
Discovering User-Interpretable Capabilities of Black-Box Planning Agents∗

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava
Autonomous Agents and Intelligent Robots Lab,

School of Computing and Augmented Intelligence, Arizona State University, USA
{verma.pulkit, smarpall, siddharths}@asu.edu

Abstract
Several approaches have been developed for an-
swering users’ specific questions about AI behavior
and for assessing their core functionality in terms of
primitive executable actions. However, the problem
of summarizing an AI agent’s broad capabilities for
a user is comparatively new. This paper presents
an algorithm for discovering from scratch the suite
of high-level “capabilities” that an AI system with
arbitrary internal planning algorithms/policies can
perform. It computes conditions describing the ap-
plicability and effects of these capabilities in user-
interpretable terms. Starting from a set of user-
interpretable state properties, an AI agent, and a
simulator that the agent can interact with, our al-
gorithm returns a set of high-level capabilities with
their parameterized descriptions. Empirical evalu-
ation on several game-based scenarios shows that
this approach efficiently learns descriptions of var-
ious types of AI agents in deterministic, fully ob-
servable settings. User studies show that such de-
scriptions are easier to understand and reason with
than the agent’s primitive actions.

1 Introduction
AI systems are rapidly developing to an extent where their
users may not understand what they can and cannot do safely.
In fact, the limits and capabilities of many AI systems are not
always immediately clear even to the experts, as they may use
black box policies, e.g., ATARI game-playing agents [Grey-
danus et al., 2018], text summarization tools [Paulus et al.,
2018], mobile manipulators [Popov et al., 2017], etc.

Ongoing research on the topic focuses on the significant
problem of how to answer users’ questions about the system’s
behavior while assuming that the user and AI share a com-
mon action vocabulary [Chakraborti et al., 2017; Dhurandhar
et al., 2018; Anjomshoae et al., 2019; Barredo Arrieta et al.,
2020]. Furthermore, most non-experts hesitate to ask ques-
tions about new AI tools [Mou and Xu, 2017] and often do
not know which questions to ask for assessing the safe limits
and capabilities of an AI system. This problem is aggravated

∗Accepted for publication at KR 2022

in situations where an AI system can carry out planning or
sequential decision making. Lack of understanding about the
limits of an imperfect system can result in unproductive us-
age or, in the worst-case, serious accidents [Randazzo, 2018].
This, in turn, limits the adoption and productivity of AI sys-
tems.

This work presents a new approach for discovering ca-
pabilities of a black-box AI system. The AI system may
use arbitrary internal models, representations, and processes
for computing solutions to user-assigned tasks. Prior work
on the topic addresses complementary problems of deriving
symbolic descriptions for pre-defined skills [Konidaris et al.,
2018] and of learning users’ conceptual vocabularies [Kim et
al., 2018; Sreedharan et al., 2022]. However, they do not ad-
dress the problem of discovering high-level user-interpretable
capabilities that an agent can perform using arbitrary, internal
behavior synthesis algorithms (see Sec.5 for a greater discus-
sion).

As a starting point, in this paper, we assume determinism
and full observability on part of the AI system. Since there are
no solution approaches for solving the problem even in this
foundational setting, our framework can serve as a foundation
for solutions to the more general setting in future.

Running example
Consider a game based on “The Legend of Zelda” (Fig.1) fea-
turing a protagonist player Link who must defeat the antago-
nist monster Ganon, and escape through the door using a key.
(Fig.1)(a) shows the game state as the agent sees it; its primi-
tive actions are keystrokes as shown in (b). These keystrokes
do not help convey the agent’s capabilities because (i) they are
too fine-grained, and (ii) they show the set of actions avail-
able to the AI system, although its true capabilities depend
on its AI planning and learning algorithms. Fig. 1(c) shows
common English terms that a user might understand (called
user’s vocabulary), and the types of capabilities that they may
want to know about. Fig. 1(d) shows a parameterized capabil-
ity discovered by our method. Intuitively, Fig. 1(d) captures
the “defeat Ganon” capability.

This paper shows how we can discover and describe an
agent’s capabilities in the form of Fig. 1(d). This capability
description can be readily transcribed as “If the player is at
cell1; the monster is at cell2; the monster is alive (not de-
feated); and the monster is next to the player; then the player

State in User's Vocabulary:
(at ganon 5-3)
(at key 9-4)
(alive ganon)

.

.
Desired:

Capabilities such as:
(Go next to Key),(Pick
Key),(Go next to Door),
(Go next to Ganon),(Open

Door),(Defeat Ganon)

State as available to the agent:
(pixel 1-1 #FD2310)
(pixel 1-1 #B24319)

.

