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What makes representations amenable to
planning?

e Structured by reachability
* Value functions make good heuristics

* How do we get good value functions for every possible downstream
planning task?



Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging
Geometric Structure in Goal-Conditioned Problems

Value Implicit Pre-training (VIP): Learning Value-based
Abstractions with Action-free Offline GCRL
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What makes representations amenable to
planning?
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o Plan2vec is built upon the idea that for a collection of images with a local
metric d, the graph G weighted by d is embedded by a Riemann
manifold, the metric of which is the shortest-path-distance D.

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yana*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Plan2Vec

Plan2vec treats the construction of the graph as a semi-supervised problem
With 3 steps:
1. Learn a local metric

2. Build a graph
3.  Perform heuristic search
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Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yana*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Learning a Local Metric and Building a Graph

o Temporal contrastive loss

exp S(z,zT)
exp S(x,xT) + Zf exp S(z,z; )

Lncg = — log

o Sisreachability

o Add edges between nodes when distance is smaller than some threshold

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yana*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Heuristic Search
o We see global structure in learned representation (bottom left)

o Good heuristic: cheaper planning cost and higher success
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Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Key Takeaways and Insights

o Build a graph from data
o Use Dijkstra’s to construct a global metric and latent representation

space.
e Learning an accurate local metric is hard!

Connecting the Dots

Success Rate (%)

10 v Street Learn Tiny Small Medium
9
7 S “““ Plan2vec (Ours) 92.2+29 57.2+43 51.4+6.9
1 :“' SPTM (1-step) 31.5+58 193+58 20.2+5.2
Ry VAE 25.5+5.6 144+48 169+55

O Random 199+54 120+£52 12.7+46

Plan2Vec: Unsupervised Representation Learning by Latent Plans. G. Yang*, AZ*, A. Morcos, J. Pineau, P. Abbeel, R. Calandra. L4DC 2020.



Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging

Geometric Structure in Goal-Conditioned Problems

Value Implicit Pre-training (VIP): Learning Value-based
Abstractions with Action-free Offline GCRL




Goal-Reaching
Reinforcement Learning
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Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Goal-Reaching Reinforcement
Learning

+ Structures via Quasimetric
Embeddings
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Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Quasimetric RL: pull apart state-goal for
global distances

Given ways to sample (e.g., from a dataset / replay buffer)

(s,a,5', cost) ~ Piansition (transitions)

S ~ PDstate (random state)

Sgoal ™~ Pgoals (random goal)

Quasimetric RL (QRL) optimizes a Quasimetric embedding 4, as (negated) value function:

max Ezfvz;)state [do(s, 9)] (maximize over all pairs)
~ |

goa
subject t0 B(s 4 ' cost)mpuamsio FELU(d8(S, 8") — cost)?] < € (not overestimate local cost)

ELg 0 small

. QRL Recovers Global Distances (Thm. 2&3; ICML 23)
With sufficient data and model capacity, QRL recovers optimal value fn. for any MDP.

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Only QRL recovers optimal goal-reaching value fn.
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Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



QRL learns an Optimal-Decision-Aware Representation

planning for a good action = knowing effects of actions in latent space

= |latent world modeling

guasimetric latent distance
i

o+ Qiatent (24, 2B) = cost™(s4 — sB) = 10
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optimal state-reaching cost

dlatent(ZB,zA) = COSt*(SB — SA) =92
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Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang

°
diatent (24, 20) = cost*(s4 — s¢) =5

latent geodesic = optimal plan

latent “distance” = optimal cost



Benchmarking QRL (offline decision-making)

Offline RL.
Maze2D: Guide a ball through a maze toward target location.

controlled ball

target location

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Benchmarking QRL (offline decision-making)

Offline RL.
Maze2D: Guide a ball through a maze toward target location.
QRL learns policy network by bp-ing through latent world model.

