 7.69	56.22 ± 3.90	69.49 ± 3.85	128.53 ± 1.00
	Average	165.07	150.69	_	57.41	21.53	70.00	29.51	41.65	131.81

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang

- - -

Benchmarking **ORL** (online decision-making)

Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block. More complex environments. Continuous actions.

Benchmarking **ORL** (online decision-making)

Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block.

More complex environments. Continuous actions.

QRL learns policy network by bp-ing through latent world model.

Quasimetric with TD fails

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.

Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging Geometric Structure in Goal-Conditioned Problems

> Value Implicit Pre-training (VIP): Learning Value-based Abstractions with Action-free Offline GCRL

Learning a Universal Value Function

Observation

Goal

V* = General Notion of Goal-Directed Task Progress

Rich Visual Representation so that V* can be expressed

V* itself can be used to construct visual-goal rewards for any task

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma

Key Idea: Learning from Human Videos as a *BIG Offline Goal-Conditioned RL* Problem

Diverse Human Videos

Offline Dataset:

$$\max_{\pi_H,\phi} \mathbb{E}_{\pi^H}\left[\sum_t \gamma^t r(o;g)\right] - D_{\mathrm{KL}}(d^{\pi_H}(o,a^H;g) \| d^D(o,\tilde{a}^H;g)),$$

- Mathematically Sound
- What are human actions?
- Can't be optimized in practice

Human videos are rich sources of goal-directed behavior!

Offline Value Learning on Human Videos

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma

VIP: Towards Universal Visual Reward and Representation Via Value-Implicit Pre-Training

VIP: Towards University in Submediate and Representation via Value-Implicit Pre-Training. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma

Task Variation: 3 viewpoints, 2 initial distributions

- 12 FrankaKitchen tasks covering wide-range of manipulation skills
- 3 camera views for each task
- 2 initial states (Easy, Hard)

Figure 3: Frankakitchen example goal images.

(b) Middle

(a) Left

(c) H

(c) Right

(d) Easy

(e) Hard

Trajectory Optimization

- Use MPPI to optimize a trajectory
 - Use the simulator to rollout proposed action sequences
 - Use pre-trained rewards to evaluate rollouts and take the first action of the best sequence
 - Repeat
- Evaluating representations' capability as pure visual rewards
 - no policy learning (yet)

Trajectory Optimization Result

VIP robustly minimizes both robot and object pose errors!

Scaling to Optimization Budget

VIP Reward Weighted Regression (RWR)

$$\mathcal{L}(\pi) = -\mathbb{E}_{D_{\text{task}}(o,a,o',g)} \left[\exp(\tau \cdot R(o,o';\phi,g)) \log \pi(a \mid \phi(o)) \right],$$

- Weighs transitions according to pre-trained rewards
- Able to pay attention to key frames if the reward is good
- One line change from BC
- Hypothesis: VIP-RWR > VIP-BC (BC on the VIP representation)

Tasks and Demonstrations

Environment	Object Type	Dataset	Success Criterion		
CloseDrawer PushBottle PlaceMelon FoldTowel	Articulated Object Transparent Object Soft Object Deformable Object	10 demos + 20 failures 20 demonstrations 20 demonstrations 20 demonstrations	the drawer is closed enough that the spring loads. the bottle is parallel to the goal line set by the icecream cone. the watermelon toy is fully placed in the plate.		

Results

Table 1: Real-robot offline RL results (success rate % averaged over 10 rollouts with standard deviation reported).

	In-Domain						
Environment	VIP-RWR	VIP-BC	R3M-RWR	R3M-BC	Scratch-BC	VIP-RWR	VIP-BC
CloseDrawer	100 ± 0	$50\pm$ 50	$80\pm$ 40	10 ± 30	$30\pm$ 46	0 ± 0	$0^* \pm 0$
PushBottle	90 ± 30	$50\pm$ 50	$70\pm$ 46	50 ± 50	$40\pm$ 48	$0^*\pm 0$	$0^*\pm 0$
PlaceMelon	$60 \pm$ 48	$10\pm$ 30	0 ± 0	0 ± 0	0 ± 0	$0^* \pm 0$	$0^*\pm 0$
FoldTowel	90 ± 30	$20\pm$ 40	0 ± 0	0 ± 0	0 ± 0	$0^* \pm 0$	$0^*\pm 0$

Pre-training is necessary for few-shot ORL, and VIP is uniquely effective for it

CloseDrawer & PushBottle

VIP-RWR (100%)

VIP-BC (50%)

R3M-RWR (90%)

R3M-BC (10%)

VIP-RWR (90%)

VIP-BC (50%)

R3M-RWR (70%)

R3M-BC (50%)

PickPlaceMelon & FoldTowel

VIP-RWR (100%)

VIP-BC (50%)

R3M-RWR (90%)

R3M-BC (10%)

VIP-RWR (90%)

VIP-BC (50%)

R3M-RWR (70%)

R3M-BC (50%)

Open Questions

- What properties do we want in a latent representation for planning?
 - What information is needed?
 - What type of structural properties are good?
- What problems are most suited to planning?
 - All problems, or only a subset?
- Can we define a purely local learning objective that leads to global optimality? (Beyond bootstrapping)