.

Agent actions
(keystrokes):
W,A,S,D,E

(:capability c4
 :parameters (?player1 ?cell1
 ?monster1 ?cell2)
 :precondition
 (and (alive ?monster1)
 (at ?player1 ?cell1)
 (at ?monster1 ?cell2)
 (next_to ?monster1))
 :effect
 (and (clear ?cell2)
 (not(alive ?monster1))
 (not(at ?monster1 ?cell2))
 (not(next_to ?monster1))))

Link Key

Ganon Door

(a) (b) (c) (d)

Figure 1: From pixels to interpretable capabilities. (a) A Zelda-like game; (b) States available to the agent and its actions; (c) States
represented in user vocabulary, and possible set of desired capabilities; (d) A parameterized capability description learned by our method.

can act to reach a state where cell2 is empty; the monster is
not alive (defeated); the monster is not at cell2; and the player
is not next to the monster.” Our empirical evaluation shows
that our system effectively discovers such high-level capabili-
ties; our user study shows that the discovered capabilities help
users effectively estimate black-box agent capabilities.

The rest of this paper is organized as follows. The next
section presents a formal framework for capabilities as well
as notions of correctness for discovered agent capabilities.
Sec. 3 describes our main algorithms and their formal prop-
erties and Sec. 4 presents empirical results and results from
user studies. Sec. 5 discusses the relationship of the presented
methods with prior work. Finally, Sec. 6 presents our conclu-
sion and future directions.

2 Formal Framework
We model an AI system (“agent” henceforth) as a 3-tuple
⟨S,A, T ⟩, where S is the state space, A is the set of actions
that the agent can execute, T : S × A→ S is a deterministic
black-box transition function determining the effects of the
agent’s primitive actions on the environment. For brevity of
notation, we use a(s) to represent T (s, a), where a ∈ A, and
s ∈ S. Given a goal set G ⊆ S, a black-box deterministic
policy Π : S → A maps each state to the action that the agent
should execute in that state to reach a g ∈ G.

In this paper, we use “actions” to refer to the core func-
tionality of the agent, denoting the agent’s decision choices,
or primitive actions that the agent could execute (e.g.,
keystrokes in our running example). In contrast, we use the
term “capabilities” to refer to the high-level behaviors that the
agent can perform using its AI algorithms for behavior syn-
thesis, including planning and learning (e.g., defeating Ganon
or picking up the key). Thus, actions refer to the set of choices
that a tabular-rasa agent may possess, while capabilities are a
result of its agent function [Russell, 1997] and can change
as a result of algorithmic updates even as the agent uses the
same actions.

2.1 Abstraction
We now define the notion of abstraction used in this work.
Several approaches have explored the use of abstraction in
planning [Sacerdoti, 1974; Giunchiglia and Walsh, 1992;

Helmert et al., 2007; Bäckström and Jonsson, 2013; Srivas-
tava et al., 2016]. We refer to S̃ as the set of high-level or ab-
stract states, and S as the set of low-level or concrete states.
We define abstraction as in [Srivastava et al., 2016]:

Definition 1. Let S and S̃ be sets such that |S̃| ≤ |S|. An
abstraction from S to S̃ is defined by a surjective function
f : S → S̃. For any s̃ ∈ S̃, the concretization function
f−1(s̃) = {s ∈ S : f(s) = s̃} denotes the set of states
represented by the abstract state s̃.

Following this, we use ˜ whenever we refer to a state, a
predicate, or an action pertaining to the abstract state space.

2.2 Capability Descriptions
We express capability descriptions using a STRIPS-like rep-
resentation [Fikes and Nilsson, 1971; McDermott et al.,
1998]. This is because, when used with a user’s vocabulary,
such a representation can be readily transcribed into state-
ments such as “in situations where X holds, if the agent exe-
cutes actions a1, . . . , ak it would result in Y ”, where X and
Y are in the user’s vocabulary [Camacho and McIlraith, 2019;
Verma et al., 2021]. Such representations have been shown to
be intuitive for humans in understanding deliberative behav-
iors of other agents [Malle, 2004; Miller, 2019]. In our run-
ning example, such a description could indicate that if Link
is next to Ganon then Link can defeat it. We now formally
define a capability.

