Abstraction in Data-Sparse Task Transfer for Interactive Robots

Tesca Fitzgerald Assistant Professor Yale University www.tescafitzgerald.com Generalization in Planning IJCAI'22 July 23, 2022

Robots in routine and isolated environments

Rapidly-Reconfigurable Manufacturing

Accommodate changes in human feedback

Flexible to:

scheduling
interruptions

Detect novel-appearing objects

Customized:

- visuals
- branding
- trim

Adapt to:
specialty end-effector
broken tools

Adapt motion for novel end-effector or tool

Image by PTC

Rapidly-Reconfigurable Manufacturing

Assistive Robots in the Home

Changing lighting conditions -**Assistive Robots in the Home**

Changing lighting conditions **Novel-appearing** objects -

Assistive Robots in the Home

Changing lighting conditions

Novel-appearing objects

-00

Variations of tools

Assistive Robots in the Home

• **Problem** - Multiple Sources & Types of Novelty

• Approach - Relationship Between Novelty and Interaction

• Abstraction Represented in Interactions

• Abstracting Task Knowledge

• Future Work - Reasoning over Interaction

Source Env.

Source Env.

Potential Target Environments

Dissimilarity

...........

Source Env.

Potential Target Environments

Dissimilarity

Source Env.

Potential Target Environments

Dissimilarity

Source Env.

Potential Target Environments

Dissimilarity

One approach: More training data

Rather than attempt to pre-train a robot for all task variations it will encounter...

Assume that a robot will inevitably encounter novelty that it is unprepared to address

One approach: More training data

Rather than attempt to pre-train a robot for all task variations it will encounter...

Assume that a robot will inevitably encounter novelty that it is unprepared to address

Instead: adapt to specific novelty

Rather than attempt to pre-train a robot for all task variations it will encounter...

Assume that a robot will inevitably encounter novelty that it is unprepared to address

Approach: Learn from a human teacher or teammate's domain knowledge of the task

Instead: adapt to specific novelty

• **Problem** - Multiple Sources & Types of Novelty

• Approach - Relationship Between Novelty and Interaction

• Abstraction Represented in Interactions

• Abstracting Task Knowledge

• Future Work - Reasoning over Interaction

Knowledge

[1] Fitzgerald, T., Short, E., Goel, A., Thomaz, A., "Human-Guided Trajectory Adaptation for Tool Transfer", AAMAS, 2019.

Knowledge

[1] Fitzgerald, T., Short, E., Goel, A., Thomaz, A., "Human-Guided Trajectory Adaptation for Tool Transfer", AAMAS, 2019.

Knowledge

Interaction

[1] Fitzgerald, T., Short, E., Goel, A., Thomaz, A., "Human-Guided Trajectory Adaptation for Tool Transfer", AAMAS, 2019.

Knowledge

Interaction

[2] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

[3] <u>Fitzgerald</u>, T., Thomaz, A., Goel, A., "Human-Robot Co-Creativity: Task Transfer on a Spectrum of Similarity" Eighth International Conference on Computational Creativity (ICCC). Atlanta, Georgia. June 2017.

[3] <u>Fitzgerald</u>, T., Thomaz, A., Goel, A., "Human-Robot Co-Creativity: Task Transfer on a Spectrum of Similarity" Eighth International Conference on Computational Creativity (ICCC). Atlanta, Georgia. June 2017.

[3] <u>Fitzgerald</u>, T., Thomaz, A., Goel, A., "Human-Robot Co-Creativity: Task Transfer on a Spectrum of Similarity" Eighth International Conference on Computational Creativity (ICCC). Atlanta, Georgia. June 2017.

[3] <u>Fitzgerald</u>, T., Thomaz, A., Goel, A., "Human-Robot Co-Creativity: Task Transfer on a Spectrum of Similarity" Eighth International Conference on Computational Creativity (ICCC). Atlanta, Georgia. June 2017.

[3] <u>Fitzgerald</u>, T., Thomaz, A., Goel, A., "Human-Robot Co-Creativity: Task Transfer on a Spectrum of Similarity" Eighth International Conference on Computational Creativity (ICCC). Atlanta, Georgia. June 2017.

