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Motivations

e Autonomous agents deployed in real-world need to perform novel tasks on demand

e Household, Manufacture/Assembly, Disaster Response, Open-World Games

PR2, Kuka, Darpa, Minecraft



Mobile Manipulation Domain

Training Tasks

—desk, U book N Fdesk,

first pick up book, then deliver it to desk a

—desky U juice A Fdesky

first pick up juice, then deliver it to desk b

Test Tasks

F(book N F(desk, A F(juice A Fdesk,)))

pick up book, deliver it to desk a,
pick up juice, deliver it to desk b


https://docs.google.com/file/d/1nrPR-vl-Sf2anAyVHbXd3BOf_XEjLTP5/preview

Preliminaries

e Markov Decision Process (MDP) to model the environment
o MDP/R: Ms=(S,A,Ts)

e Linear Temporal Logic (LTL) to specify tasks

o Syntax: ¢:=p|-w|e1Ap2|p1 V2| Xp|p1Ugps|Fp

e Reward Machines (RM)
o RM: M(p — <ng, q0,p, Qterm,cpy P, Tc,oa R@)

e Options o= (Z,B8,m)
v
F3r I F(aze N F wood)
@ pick up axe, then cut down wood

Camacho et al. 19 LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning.



Problem Definition

e Input
o Environment model: Ms =(S,A,Ts)
o Asetof training tasks:  Dy0in = {P1, 92, Pn}
o Anovel test task: Dtest & Pirain
o LTL tasks translated to reward machines
e Output
o State-centric options: Oe,s — (3 ; »‘36_“.“', ™ )
o Transition-centric options: 0(e . e.n) = (Coatfs Coity S L ouis Pouii T)

o Plan that solves the novel test task



Algorithm: LPOPL

e Learn a policy for each progressed RM state
e Store state-centric options 0c_. = (S, Be.ys )

e LTL-Transfer works for any algorithm that can solve tasks modeled reward machines

grass & wood

lgrass & 'wood

F wood A\ F grass

'grass & wood
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collect wood and grass in any order

Icarte et al. 18. Teaching Multiple Tasks to an RL Agent using LTL



Algorithm: compile state-centric options
to transition-centric options

e Learn initiation set classifiers
o By rolling out each state-centric policy
e Decompose a state-centric option to possibly multiple transition-centric options

e Store transition-centric options  O(egr,eonr) — (S s Begars Ty Eself, €out, feout)

grass & wood

F wood N\ F grass 'grass & !Wom 1

. " [Tarass & wood 1 2rass |
collect wood and grass in any order




Algorithm: zero-shot transfer to novel tasks

At each RM state, find all transition-centric options with matching edges

o edge matching: Constrained and Relaxed
Select the option with highest success probability by its initiation set classifier
Execute the option

Repeat until terminal RM state

'wood

diamond & wood
ldiamond & wood joney

Training Task Test Task




Experiments: setup

e Binary Ordering e 5 Training Sets
o defined on every pair of propositions a and b o 50 LTLs per type
o Hard: -bUa e 5 Test Sets
o Soft: F(a N Fb) o 100 LTLs per type
o  Strictly Soft: F(a A XFb) e Environment
e LTL Types o 4 Minecraft-like maps
o Hard
o Soft
o  Strictly Soft
o  Mixed: (-bUa)AF(a A Fc)

o No-orders: Fa A Fb A Fe



e H1: LTL-Transfer exceeds LPOPL’s capability to transfer to novel tasks

Success Rate
= o o o =
N SN ()] OIO ?

©
o

Experiments: results
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Experiments: results

H2: Relaxed edge matching criterion results in higher success rate than Constrained
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Experiments: results

H3: Certain type of LTL tasks are more difficult to transfer to
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Train Set
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Experiments: results

H4: Training on certain type of LTLs leads to greater transfer success rate
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LTL-Transfer: Skill Transfer for Temporally-Extended Task Specifications

e LTL-Transfer enables zero-shot transfer to novel LTL tasks by learning portable options
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