Definition 2. Given a set of objects Õ; and a finite set of pred-
icates P̃ = {p̃k11 , . . . , p̃knn } with arities ki; a grounded capa-
bility c̃∗ is defined as a tuple ⟨pre(c̃∗), eff(c̃∗)⟩ where precon-
dition pre(c̃∗) and effect eff(c̃∗) are conjunctions of literals
over P̃ and Õ.

We also refer to the tuple ⟨c̃∗, pre(c̃∗), eff(c̃∗)⟩ as the capa-
bility description for a capability c̃∗. Here each atom could
be absent, positive, or negative (henceforth referred to as the
mode) in the precondition and the effect of an action. How-
ever, we disallow atoms to be positive (or negative) in both
the preconditions and the effects of an action simultaneously
to avoid redundancy. Semantics of capabilities are close to
those of STRIPS actions, but they address vocabulary dispar-
ity: an agent can execute a capability c̃∗ in any concrete state

s where s̃ |= pre(c̃∗); as a result, the system reaches a con-
crete state s′ (a member of an abstract state s̃′). Atoms that
don’t appear in eff(c̃∗) retain their truth values from s̃ in s̃′
while others are set to their modes (positive, negative, or ab-
sent) in eff(c̃∗), i.e., ∀ℓ ∈ eff(c̃∗), s̃′ |= ℓ. For brevity, we
represent this as s̃′ = c̃∗(s̃).

We refer to the capabilities defined in Def. 2 as grounded
capabilities as they are instantiated with a specific set of ob-
jects in Õ. We use ∗ whenever we refer to a grounded capa-
bility. We define a lifted form of capabilities as parameterized
capabilities.

Definition 3. Given a set of objects Õ; a finite set of predi-
cates P̃ = {p̃k11 , . . . , p̃knn }with arities ki; a parameterized ca-
pability c̃ is defined a 3-tuple ⟨args(c̃), pre(c̃), eff(c̃)⟩ where
args(c̃) is the set of arguments that can be initialized with a
set of objects õ ⊆ Õ; and pre(c̃) and eff(c̃) are sets of literals
over P̃ and args(c̃).

A set of parameterized capabilities constitutes a parameter-
ized capability model. Formally, a parameterized capability
model is a tuple M̃ = ⟨P̃ , C̃⟩, where P̃ is a finite set of pred-
icates, and C̃ is a finite set of parameterized capabilities.

Our objective is to develop a capability discovery algo-
rithm that learns a parameterized capability model of a black-
box AI agent using as input (i) the agent, (ii) a compatible
simulator using which the agent can simulate its primitive ac-
tion sequences, and (iii) the user’s concept vocabulary, which
may be insufficient to express the simulator’s state represen-
tation. Such assumptions on the agent are common. In fact,
the use of third-party simulators for development and testing
is the bedrock of most of the research on taskable AI systems
today (including game-playing AI, autonomous cars, and fac-
tory robots). Providing simulator access for assessment is
reasonable as it would allow AI developers to retain freedom
and proprietary controls on internal software while support-
ing calls for assessment and regulation using approaches such
as ours.

Our user studies show the efficacy of this approach using
spoken English terms for concepts without an explicit pro-
cess for vocabulary synchronization. Several threads of ongo-
ing research address the problem of identifying user-specific
concept vocabularies (e.g., Kim et al. (2018), Sreedharan et
al. (2022)), and the field of intelligent tutoring systems de-
velops methods for helping users understand a fixed concept
vocabulary. These methods can be used to either elicit or im-
part a vocabulary for a given user and such systems can be
used to complement the methods developed in this paper.

However, since the problem of capability discovery is not
well understood even in settings where user-concept defini-
tions are readily available, we focus on capability discovery
with a given vocabulary with known definitions and formalize
our approach using them. Furthermore, our empirical evalua-
tion and user studies don’t place requirements on user concept
vocabularies and show the efficacy of this representation. We
formalize these concept definitions as follows:

Definition 4. Given a concrete state s ∈ S, a set of ob-
jects Õ and their tuples Õ≤d (of dimension at most d,
where d is a positive integer), a set of concepts/predicates

Algorithm 1: Capability Discovery Algorithm

Input : predicates P̃ , agent A
Output : M̃

1 E ← generate execution traces(A)
2 C̃∗ ← generate partial capability descriptions(E)

3 C̃ ′ ← parameterize partial capabilities(C̃∗)

4 M̃ ← generate parameterized capability model(C̃ ′)

5 Set L̃← {pre, eff}
6 for each ⟨L̃, C̃, P̃ ⟩ in M̃ do
7 Generate M̃+, M̃−, M̃∅ by setting P̃ in C̃ at L̃ to

+,−, ∅ in M̃
8 for each pair M̃x, M̃y in {M̃+, M̃−, M̃∅} do
9 q̃ ← generate query(M̃1, M̃2)