• **Problem** - Multiple Sources & Types of Novelty

• Approach - Relationship Between Novelty and Interaction

• Abstraction Represented in Interactions

• Abstracting Task Knowledge

• Future Work - Reasoning over Interaction

Demo #1

Provides a trajectory *T* of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Demo #1

Provides a trajectory T of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle \qquad T_1 = \left\langle a_0^1(O), a_1^1(O), \dots \right\rangle$

Provides another trajectory *T*₁:

Demo #1

Provides a trajectory T of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle \qquad T_1 = \left\langle a_0^1(O), a_1^1(O), \dots \right\rangle \qquad T_2 = \left\langle a_0^2(O'), a_1^2(O'), \dots \right\rangle$

Provides another trajectory *T*₁:

Demo #3

Provides *T*¹ wrt new objects O':

Provides a trajectory *T* of actions:

$$T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$$

Assistance

Provides a trajectory *T* of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Provides a param object $o^* \in O$: $\forall a \in T, a' = a(o^*)$

Assistance

Correction

Provides a trajectory *T* of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Provides a param object $o^* \in O$: $\forall a \in T, a' = a(o^*)$ Provides a sample of a transform ϕ : $\forall a \in T, a' = \phi(a(O))$

Assistance

Correction

Structure dictates the abstraction of the information derived from feedback

How do we align this with the information the robot needs?

• **Problem** - Multiple Sources & Types of Novelty

• Approach - Relationship Between Novelty and Interaction

• Abstraction Represented in Interactions

• Abstracting Task Knowledge

• Future Work - Reasoning over Interaction

Spectrum of Generalization Problems

Source Env.

Potential Target Environments

Dissimilarity

Relationship between: task similarity

Spectrum of Generalization Problems

Source Env.

Potential Target Environments

Dissimilarity

Relationship between:

task similarity

optimal abstraction of the task representation for transfer

Spectrum of Generalization Problems

Source Env.

Potential Target Environments

Dissimilarity

Relationship between:

task similarity optimal abstraction of the task representation for transfer grounded information in new environment

Source Environment

Demonstration representation:

 $T = \langle a_0, \rangle$ $\ldots, a_m \rangle$ $a_{1},$

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Source Environment

Demonstration representation:

$$T = \left\langle \mathbf{a}_{\mathbf{0}}(p_0), \quad \mathbf{a}_{\mathbf{1}}(p_1), \quad \dots, \mathbf{a}_{\mathbf{m}}(p_m) \right\rangle$$

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Source Environment

Demonstration representation:

$$T = \left\langle \mathbf{a}_{\mathbf{0}}(\mathbf{p}_{\mathbf{0}}(f_0)), \quad | \mathbf{a}_{\mathbf{1}}(\mathbf{p}_{\mathbf{1}}(f_1)), \quad \dots, \mathbf{a}_{\mathbf{m}}(\mathbf{p}_{\mathbf{m}}(f_m)) \right\rangle$$

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Demonstration representation:

$$T = \left\langle \mathbf{a}_{\mathbf{0}}(\mathbf{p}_{\mathbf{0}}(\mathbf{f}_{\mathbf{0}}(E))), \mathbf{a}_{\mathbf{1}}(\mathbf{p}_{\mathbf{1}}(\mathbf{f}_{\mathbf{1}}(E))), \dots, \mathbf{a}_{\mathbf{m}}(\mathbf{p}_{\mathbf{m}}(\mathbf{f}_{\mathbf{m}}(E))) \right\rangle$$

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Source Environment

Demonstration representation:

$$T = \left\langle \mathbf{a}_{\mathbf{0}}(\mathbf{p}_{\mathbf{0}}(\mathbf{f}_{\mathbf{0}}(E))), \mathbf{a}_{\mathbf{1}}(\mathbf{p}_{\mathbf{1}}(\mathbf{f}_{\mathbf{1}}(E))), \dots, \mathbf{a}_{\mathbf{m}}(\mathbf{p}_{\mathbf{m}}(\mathbf{f}_{\mathbf{m}}(E))) \right\rangle$$

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Potential Target Environments

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Potential Target Environments

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Potential Target Environments

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Potential Target Environments

Dissimilarity

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Potential Target Environments

Dissimilarity

T = Tiered Task Abstraction Action Models Parameterization Fns. Feature Selectors Feature Values

Parameterized by grounding in new environment:

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Target Environments

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Target Environments

[1] Fitzgerald, T., Goel, A., Thomaz, A. "Abstraction in Data-Sparse Task Transfer" Artificial Intelligence Journal. 2021.

