Symbolic Approaches to LTL, Best-Effort Synthesis

Giuseppe De Giacomo Gianmarco Parretti Shufang Zhu

GenPlan@IJCAI-ECAI2022

July 23, 2022

- Best-effort synthesis is a suitable form of planning, finds a strategy that ensures the agent will do its best to achieve the goal, i.e., a best-effort strategy
- LTL_f best-effort synthesis, both the environment assumption and the agent goal are expressed as LTL_f formulas

- Reactive synthesis, a general form of planning, finds an agent strategy that achieves the given goal (temporal goal)
- An agent strategy is a function $\sigma_{ag}: (2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$

LTL_f Reactive Synthesis Under Environment Assumptions

Given: Environment assumption \mathcal{E} , agent goal φ , LTL_f formulas over $\mathcal{X} \cup \mathcal{Y}$

Obtain: An agent strategy σ_{ag} such that

 $\forall \sigma_{\textit{env}} \triangleright \mathcal{E}, \pi(\sigma_{\textit{ag}}, \sigma_{\textit{env}}) \vDash \varphi$

Best-effort synthesis finds a best-effort strategy, i.e., a strategy that ensures the agent does its best to achieve the goal

Dominance

Let σ_1 and σ_2 be two agent strategies. σ_1 **dominates** σ_2 for goal φ under assumption \mathcal{E} , written $\geq_{\varphi|\mathcal{E}}$, if for every $\sigma_{env} \triangleright \mathcal{E}, \pi(\sigma_2, \sigma_{env}) \vDash \varphi$ implies $\pi(\sigma_1, \sigma_{env}) \vDash \varphi$. σ_1 strictly **dominates** σ_2 , written $\sigma_1 >_{\varphi|\mathcal{E}} \sigma_2$, if $\sigma_1 \geq_{\varphi|\mathcal{E}} \sigma_2$ and $\sigma_2 \not\geq_{\varphi|\mathcal{E}} \sigma_1$.

LTL_f Best-Effort Synthesis Under Environment Assumptions

Given: Environment assumption \mathcal{E} , agent goal φ , LTL_f formulas over $\mathcal{X} \cup \mathcal{Y}$

Obtain: An agent strategy σ such that there is no strategy σ' that strictly dominates σ

- Study of the relationship between reactive synthesis and best-effort synthesis for specifications in Linear Temporal Logic on Finite Traces (LTL₁)
- Three novel symbolic approaches to LTL_f best-effort synthesis:
 - Monolithic
 - Explicit-compositional
 - Symbolic-compositional
- Empirical evaluation

- Study of the relationship between reactive synthesis and best-effort synthesis for specifications in Linear Temporal Logic on Finite Traces (LTL_f)
- Three novel symbolic approaches to LTL_f best-effort synthesis:
 - Monolithic
 - Explicit-compositional
 - Symbolic-composiional
- Empirical evaluation

- Study of the relationship between reactive synthesis and best-effort synthesis for specifications in Linear Temporal Logic on Finite Traces (LTL_f)
- Three novel symbolic approaches to LTL_f best-effort synthesis:
 - Monolithic
 - Explicit-compositional
 - Symbolic-composiional
- Empirical evaluation

The proposed approaches are based on a reduction to solving adversarial/cooperative reachability games on symbolic DFAs

Symbolic DFA [Zhu et al. 2017]

The symbolic representation of a DFA is a tuple $\mathcal{G}^{s} = (\mathcal{X}, \mathcal{Y}, \mathcal{Z}, Z_{0}, \eta, f)$ where:

- \mathcal{X} and \mathcal{Y} are environment and agent variables, respectively
- \mathcal{Z} is the set of state variables
- Z₀ is the initial state
- ► $\eta: 2^{\mathcal{X}} \times 2^{\mathcal{Y}} \times 2^{\mathcal{Z}} \to 2^{\mathcal{Z}}$ represents the transitions of the DFA game
- f represents the final state of the DFA game

Winning strategy of an adversarial reachability game. Least fixpoint computation on Boolean formulas w and t:

$$t_{i+1}(Z, Y, Y) = t_i(Z, X, Y) \lor (\neg w_i(Z) \land w_i(\eta(X, Y, Z)))$$
$$w_{i+1}(Z) = \forall X. \exists Y. t_{i+1}(Z, X, Y);$$

• Winning strategy of a cooperative reachability game. Least fixpoint computation on Boolean formulas \hat{w} and \hat{t} :

$$\begin{aligned} \hat{t}_{i+1}(Z,Y,Y) &= \hat{t}_i(Z,X,Y) \lor (\neg \hat{w}_i(Z) \land \hat{w}_i(\eta(X,Y,Z))) \\ \hat{w}_{i+1}(Z) &= \exists X. \exists Y. \hat{t}_{i+1}(Z,X,Y); \end{aligned}$$

- Fixpoint reached when $w_{i+1} \equiv w_i$ (resp. $\hat{w}_{i+1} = \hat{w}_i$)
- Computation of positional strategy by Boolean synthesis

Monolithic Approach

Figure: Explicit-Compositional

Figure: Symbolic-Compositional

Explicit-Compositional Approach

Figure: Explicit-Compositional

Figure: Symbolic-Compositional

Explicit-Compositional Approach

Figure: Monolithic

Figure: Explicit-Compositional

Figure: Symbolic-Compositional

Symbolic Approaches to LTL_f Best-Effort Synthesis

Symbolic-Compositional Approach

Figure: Monolithic

Figure: Explicit-Compositional

Figure: Symbolic-Compositional

- Implementation of the symbolic approaches in a tool called BeSyft:
 - Monolithic-BeSyft
 - Explicit-compositional-BeSyft
 - Symbolic-compositional-BeSyft

- Experiments performed on a scalable benchmark counter games:
 - Performance comparison of the three symbolic approaches
 - Performance comparison of best-effort and reactive synthesis
 - Evaluation of the bottleneck and impact of the cooperative phase

Experimental Results Comparing Symbolic Approaches

Experimental Results Comparing Best-Effort Synthesis and Reactive Synthesis

Experimental Results Relative Time Cost Evaluation

- Three symbolic approaches to LTL_f best-effort synthesis
- The symbolic-compositional approach has the best performance
- Automata minimization does not always lead to improvement
- LTL_f-to-DFA conversion is the bottleneck of LTL_f best-effort synthesis.
- Performing best-effort synthesis only brings minor overhead comparing with standard reactive synthesis

Future Directions

- LTL_f best-effort synthesis on planning domains
- LTL_f best-effort synthesis under multiple environment assumptions
- LTL best-effort synthesis