10 ϱ̃← generate waypoints(q̃)
11 ϱ← refine waypoints(ϱ̃, P̃)
12 for i in range[0, k − 1] do
13 θ ← ask agent(A, ⟨si, si+1⟩)
14 break if θ = ⊥
15 M̃ ← consistent description(i, s̃i, M̃x, M̃y)

16 return M̃

P̃ = p̃k11 , . . . , p̃
kn
n with their arities ki and an associated

Boolean evaluation function ψp̃i : S × P̃ × Õ≤max(ki) →
{T, F}, j ≤ max(ki) , we define s |=ψp̃i

p̃i(õ1, . . . , õj) iff
ψp̃i(s, p̃i, õ1, . . . , õj) = T . We define the abstraction s̃P̃ ,Õ of
a state s ∈ S as the set of all literals over P̃ and Õ that are true
in s. S̃P̃ ,Õ denotes the abstract state space {s̃P̃ ,Õ : s ∈ S}.

We omit subscripts P̃ and Õ unless needed for clarity. As
mentioned, we assume availability of an evaluation function
ψp̃ associated with each predicate p̃ ∈ P̃ . E.g., for a 3-
D Blocksworld simulator with objects a and b, and coordi-
nates x, y, and z, “on(a, b) is true exactly for states where
z(a) > z(b), x(a) = x(b), and y(a) = y(b).” As this ex-
ample illustrates, such vocabularies can be inaccurate. The
abstraction function f (Def. 4) can be modeled as a conjunc-
tion of these evaluation functions ψp̃. We now discuss how
we discover capabilities and learn their descriptions.

3 Active Capability Discovery

Our overall approach consists of two main phases:
(1) discovering candidate capabilities and their partial de-
scriptions from a set of execution traces of the agent’s behav-
ior (Sec. 3.1); and (2) completing the descriptions of the can-
didate capabilities discovered in step (1) by asking the agent
queries designed to assess under which conditions it can exe-
cute those capabilities and what their effects are (Sec. 3.2).
The capability discovery algorithm (Alg. 1) performs both
these steps using user interpretable predicates P̃ and the agent
A as inputs. We now explain these two phases in detail.

3.1 Discovering Candidate Partial Capabilities
Generating execution traces
As a first step, Alg. 1 collects a set of execution traces E
from the agent (line 1). An execution trace e is a sequence
of states of the form ⟨s0, s1, . . . , sn−1, sn⟩, such that ∀j ∈
[1, n] ∃ai ∈ A aj(sj−1) = sj . To obtain the traces e ∈ E,
a set of random tasks of the form ⟨sI , sG⟩, where sI , sG ∈ S,
are given to the agent A, and the agent is asked to reach sG
from sI . Intermediate states that the agent goes through form
the set of execution traces E.

Discovering candidate capabilities
To discover candidate capabilities, we abstract the low-
level execution traces E in terms of the user’s vocabu-
lary (line 2). This abstraction of a low-level execution
trace ⟨s0, s1, . . . , sn−1, sn⟩ gives a high-level execution trace
⟨s̃0, s̃1, . . . , s̃n−1, s̃n⟩. Since we do not assume that the user’s
vocabulary is precise enough to discern all the states avail-
able to the agent, more than one low-level state in an exe-
cution trace may be abstracted to a single high-level abstract
state in S̃. Hence for some j ∈ [0, n − 1], it is possible
that s̃j = s̃j+1. E.g., in Fig. 1(a), the state available to
the agent in the simulator expresses pixel-level details of the
game (Fig. 1(b)), whereas the user’s vocabulary can express
it only as an abstract state that represents multiple similar
low-level states (Fig. 1(c)). Formally, an abstract execution
trace is the longest subsequence of s̃1, . . . , s̃n such that no
two subsequent elements are identical. We remove the repe-
titions from the high-level execution trace to get the abstract
execution trace ẽ = ⟨s̃0, . . . , s̃m⟩, where m ≤ n.

We store each transition s̃i, s̃i+1 in ẽ as a new grounded
candidate capability c̃∗s̃i,s̃i+1

.