Ensemble _ Trajectory
Q-Learning Planning Modelling
. . MSG MSG + HER  MPPI with . Diffuser with
Environment ~ QRL Contrastive R 4 ritic — 64) (#critic = 64) GT Dynamics Diffuser Handcoded Controller
large 185.26 +2846  81.65 +43.79 159.30 +49.40 59.26 +46.70 5.1 7.98 + 154 128.13 + 259
) medium 148.48 + 4675 10.11 + 099 57.00 +17.20 75.77 + 9.02 10.2 948 + 221 127.64 + 147
Single-Goal umaze 4740 +2372 95.11 +46.23 101.10 +26.30 55.64 +31.82 332 44.03 + 225 11391 + 327
Average 127.05 62.29 105.80 63.56 16.17 20.50 123.23
large 199.19 + 407 172.64 + 513 — 44.57 2530 8 13.09 + 1.00 146.94 + 250
medium 16191+ 510 137.01= 626 — 99.76 + 9383 154 19.21 + 356 11997 + 122
Multi-Goal
umaze 134.11 1256  142.43 +11.99 — 27.90 +1039 41.2 56.22 + 3.90 128.53 + 1.00
Average 165.07 150.69 — 57.41 21.53 29.51 131.81

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Benchmarking QRL (offline decision-making)

Offline RL.
Maze2D: Guide a ball through a maze toward target location.
QRL learns policy network by bp-ing through latent world model.

+QRLV™ +QrRLV”
Ensemble _ Trajectory
Q-Learning Planning Modelling
Envi t QRL Contrastive RL MSG MSG + HER  MPPI with  MPPI with Diffy Diffuser with Diffuser with
nvironmen ontrastive (#critic = 64) (Hcritic = 64) GT Dynamics QRL Value —"UST  QRL Value Guidance Handcoded Controller
large 185.26 +2846  81.65 +43.79 159.30 +49.40 59.26 +46.70 5.1 467+ 531 798+ 154 11.33 + 148 128.13 + 259
) medium 148.48 + 4675 10.11 + 099 57.00 +17.20 75.77 + 9.02 10.2 60.89 +4038 9.48 + 221 10.52 + 326 127.64 + 147
Single-Goal umaze 47.40 2372 95.11 +46.23 101.10 +26.30 55.64 +3182 332 4588 + 932 44.03 + 225 42.19 + 423 11391 + 327
Average 127.05 62.29 105.80 63.56 16.17 37.15 20.50 21.35 123.23
large 199.19 + 407 172.64 + 513 — 44.57 2530 8 54.04 + 747 13.09 £ 1.00 21.78 + 2386 146.94 + 250
) medium 16191+ 510 137.01= 626 — 99.76 + 9383 154 7124 + 669 19.21 + 356 33.68 + 282 11997 + 122
Multi-Goal e 134.11 s 1256 142.43 £ 1199 — 27.90 £ 1039 412 8472+ 760 5622+ 390 69.49 + 355 12853 + 100
Average 165.07 150.69 — 57.41 21.53 70.00 29.51 41.65 131.81

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Benchmarking QRL (online decision-making)

Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block.

More complex environments. Continuous actions.

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023. Slide credit: Tongzhou Wang



Benchmarking QRL (online decision-making)
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Online GCRL benchmark. Control a robot to perform tasks, e.g., pushing a block.

More complex environments. Continuous actions.

QRL learns policy network by bp-ing through latent world model.
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Continuous actions
Quasimetric with TD fails

Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning. T. Wang, A. Torralba, P. Isola, AZ. ICML 2023.



Plan2Vec: embedding local reachability

Quasimetric Reinforcement Learning (QRL): Leveraging
Geometric Structure in Goal-Conditioned Problems

Value Implicit Pre-training (VIP): Learning Value-based
Abstractions with Action-free Offline GCRL




Learning a Universal Value Function

V*(

Observation Goal

V*itself can be used to construct visual-goal rewards for any task

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma



Key ldea: Learning from Human Videos as a
BI/G Offline Goal-Conditioned RL Problem

Offline Dataset:
Diverse Human Videos

max B [Z 7'r(o; g)] — Dk (d™ (0,a"; 9)||d" (0,a"; 9)),
TH, t

Mathematically Sound
What are human actions?
Can’t be optimized in practice

Human videos are rich sources of goal-directed behavior!

