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• Structured by reachability
• Value functions make good heuristics
• How do we get good value functions for every possible downstream 

planning task?

What makes representations amenable to 
planning?



Plan2Vec: embedding local reachability 

Quasimetric Reinforcement Learning (QRL): Leveraging 
Geometric Structure in Goal-Conditioned Problems

Value Implicit Pre-training (VIP): Learning Value-based 
Abstractions with Action-free Offline GCRL
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What makes representations amenable to 
planning?

● Plan2vec is built upon the idea that for a collection of images with a local 
metric d, the graph G weighted by d is embedded by a Riemann 
manifold, the metric of which is the shortest-path-distance D.

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Plan2Vec

Plan2vec treats the construction of the graph as a semi-supervised problem
With 3 steps:
1. Learn a local metric
2. Build a graph
3. Perform heuristic search

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Learning a Local Metric and Building a Graph
● Temporal contrastive loss

● S is reachability

● Add edges between nodes when distance is smaller than some threshold

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Heuristic Search
● We see global structure in learned representation (bottom left)

● Good heuristic: cheaper planning cost and higher success 

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



● Build a graph from data
● Use Dijkstra’s to construct a global metric and latent representation 

space.
● Learning an accurate local metric is hard!

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.

Key Takeaways and Insights
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Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.
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Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Quasimetric RL: pull apart state-goal for 
global distances

Quasimetric RL (QRL) optimizes a Quasimetric embedding 𝑑! as (negated) value function:

𝜖 > 0 small

Given ways to sample (e.g., from a dataset / replay buffer)

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Only QRL recovers optimal goal-reaching value fn.

Contrastive RL Contrastive RL
+ Quasimetric

Ground Truth
(dynamics) Q-LearningQRL Q-Learning

+ Quasimetric
Conservative 
Q-Learning 

Distance to
Top of Hill

QRL objective
with      metric

Distance to
Some State

Distance to
Another State

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



QRL learns an Optimal-Decision-Aware Representation

latentobservation

𝑓

𝑓: 
encoder

𝑓

𝑓

planning for a good action = knowing effects of actions in latent space
= latent world modeling

quasimetric latent distance

optimal state-reaching cost

⋅⋅⋅

latent geodesic  ≡ optimal plan
latent “distance” ≡ optimal cost

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Benchmarking QRL (offline decision-making)

controlled ball

target location

Offline RL. 
Maze2D: Guide a ball through a maze toward target location.

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Ensemble
Q-Learning Planning

Trajectory
Modelling

QRL

Offline RL. 
Maze2D: Guide a ball through a maze toward target location.
QRL learns policy network by bp-ing through latent world model.

Benchmarking QRL (offline decision-making)

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Ensemble
Q-Learning Planning

Trajectory
Modelling

+ QRL 𝑉∗ + QRL 𝑉∗

QRL

Benchmarking QRL (offline decision-making)

Offline RL. 
Maze2D: Guide a ball through a maze toward target location.
QRL learns policy network by bp-ing through latent world model.

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Benchmarking QRL (online decision-making)

Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block.

More complex environments. Continuous actions.

Slide credit: Tongzhou WangOptimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Benchmarking QRL (online decision-making)

Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block.

More complex environments. Continuous actions.

QRL learns policy network by bp-ing through latent world model.

Continuous actions  
Quasimetric with TD fails

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Plan2Vec: embedding local reachability 

Quasimetric Reinforcement Learning (QRL): Leveraging 
Geometric Structure in Goal-Conditioned Problems

Value Implicit Pre-training (VIP): Learning Value-based 
Abstractions with Action-free Offline GCRL



Learning a Universal Value Function

V*(                ,                )
GoalObservation

Rich Visual Representation so that V* can be expressed

V* itself can be used to construct visual-goal rewards for any task

V* = General Notion of Goal-Directed Task Progress

Slide credit: Jason MaVIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023.



Key Idea: Learning from Human Videos as a
BIG Offline Goal-Conditioned RL Problem

Human videos are rich sources of goal-directed behavior!

Offline Dataset: 
Diverse Human Videos

• Mathematically Sound
• What are human actions?
• Can’t be optimized in practice

Slide credit: Jason MaVIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023.



OfflineValue Learning on Human Videos

Offline Dataset: 
Diverse Human Videos

Dual Problem depends only 
on offline data! No 
dependence on actions!

goal frame initial frame middle frame

Slide credit: Jason MaVIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023.



VIP: Towards Universal Visual Reward and 
Representation Via Value-Implicit Pre-Training

Initial Goal Middle

Self-Supervised
 Goal-Conditioned Value Function Training

VIP Network

Attract

Anchor Positive “Negatives”

1

Representation

Reward

Diverse Visuomotor Control:
Imitation, Trajectory Optimization, Online RL,

Few-Shot Real-World Offline RL

VIP Embedding

Diverse, In-the-Wild Unlabeled Human Videos

Slide credit: Jason MaVIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023.



Task Variation: 3 viewpoints, 2 initial 
distributions
• 12 FrankaKitchen tasks covering 

wide-range of manipulation skills
• 3 camera views for each task
• 2 initial states (Easy, Hard)

Slide credit: Jason Ma



Trajectory Optimization
• Use MPPI to optimize a trajectory
﹘Use the simulator to rollout proposed action sequences
﹘Use pre-trained rewards to evaluate rollouts and take the first 

action of the best sequence
﹘Repeat

• Evaluating representations’ capability as pure visual rewards
﹘no policy learning (yet)

Slide credit: Jason Ma



Trajectory Optimization Result

VIP robustly minimizes both robot and object pose errors! 

Slide credit: Jason Ma



Scaling to Optimization Budget

VIP benefits from increasing optimization computes

Baselines exploit 
their unsmooth 
reward landscapes

Slide credit: Jason Ma



VIP Reward Weighted Regression (RWR)

• Weighs transitions according to pre-trained rewards 

• Able to pay attention to key frames if the reward is good

• One line change from BC

• Hypothesis: VIP-RWR > VIP-BC (BC on the VIP representation)

Slide credit: Jason Ma



Tasks and Demonstrations

Slide credit: Jason Ma



Results

Pre-training is necessary for few-shot ORL, and VIP is uniquely effective for it

Slide credit: Jason Ma



CloseDrawer & PushBottle
VIP-RWR (100%) VIP-BC (50%) R3M-RWR (90%) R3M-BC (10%)

VIP-RWR (90%) VIP-BC (50%) R3M-RWR (70%) R3M-BC (50%)

Slide credit: Jason Ma



PickPlaceMelon & FoldTowel
VIP-RWR (100%) VIP-BC (50%) R3M-RWR (90%) R3M-BC (10%)

VIP-RWR (90%) VIP-BC (50%) R3M-RWR (70%) R3M-BC (50%)

Slide credit: Jason Ma



Open Questions

• What properties do we want in a latent representation for planning?
• What information is needed?
• What type of structural properties are good?

• What problems are most suited to planning?
• All problems, or only a subset?

• Can we define a purely local learning objective that leads to global 
optimality? (Beyond bootstrapping)