Generating partial capability descriptions
For each candidate capability c̃∗s̃i,s̃i+1

, the set of predicates
s̃i+1 \ s̃i is added to the effects of c̃∗s̃i,s̃i+1

in positive form
(add effects); whereas the set s̃i \ s̃i+1 is added to the same
candidate capability’s effects in negative form (delete ef-
fects). As an optimization, in a manner similar to Stern and
Juba (2017), we also store that the predicates true in s̃i can-
not be negative preconditions for this capability, whereas the
predicates false in s̃i cannot be positive preconditions.

Lifting the partial capability descriptions
After line 2 of Alg. 1, we get a set of candidate capa-
bilities with their partial descriptions that are in terms of
predicates P̃ instantiated with objects in Õ. For each such
grounded partial capability description, the predicates in the
preconditions and effects are sorted in some lexicographic
order. The choice of ordering is not important as long as
it stays consistent throughout Alg. 1. The objects used in
predicate arguments are assigned unique IDs correspond-
ing to this capability in the order of their appearance in
ordered predicates. These IDs are then used as variables
representing capability parameters. E.g., suppose we have
a grounded partial capability description with a precondi-
tion: (alive ganon), (at link cell6), (at ganon cell5),(next to
ganon). Traversing the predicates in this order, the ob-
jects used in these predicates are given IDs as follows:

{ganon: 1, link: 2, cell6: 3, cell5: 4}. Note that there is only
one assignment per object, hence ganon in (at ganon cell5)
was not given a separate ID. This procedure is extended to
effects while assigning new IDs for any unseen objects in the
partial capability description. Finally, the parameterized par-
tial capability description is constructed by replacing all oc-
currences of objects in the partial capability description with
variables corresponding to their unique IDs.

Combining candidate capabilities
Multiple candidate partial capabilities can be combined
if their precondition and effect conjunctions are unifi-
able. E.g., for any capability to match the capabil-
ity discussed above, it’s precondition should be in the
form: (alive ?1), (at ?2 ?3), (at ?1 ?4), (next to ?1). Its ef-
fects should also be unifiable in terms of these parameters.
The algorithm also keeps track of which grounded partial can-
didate capabilities map to each parameterized partial capabil-
ity description. These descriptions are partial as they are gen-
erated using limited execution traces and may not capture all
the preconditions or effects of a capability. E.g., suppose a
capability adds a literal on its execution. If that literal is al-
ready present in the state where the capability was executed,
it will not be captured in the effect of the capability’s partial
description. Hence, we next try to complete the partial capa-
bility descriptions. Note that all parameterized partial capa-
bility descriptions are collectively used as the parameterized
capability model M̃ (line 4).

3.2 Completing Partial Capability Descriptions
To complete the partial capability descriptions M̃ , Alg. 1
generates queries aimed to gain more information about the
conditions under which the capability can be executed and
the state properties that become true or false upon its execu-
tion. These queries give the agent a sequence of states, called
waypoints, to traverse. Based on the agent’s ability to traverse
them, we derive the precondition and effect of each capability.
Alg. 1 iterates through the combinations of predicates and ca-
pabilities generated earlier to determine how each predicate
will appear in each capability’s precondition and effect (line
6). For each combination, it generates a query as follows.

Active query generation
For each combination of predicate, capability, and pre-
condition (or effect), three possible capability descriptions
M+,M−,M∅ are possible, one each for the predicate appear-
ing in the precondition (or effect) of the capability in posi-
tive, negative, or absent mode, respectively (line 7). As noted
when generating partial capability descriptions in Sec. 3.1,
some of the models will not be considered if we know that
a form is not possible for a particular predicate. The al-
gorithm iteratively picks two such models Mx,My from
M+,M−,M∅ (line 8) and generates a query q̃ in the form
of a state s̃0 and a capability sequence π̃ such that the re-
sult of executing the sequence π̃ on s̃0 is different in Mx and
My (line 9). We use the agent interrogation algorithm (AIA),
from our prior work Verma et al. (2021) (henceforth referred
to as VMS21). For their process, AIA reduces query gen-
eration to a planning problem. The resulting query q̃ is of

the form ⟨s̃0, π̃⟩, asking the model (or an agent) about the
length of the plan π̃ that it can successfully execute when
starting from state s̃0. Here plan π̃ is a sequence of capabili-
ties ⟨c̃∗1, . . . , c̃∗n⟩ grounded with objects in Õ.

Generating waypoints from queries
The queries described above cannot be directly posed to an
agent, as the plan π̃ is in terms of high-level capabilities c̃∗i ∈
C̃∗, which the agent will not be able to comprehend. Addi-
tionally, these high-level capabilities cannot be converted di-
rectly to low-level actions, as each capability may correspond
to a different sequence of low-level actions depending on the
state in which it is executed. Hence, we pose the queries to
the agent in the form of high-level state transitions induced
by the capabilities in the query’s capability sequence.

