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Overview

An RL algorithm: a mapping from experience data to actions.

Classic RL Meta RL

Given: an MDP ! Given: a distribution of MDPs
Obijective: learn a state-to-action q, Objective: learn a data-to-action
mapping to maximize cumulative ?} mapping to maximize cumulative
reward per episode. S reward over entire interaction.
Output: “Policy” g “Meta-RL policy” or “Learned RL”
Classic RL involves value functions  § Learned RL involves a data-
to distill data. &3 sequence model like an RNN.
Classic RL Pros & cons: Training Samp|esl > Learned RL Pros & cons:
Data inefficient Data-efficient (minimizes regret)
General Poor OOD generalization
Asymptotically optimal Poor long-context reasoning

RL?: Injects classic RL into Learned RL: Aids RNN with action-value estimates.
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Meta Reinforcement Learning

» Objective: Learn a data-to-action mapping to maximizes cumulative reward

H
T(0) = Enr ot [Z VE (4, gy [Rilst, at)]}
t=0
* As a meta-level Markov decision process:
Each meta-episode: sample a new MDP, or “task”, play for H interactions.
Optimal meta policy maximizes cumulative reward.
Dynamics different across meta-episodes?
POMDP where hidden variable is the task identity. Also called BAMDP.
Beliefs over tasks capture history sufficiently.
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RL2: FastRL using Slow RL (Duan et al. 2016)

* Meta-RL policy directly maps raw-data to actions using an RNN.

» Trained with standard “slow” deep RL.

Note: Some approaches map data-to-beliefs first e.g., VeriBAD (Zintgraf et al., 2019)
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RL®: Inject RL into RL?
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* Insert RL subroutine: estimate Q*-values e.g., use Q-learning.

Provide to meta-RL. Provide action-counts too.

Meta-RL decides how to use.
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RL®: Inject RL into RL?: But Why?

Q-injection # to improve OOD generalization and long-context reasoning?

exploration count-based
curiosity-driven
dgn

Inherent generality:

Key component in
general-purpose RL

{7-077-177-2’7-3,7-4}
{TO,Tl,T2,T4,T3}\“ [
{Ts,T4,Tz,T1,T0}7"
{7-477.377-%7-1,7.0}

Summarization: Many-to-one
mapping. Order is irrelevant.

Lossy, but “remembers” key
details

Actionability: optimal policy
given data.

Can ignore history, just exploit

Bottom line: Over time, data overwhelming, Q-estimates become more useful.
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RL®: Inject RL into RL?: But Why?

Additional Reasons

E llent task .
di:gﬁr:ir;:at?)?s; Related to meta-value function:

Rare for MDPs to have
same Q-value function

The Q* term appears in the meta-V* equation

Sufficient for Bayes optimal
beliefs? Sometimes, yes. V!(0) = argmax| 3 b(0)Ri(s, @) +5 3 O@[b.a) Y6 ()Y Tils, a,5)(Q4(s) + ()]
For Bernoulli MAB, RL3 “€A Miem oed MieM  s€8
works without history.
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RL3 vs RL? - Gridworlds Results Demo
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RL3 vs RL2 - Gridworld Results

RL® achieves lower regret.

Efficiency
Gap Largest Performance gap larger
OOD Long horizon
Generalization performance

RL3 with state-abstractions: RL3-coarse: 2x fast, 90% of RL?.
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RL3 vs RL2 - Random MDPs Results

Stochastic MDPs generated On par
randomly (Duan et al. 2016). Efficiency
RL3 Slightly better RL® Outperforms RL?
Long horizon
OOD & otz
performance

Generalization
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Conclusion

* We introduced RL?, aiming to combine best of RL and RL? —to achieve good
efficiency (minimize regret), better long-term reasoning, and better OOD
generalization.

* Intuitions: Universality, summarization, actionability and with helps task
identification. With time, data gets overwhelming, Q-estimates useful, almost
sufficient.

+ Key experimental takeaways:
RL3 retains (and sometime improves) efficiency of RL? on all domains
RL? benefits with increase with horizon, distribution shift, and determinism
Injected Q-values can be imprecise, and still be useful.

* Future: extend this to continuous action space setting!
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