Automatic Cross-Domain
Task Plan Transfer
by Caching Abstract Skills

Khen Elimelech

In collaboration with Lydia E. Kavraki and Moshe Y. Vardi

Department of Computer Science, Rice University

& RICE UNIVERSITY

Motivation

* Intuitively similar
* Plans not exactly reusable!

Box stacking p/an Can stacking plan

“How can we automatically adapt and reuse knowledge from past successful plans
to efficiently solve new tasks (in new domains)?”

Just a few basic definitions...

* Planning domain: state space, action space, discrete deterministic transitions
* Plan: adiscrete sequence of actions (a4, ..., a,,)

» Task: specified objectives we care to satisfy with the plan execution
e Can assume every task in adomain

* Task planning problem: given a planning domain, an initial state, and a task,
find a plan whose execution satisfies the task objective

Plan transfer: formally

« Givenaplan (a4, ..., a,;) which solves a task planning problem P in domain D,

)

find aplan (a3, ..., a;;,) which solves a similar planning problem P’ in domain D

« Standard techniques:
» Find/learn an explicit mappings (“transfer functions”) between the action sequences:
(aq,...,a) » (ay, ..., am)
» Find/learn reusable “macro actions” or policies that are applicable to both problems
* Numerous drawbacks, e.g.

1. Only allows transfer between robots with the same capabilities (action set)
2. “Fragile” - if one action is inapplicable/unfeasible, the entire plan becomes invalid

3. Unclear how to automate: must learn transfer for every new problem, requires prior domain/task knowledge...

Transferring state road maps

et us instead examine the successful execution of the given task plan in our domain:

execution = (8,,a,,84, ...,a,,S;,,)

O

We suggest to transfer the sequence of states (“road map”) - not actlons'
Actions can be recovered in the destination domain, after the transfer

OGO

States are intuitively transferable, even if considering different action sets
Flexible - can adapt™ actions between states, easily recover from state fail, de/compose road maps, etc.
(*) In practice, decomposing a task into dynamically-defined sub-tasks

Road map transfer using abstraction keys

Public abstraction key: a pair of inverse parametric functions
* Projecty: state » abstract_state

N RBCOTlStT"LLCtp: abstract_state — state

Private abstraction key: a problem/state-specific parameter value p

Similar to “encryption keys”, requires both keys to reconstruct an abstracted state

For example, the “symbol stripping” abstraction key:
« Abstract state = a state described with a subset of symbols &

Road map transfer using abstraction keys

* Provide a systematic and automatable way to perform state transformation:
Project and reconstruct with an alternative private key

@ - @
* Intuitively: +P; +P2

 p specifies a “property value”
* Projection function “removes the reference to p from state” & ‘
» Reconstruction function “adds the reference to p to state” Pi P>

» Different public abstraction keys allow to perform different transformations
or modify different state properties

Plan transfer using “symbol stripping” key

* We can apply this technique to the entire road map...

Reie

Projection

@ G @ @ @ @

Reconstruction

Transferred
plan

Caching abstract skills

* The two stages of the transfer can and should be done separately!

1. Upon solution of a task planning problem: @—G—@—@—@—@

* Project the road map to an abstract one, and cache it

‘ E'P1 -p E'Pz i-p, E'P1 E'P1
D v v \ ¥ y v
« The abstract road map (and public key) represent an abstract skill @ G @ @ @ @

2. 0On demand, when facing a new task: @ G @ @ @ @
p‘ é +p; é +p; é +p> é +p> i +p; i +p;

« Reconstruct (“ground”) the abstract road map in the new domain

 Recover actions to follow the road map @‘G‘@‘@‘@‘@

9

Transfer through an abstract domain

Naive transfer Transfer with a central abstract domain
D D
Dl : > D3 Dl —> Dabst —> D3
b e E7
This way....] E o
« No domain-to-domain coupling Dew D

» Cantransfer skills to unseen domains
* We can maintain a unified and compact skill library
* Increased scalability

* For each skill abstract domain is dynamically determined by the choice of abstraction keys

10

Recap: novel contributions

* Presented fundamental theoretical framework [1]

« Skills represented as state road maps, not action plans (more flexible!)

 Skills transferred through and cached in an abstract domain

* Transfer can be done automatically using abstraction keys

» Essentially, automatically learning a generalizable skill from a single demonstration

 Practical aspects in follow-up paper [2]
* Finding private keys for transfer as a constraint satisfaction problem
« Towards Task and Motion Planning (TAMP)

[1] Elimelech et al., GenPlan Workshop and Workshop on the Algorithmic Foundations of Robotics (WAFR), 2022.

[2] Elimelech et al., International Symposium on Robotics Research (ISRR), 2022.
11

Thank you!

www.khen.io