To accomplish this, Alg. 1 converts the query q̃ to a se-
quence of waypoints ϱ̃ = ⟨s̃0, . . . , s̃n⟩. Starting from the
initial state s̃0, these are generated by applying the capability
c̃∗i , for i ∈ [1, n], in the state s̃i−1 according to the partial
capability description of c̃∗i . Note that the waypoints ϱ̃ cannot
be presented to the agent as the agent may not know the high-
level vocabulary. Hence these high-level waypoints must be
refined into the low-level waypoints ϱ = ⟨s0, . . . , sn⟩ (with
each si similar to state shown in Fig. 1(b)) that agent under-
stands.

Alg. 1 first converts the high-level waypoints ϱ̃ to a se-
quence of low-level waypoints ϱ = ⟨s0, . . . , sn⟩ using the
predicate definitions (line 11). Then each consecutive pair of
states ⟨si, si+1⟩ is given sequentially to the agent as a state
reachability query asking if it can reach from state si to si+1

using its internal black-box policy (line 13).

Updating partial models based on agent responses
Using its internal planning mechanism and the simulator, the
agent attempts to reach from state si to si+1. If it succeeds,
the response to the query is recorded as true; if it fails, the
response is recorded as false. The algorithm keeps track of
the waypoints that were successfully traversed. Based on the
waypoint pairs that the agent was able to traverse, we discard
the capability descriptions among Mx and My that are not
consistent with the agent’s response (line 15).

E.g., suppose the algorithm is trying to determine how the
predicate (alive ?monster1) should appear in the precondition
of capability c4 shown in Fig. 1(d). Now the two possible ca-
pability descriptionsM1 andM2 that Alg. 1 is considering in
line 6 are M+ and M−, corresponding to (alive ?monster1)
being in c4’s precondition in positive and negative form, re-
spectively. The algorithm will generate query with its corre-
sponding waypoints ϱ̃ = ⟨s̃0, s̃1⟩, where s̃0 will correspond
to the state shown in Fig 1(a), and s̃1 will be s̃0 without
Ganon. Now the agent uses its own internal mechanism to
try to reach s̃1 from s̃0 and succeeds. Since this is not possi-
ble according to M−, M− will be discarded.

We now define and prove the theoretical properties of the
capability discovery algorithm. To do this, we use two key
properties of VMS21 relevant to this work: (1) if there exists
a distinguishing query for two models then it will be gener-
ated (Thm. 1 in VMS21); and (2) the algorithm will not dis-
card any model that is consistent with the agent (Thm. 2 in

VMS21). Interested readers can refer to VMS21 for further
details.

3.3 Formal Analysis
Alg. 1 has two main desirable properties: (1) the partial ca-
pability model (that is maintained as M̃) is always maximally
consistent, i.e, adding any more literals into it would be un-
supported by the execution traces that we obtain; and (2) the
final parameterized capability is complete in the limit of infi-
nite execution traces given to Alg. 1. We first define these
concepts and then formalize the results under Thm. 1 and
Thm. 2.
Definition 5. Let e = ⟨s0, . . . , sn⟩ be an execution trace with
a corresponding abstract execution trace ẽ = ⟨s̃0, . . . , s̃m⟩,
where m ≤ n. A parameterized capability model M̃ =
⟨P̃ , C̃, Õ⟩ is consistent with E iff ∀i ∈ [0,m − 1] ∃c̃∗ ∈
C̃∗ s̃i+1 = c̃∗(s̃i), where C̃∗ is a set of grounded capabili-
ties that can be generated by instantiating the parameters of
capabilities c̃ ∈ C̃ with objects in Õ.

We extend this terminology to say that a capability model is
consistent with a set of execution traces E iff it is consistent
with every trace in E. This notion of consistency captures
completeness as a parameterized capability model M̃ that is
consistent with a set of execution traces E, is also complete
w.r.t. E. We next define a stronger notion of completeness
that our algorithm provides in the form of maximal consis-
tency. This helps to assess the succinctness of a capability
model with a set of execution traces E.
Definition 6. Let E be a set of execution traces, and Λ be the
set of possible agents that can generate all execution traces
in E. A parameterized capability model M̃ = ⟨P̃ , C̃, Õ⟩
is maximally consistent with a set of execution traces E iff
(i) M̃ is consistent with E, and (ii) adding any predicate as
positive or negative precondition or effect of a capability in
M̃ makes it inconsistent with at least one execution trace that
can be generated by at least one agent A# ∈ Λ.