Target Environments

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	0%
Abstraction 2	100%	100%	0%
Abstraction 3 (Most-abstracted)	100%	90%	80%

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	10%
Abstraction 2	90%	100%	40%
Abstraction 3 (Most-abstracted)	100%	100%	70%

Target Environments

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	0%
Abstraction 2	100%	100%	0%
Abstraction 3 (Most-abstracted)	100%	90%	80%

Takeaways:

Similarity indicates level of abstraction

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	10%
Abstraction 2	90%	100%	40%
Abstraction 3 (Most-abstracted)	100%	100%	70%

Target Environments

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	0%
Abstraction 2	100%	100%	0%
Abstraction 3 (Most-abstracted)	100%	90%	80%

Takeaways:

Similarity indicates level of abstraction

Generality-efficiency tradeoff

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	10%
Abstraction 2	90%	100%	40%
Abstraction 3 (Most-abstracted)	100%	100%	70%

Target Environments

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	0%
Abstraction 2	100%	100%	0%
Abstraction 3 (Most-abstracted)	100%	90%	80%

	Displaced Objects	Replaced Objects	New Task Constraints
Abstraction 1 (Least-abstracted)	100%	0%	10%
Abstraction 2	90%	100%	40%
Abstraction 3 (Most-abstracted)	100%	100%	70%

Takeaways:

Similarity indicates level of abstraction

Generality-efficiency tradeoff

Approach 1:

- Choose an abstraction
- Match to an interaction type

Contributions

Taxonomy of transfer problems

Contributions

- Taxonomy of transfer problems
- Tiered Task Abstraction (TTA) for representing tasks at multiple levels of abstraction

Contributions

- Taxonomy of transfer problems
- Tiered Task Abstraction (TTA) for representing tasks
 at multiple levels of abstraction
- Case-study demonstrating TTA on a physical robot's pick-and-place task

• **Problem** - Multiple Sources & Types of Novelty

• Approach - Relationship Between Novelty and Interaction

• Abstraction Represented in Interactions

• Abstracting Task Knowledge

• Future Work - Reasoning over Interaction

Provides a trajectory *T* of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Provides a trajectory *T* of actions:

 $\overline{T_0} = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Assistance

Provides a param object $o^* \in O$: $\forall a \in T, a' = a(o^*)$

[1] Fitzgerald, et al., 2018 "Human-Guided Object Mapping for Task Transfer." ACM Transactions on Human-Robot Interaction (THRI)

[2] Fitzgerald, et al., 2016 "Situated Mapping for Transfer Learning" Conference on Advances in Cognitive Systems

Provides a trajectory *T* of actions:

 $T_0 = \left\langle a_0^0(O), a_1^0(O), \dots \right\rangle$

Assistance

Provides a param object $o^* \in O$: $\forall a \in T, a' = a(o^*)$

[1] Fitzgerald, et al., 2018 "Human-Guided Object Mapping for Task Transfer." ACM Transactions on Human-Robot Interaction (THRI)

[2] Fitzgerald, et al., 2016 "Situated Mapping for Transfer Learning" Conference on Advances in Cognitive Systems

Correction

Provides a sample of a transform ϕ :

 $\forall a \in T, a' = \phi(a(O))$

[3] Fitzgerald, et al., 2019 "Human-Guided Trajectory Adaptation for Tool Transfer" AAMAS

[4] Fitzgerald, Goel, Thomaz, 2021"Learning and Modeling Constraints for Creative Tool Replacement".Frontiers in Robotics and AI

Assistance

Correction

Crosswalks Click verify once there are none left. Image: Constraint of the second sec

Crowd-sourced Labels

[1] Cui, Y., Koppol, P., Admoni, H., Niekum, S., Simmons, R., Steinfeld, A., <u>Fitzgerald, T.</u> "Understanding the Relationship between Interactions and Outcomes in Human-in-the-Loop Machine Learning". IJCAI 2021.

For details, see our full paper:

Fitzgerald, Tesca, Ashok Goel, and Andrea Thomaz. "Abstraction in data-sparse task transfer." *Artificial Intelligence* (2021)

Questions?

Tesca Fitzgerald Assistant Professor Yale University tesca.fitzgerald@yale.edu www.tescafitzgerald.com

Supported by the NSF Graduate Research Fellowship under Grant No. DGE-1148903.