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma



Offline Value Learning on Human Videos

Offline Dataset:
Diverse Human Videos

maxE_u [Z'ytr(o; g)] — Dxv(d™ (0,a™; g)||d" (0,a"; g)),

7TH,¢ t

Convey

Analysis

Dual Problem depends only
on offline data! No
dependence on actions!
maxmin Epg) [(1 = 7)Epg(o) [V (#(0); 6(9))] + 108 Eo,0159)~p [exp (r(0, 9) + 7V (#(); $(9)) = V(¢(0), #(9)))]]
goal frame initial frame middle frame

VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma



VIP: Towards Universal Visual Reward and
Representation Via Value-Implicit Pre-Training

Self-Supervised Diverse Visuomotor Control:

_ H H AT Imitation, Trajectory Optimization, Online RL,
Goal-Conditioned Value Function Trainin P e RL.
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@ Representation via Value-Implicit Pre-Training. J.Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, AZ. ICLR 2023. Slide credit: Jason Ma



Task Variation: 3 viewpoints, 2 initial
distributions

. 12 FrankaKitchen tasks covering
wide-range of manipulation skills

. 3 camera views for each task

. 2 initial states (Easy, Hard)

(a) Left (b) Middle (c) Right

Figure 3: Frankakitchen example goal images.

Slide credit: Jason Ma



Trajectory Optimization

- Use MPPI to optimize a trajectory
- Use the simulator to rollout proposed action sequences

- Use pre-trained rewards to evaluate rollouts and take the first
action of the best sequence

- Repeat
- Evaluating representations’ capability as pure visual rewards

-no policy learning (yet)

Slide credit: Jason Ma
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V VIP robustly minimizes both robot and object pose errors!

Slide credit: Jason Ma



Scaling to Optimization Budget

MPPI Optimizer Scaling

. VIP
BN R3M

041 mmm ResNet
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Baselines exploit
their unsmooth
reward landscapes

V VIP benefits from increasing optimization computes

Slide credit: Jason Ma



VIP Reward Weighted Regression (RWR)

L(TF) - _EDtask(o,a,o’,g) [exp(T ) R(07 0/; ¢7 g)) logﬂ-(a’ | ¢(0))] )

- Weighs transitions according to pre-trained rewards
- Able to pay attention to key frames if the reward is good

- One line change from BC

.- Hypothesis: VIP-RWR > VIP-BC (BC on the VIP representation)

Slide credit: Jason Ma



Tasks and Demonstrations

| Environment |  Object Type | Dataset | Success Criterion
CloseDrawer | Articulated Object | 10 demos + 20 failures the drawer is closed enough that the spring loads.
PushBottle Transparent Object 20 demonstrations the bottle is parallel to the goal line set by the icecream cone.
PlaceMelon Soft Object 20 demonstrations the watermelon toy is fully placed in the plate.
FoldTowel Deformable Object 20 demonstrations the bottom half of the towel is cleanly covered by the top half.

Slide credit: Jason Ma



Results

Table 1: Real-robot offline RL results (success rate % averaged over 10 rollouts with standard deviation reported).

Pre-Trained In-Domain
Environment VIP-RWR VIP-BC R3M-RWR R3M-BCJ Scratch-BC VIP-RWR VIP-BC
CloseDrawer 100 L+ o 50 + 50 80 + 40 10 £+ 30 30 + 46 O+o 0*+o
PushBottle 90 + 30 50 + 50 70 £ 46 50 + 50 40+ 48 0*+o 0*+o
PlaceMelon 60 + 48 10 £ 30 O+fo O+fo O+fo 0*+to 0* %o
FoldTowel 90 + 30 20 + 40 0+o0 0+o 0+o 0* %o 0*+o

\/ Pre-training is necessary for few-shot ORL, and VIP is uniquely effective for it

Slide credit: Jason Ma



CloseDrawer & PushBottle
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Slide credit: Jason Ma



PickPlaceMelon & FoldTowel
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Slide credit: Jason Ma



Open Questions

* What properties do we want in a latent representation for planning?
e What information is needed?
* What type of structural properties are good?

* What problems are most suited to planning?
 All problems, or only a subset?

* Can we define a purely local learning objective that leads to global
optimality? (Beyond bootstrapping)