An abstraction satisfies local connectivity iff ∀s̃ ∀si, sj ∈
f−1(s̃) there exists a sequence of primitive actions
⟨ai, . . . , an⟩ such that an(an−1 . . . (a1(si)) . . .) = sj . We
use this to show that the parameterized capability model
learned by Alg. 1 is maximally consistent. Detailed proofs
of all the theorems are available in the appendix.
Theorem 1. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable, and stationary environment
with a state space S using a set of primitive actions A. Given
an input vocabulary P̃ , and the set of execution tracesE gen-
erated by A, if local connectivity holds, then the capability
model M̃ maintained by Alg. 1 is consistent with the set of
execution traces E.
Theorem 2. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable, and stationary environment
with a state-space S using a set of primitive actions A. Given
an input vocabulary P̃ , and the set of execution tracesE gen-
erated by A, if local connectivity holds, then the capability
model M̃ returned by Alg. 1 is maximally consistent with the
set of execution traces E.

Next, we formalize the notion of downward refinability,
that the discovered capabilities are indeed within the agent’s
scope. In this work, refinability is similar to the notion of
forall-exists abstractions [Srivastava et al., 2016] for deter-
ministic systems. Recall the notion of abstraction functions
(Def. 4).
Definition 7. Let M̃ = ⟨P̃ , C̃, Õ⟩ be a capability model
with S̃, the induced state space over P̃ , Õ using an abstrac-
tion function f , for an agent A = ⟨S,A, T ⟩; and C̃∗ be a
set of grounded capabilities that can be generated by instan-
tiating the arguments of capabilities c̃ ∈ C̃ with objects in
Õ. A capability c̃∗ ∈ C̃∗ is realizable w.r.t. A iff ∀s̃ ∈ S̃,
if s̃ |= pre(c̃∗) then ∀s ∈ f−1(s̃) ∃a1, . . . , an ∈ A :
an(an−1 . . . (a1(s)) . . .) ∈ c̃∗(s̃). The model M is realizable
w.r.t. A iff all capabilities c̃∗ ∈ C̃∗ are realizable.

In these terms, discovered capabilities are more likely to be
useful if they are accurate in the sense that they are consistent
with execution traces and realizable, i.e., true representations
of what the agent can do. Realizability captures the soundness
of the model wrt the execution of the capabilities. We now
show that the parameterized capability model that we learn is
realizable.
Theorem 3. Let P̃ be a set of predicates P̃ ,A = ⟨S,A, T ⟩ be
an agent with a deterministic transition system T . If a high-
level model is expressible deterministically using the predi-
cates P̃ , and local connectivity is ensured, then the parame-
terized capability model M̃ learned by Alg. 1 is realizable.

Note that here expressibility of a high-level model refers to
the class of models of the form defined in Def. 3. Together,
the notions of maximal consistency and realizability estab-
lish the completeness and soundness of our approach wrt a
set of execution traces E. Note that this approach will also
work when we have access to a stream of execution traces E
being collected at random, independent of our active query-
ing mechanism. We next show that in the limit of infinite
randomly generated execution traces, our approach will cap-
ture all possible agent capabilities with probability 1. Here,
capturing all possible agent capabilities in a learned model
M̃ = ⟨P̃ , C̃, Õ⟩ means that if the agent can go from s̃i to s̃j ,
then one of the capabilities in C̃ will be instantiable to result
in s̃j when executed from s̃i.

Theorem 4. Let P̃ be a set of predicates, A = ⟨S,A, T ⟩ be
an agent with a deterministic transition system T . Suppose
random samples of agent behavior in the form of execution
tracesE are coming from a distribution that assigns non-zero
probability to at least one transition corresponding to each
ground capability (c̃∗s̃i,s̃j , s̃i, s̃j ⊆ P̃). If a high-level model
is expressible deterministically using the predicates P̃ and
local connectivity holds, then in the limit of infinite execution
tracesE, the probability of discovering all capabilities c̃ ∈ C̃
expressible using the predicates P̃ is 1.

4 Empirical Evaluation
We implemented Alg. 1 in Python to empirically verify its ef-
fectiveness. To show that our approach can work with differ-

(a) (b)

(c) (d)

Figure 2: GVGAI’s domains; (a) Zelda, (b) Cook-Me-Pasta, (c) Es-
cape, and (d) Snowman.

ent internal agent implementations, we evaluated Alg. 1 with
two broad categories of input test agents: Policy agents can
use (possibly learned) black-box policies to plan and to re-
spond to state reachability queries. We used policy agents
with hand-coded policies for this evaluation. Search agents
respond to the state reachability queries using arbitrary search
algorithms. We used search agents that use A∗ search [Hart
et al., 1968]. We now describe the setup of our experiments
used for evaluation.

