
Automatic Cross-Domain
Task Plan Transfer

by Caching Abstract Skills

Khen Elimelech

In collaboration with Lydia E. Kavraki and Moshe Y. Vardi

Department of Computer Science, Rice University

Motivation

• Intuitively similar

• Plans not exactly reusable!

“How can we automatically adapt and reuse knowledge from past successful plans
to efficiently solve new tasks (in new domains)?”

Box stacking plan Can stacking plan

2

Just a few basic definitions…

• Planning domain: state space, action space, discrete deterministic transitions

• Plan: a discrete sequence of actions 𝑎1, … , 𝑎𝑛

• Task: specified objectives we care to satisfy with the plan execution
• Can assume every task in a domain

• Task planning problem: given a planning domain, an initial state, and a task,
find a plan whose execution satisfies the task objective

3

Plan transfer: formally

• Given a plan 𝒂𝟏, … , 𝒂𝒏 which solves a task planning problem 𝑷 in domain 𝑫,

find a plan 𝒂𝟏
′ , … , 𝒂𝒎

′ which solves a similar planning problem 𝑷’ in domain 𝑫’

• Standard techniques:

• Find/learn an explicit mappings (“transfer functions”) between the action sequences:

𝑎1, … , 𝑎𝑛 ↦ 𝑎1
′ , … , 𝑎𝑚

′

• Find/learn reusable “macro actions” or policies that are applicable to both problems

• Numerous drawbacks, e.g.

1. Only allows transfer between robots with the same capabilities (action set)

2. “Fragile” – if one action is inapplicable/unfeasible, the entire plan becomes invalid

3. Unclear how to automate: must learn transfer for every new problem, requires prior domain/task knowledge...

4

Transferring state road maps

• Let us instead examine the successful execution of the given task plan in our domain:

execution ≐ 𝑺0, 𝑎1, 𝑺1, … , 𝑎𝑛, 𝑺𝑛

• We suggest to transfer the sequence of states (“road map”) – not actions!

• Actions can be recovered in the destination domain, after the transfer

• States are intuitively transferable, even if considering different action sets

• Flexible – can adapt* actions between states, easily recover from state fail, de/compose road maps, etc.

(*) In practice, decomposing a task into dynamically-defined sub-tasks

5

Road map transfer using abstraction keys

• Public abstraction key: a pair of inverse parametric functions
• 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑝: 𝑠𝑡𝑎𝑡𝑒 ↦ 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒

• 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑝: 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒 ↦ 𝑠𝑡𝑎𝑡𝑒

• Private abstraction key: a problem/state-specific parameter value 𝑝

• Similar to “encryption keys”, requires both keys to reconstruct an abstracted state

• For example, the “symbol stripping” abstraction key:

• Abstract state = a state described with a subset of symbols

6

Road map transfer using abstraction keys

• Provide a systematic and automatable way to perform state transformation:

Project and reconstruct with an alternative private key

• Intuitively:
• 𝑝 specifies a “property value”
• Projection function “removes the reference to 𝑝 from state”
• Reconstruction function “adds the reference to 𝑝 to state”

• Different public abstraction keys allow to perform different transformations
or modify different state properties

7

Plan transfer using “symbol stripping” key

• We can apply this technique to the entire road map…

8

Abstract Road Map

• The two stages of the transfer can and should be done separately!

1. Upon solution of a task planning problem:

• Project the road map to an abstract one, and cache it

• The abstract road map (and public key) represent an abstract skill

2. On demand, when facing a new task:

• Reconstruct (“ground”) the abstract road map in the new domain

• Recover actions to follow the road map

Caching abstract skills

9

This way….

• No domain-to-domain coupling

• Can transfer skills to unseen domains

• We can maintain a unified and compact skill library

• Increased scalability

* For each skill abstract domain is dynamically determined by the choice of abstraction keys

Transfer through an abstract domain

Naïve transfer Transfer with a central abstract domain

10

Recap: novel contributions

• Presented fundamental theoretical framework [1]

• Skills represented as state road maps, not action plans (more flexible!)

• Skills transferred through and cached in an abstract domain

• Transfer can be done automatically using abstraction keys

• Essentially, automatically learning a generalizable skill from a single demonstration

• Practical aspects in follow-up paper [2]
• Finding private keys for transfer as a constraint satisfaction problem
• Towards Task and Motion Planning (TAMP)

[1] Elimelech et al., GenPlan Workshop and Workshop on the Algorithmic Foundations of Robotics (WAFR), 2022.

[2] Elimelech et al., International Symposium on Robotics Research (ISRR), 2022.
11

Thank you!

www.khen.io

Be kind to yourself. Be kind to others. Be kind to Nature.

12

