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Motivation

● A planetary rover needs to transport rocks back to the base for analysis.
○ The rover has a slippery gripper that can hold a single rock.
○ It is possible to reach any location from any given location.

● Actions have certain predictable, but stochastic elements.
○ Given the nature of the mission, good models of the effects of actions are available.

Image credit: https://mars.nasa.gov/msl/mission/overview/



How do we represent states and actions?

Image-based

● Some aspects of the state are not 
visible eg. power, coeff. friction

● Many problems cannot be naturally 
described using images.

Image credit: https://mars.nasa.gov/msl/mission/overview/

Logic-based

● Many problems well-suited to such 
representations.

● Good heuristics available.
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How do we efficiently solve such problems?
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Generalized Relational Stochastic Shortest Path Problems 
(GSSPs) 

● A domain D consisting of predicates P and actions A.

● A GSSP problem for a domain D is a tuple <O, S, A, s0, G, T, C>
○ O is a set of objects.
○ S and A are sets of states and actions instantiating using O and D..
○ s0 is the initial state and G is a set of goal states.
○ T is the transition function and C is the cost function.

● We chose GSSPs over SSPs since they allow deadends to exist.



Solution to GSSPs

● Solutions are expressed as policies π: S →A

● GSSP solvers compute policies by iteratively solving Bellman equations over 
states reachable from the initial state.

● Many solvers typically initialize values with heuristic estimates;



The Need for Generalization

● State spaces grow exponentially as state variables increase.

● Most of the existing solvers are “stateless”.

Example

1. Planetary rover problem with 1 rock across 1 location.
2. Planetary rover problem with 10 rocks across 10 locations. 



Our Approach: GPA-accelerated SSP Solvers

● We use abstraction to create Generalized Policy Automata (GPA): abstract 
hypergraphs that encode partial policies.

● GPAs can be used to prune away large parts of the search space.

● SSP solvers operate over this reduced search space to quickly find solutions.

● Theoretical guarantees of hierarchical optimality and completeness.



Abstraction

● Given a list of features, we usefeature kernels that convert concrete states 
and actions into abstract states and actions.

● We use Canonical Abstraction [Sagiv et al.; 2002] to automatically generate 
features and feature kernels in a domain-independent fashion.



Learning GPAs

Given a set of solution policies π1, …, πn , we learn GPAs by using abstraction to 
iteratively merge GPAs.



Learning GPAs 1. We represent the solution policy as a directed hypergraph.
2. We convert each directed hypergraph to a GPA using abstraction.
3. We iteratively merge each GPA one by one.
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Using GPAs for solving SSPs

Intuitively, we modify the cost function for transitions that do not appear in the GPA 
to prune the search space.
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Theoretical Analysis

● Thm 3.1: Our approach is complete.

● Thm 3.2: Our approach is guaranteed to find hierarchically optimal policies.
○ Hierarchically optimal given the training data.
○ Policy improvement is guaranteed when falling back to the original cost function.



Empirical Evaluation

● 4  benchmark domains.
○ 1 from the International Probabilistic Planning Competition (IPPC)
○ 1 from robotics 
○ 2 stochastic versions of International Planning Competition (IPC) domains.

● 2 baseline solvers.
○ LRTDP (Bonet and Geffner; 2003)
○ Soft-FLARES (Pineda et al.; 2019)

● Few-shot training.
○ Solution policies from less than 20 problems.
○ Training time was less than 10 seconds.

● Large test problems.
○ Test set consisted of problems that had more than 2x the object counts of the training set.



Evaluation Methodology

● Run a solver until convergence or 7200 seconds.

● Simulate policy computed 100 times with a horizon limit of 100.

● Report avg. cost incurred.

● 10 total runs.



Empirical Evaluation



Empirical Evaluation

GPA accelerated solvers 
can solve problems much 
faster than baselines.



Empirical Evaluation

Sometimes baselines do find a policy that can yield equivalent cost, but they provide no 
convergence guarantees whereas our approach hierarchically converges in a fraction of the 
time.



Conclusions

● We introduced an approach that uses abstraction to synthesize GPAs.
● GPAs can be used to prune large parts of the search space.
● Our results show that embedding GPAs results in significant time savings.

Future Work

● Utilize description logic based abstractions.
● Add memory to the GPAs.
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Thank you!