4.1 Experimental Setup
Our test agents use the General Video Game Artificial Intel-
ligence framework [Perez-Liebana et al., 2016]. Domains in
GVGAI are two-dimensional ATARI-like games defined us-
ing the Video Game Description Language PyVGDL [Schaul,
2013]. We performed experiments on four such game
domains – Zelda, Cook-Me-Pasta, Escape, and Snowman
(Fig. 2). All these domains require the agent to navigate
in a grid-based environment and complete a set of tasks (in
some partial order) to complete the game. More details about
these domains and the input user vocabularies are available
in the appendix. Since the complete list of an agent’s capa-
bilities may be irrelevant to a user’s current needs, w.l.o.g,
our implementation supports an input including sets of for-
mulas representing the properties that may be of interest to
the user. This set can be the set of all grounded predicates in
the user’s concept vocabulary. We also consider object types
to be a subset of the unary predicates in the vocabulary and
assume that each object has exactly one type. These types are
used and discovered in capability like any other predicate. In
addition, they are used in creating parameterized capability
parameters as shown in Fig. 1(d).

For each domain, and for each grid size in that domain, we
create a random game instance with the goal of achieving one
of the user’s specified properties of interest. To generate these
instances, the number of obstacles in all domains, except Es-

Search Agent Policy Agent
Search Agent Policy Agent

Snowman

Escape

Cook-Me-Pasta

Zelda

N
um

be
r

of
 Q

ue
ri
es

Ti
m

e
pe

r
Q

ue
ry

 (
m

s)

Grid Size

#Queries:
Time:

Figure 3: Performance comparison of search-based agents and
policy-based agents in terms of the number of queries asked and
time taken per query when increasing the grid size (number of cells
in the grid) in the four GVGAI domains.

cape, is set to 20% of the total cells in the grid, whereas all
other objects are generated randomly. We use the solution to
that instance to generate the execution trace that is used in
lines 1-2 of Alg. 1. These solutions are not always optimal.
All experiments are run on 5.0 GHz Intel i9 CPUs with 64
GB RAM running Ubuntu 18.04.

As shown in Sec.3.3, Alg. 1 is guaranteed to compute ca-
pability descriptions that are correct in the sense that they are
consistent with the execution traces, and refinable and exe-
cutable with respect to the true capabilities of the agent. We
now present the main conclusions of our empirical analysis.

We evaluated our algorithm’s performance along two as-
pects; (i) how the performance of our approach changes with
respect to the size of the problem; and (ii) how its perfor-
mance differs for search-based vs policy-based agents.

4.2 Empirical Results

Scalability analysis
We increase the size of each domain to analyze its effect on
the performance of the search and policy agents. Fig.3 shows
the graphs for the experimental runs on the four domains.
In all four domains, for both kinds of agents, the number of
queries increases as we increase the grid size. The increas-
ing number of queries is an expected behavior and this is also
clear in approaches that use passive observations of agent be-
havior [Yang et al., 2007; Aineto et al., 2019].

Agent type analysis
The number of queries required by the policy agent is higher
than that of the search agent in almost all cases. This is be-
cause a large number of state reachability queries fail on the
policy agent as the sequence of waypoints in these queries
does not always align with the policy of the agent. However,
the time per query is lesser for the policy agents as they can
answer the state reachability queries by following their pol-
icy, whereas the search agents perform an exhaustive search
of the state space for every such query.

Figure 4: Data from behavior analysis shows that using computed
capability descriptions took lesser time and yielded more accurate
results. See Sec.4.3 for details.

4.3 User Study
We conducted a user study to evaluate the utility of the ca-
pability descriptions discovered and computed by Alg. 1. In-
tuitively, our notion of interpretability matches that of com-
mon English and its use in AI literature, e.g., as enunciated
by Doshi-Velez and Kim (2018): “the ability to explain or to
present in understandable terms to a human.” We evaluate
this through the following operational hypothesis:
H1. The discovered capabilities make it easier for users to
analyze and predict the outcome of the agent’s possible be-
haviors.

We designed the following study to evaluate H1.

Behavior analysis study
This study compares the predictability and analyzability of
agent behavior in terms of the agent’s low-level actions and
high-level capabilities. Each user is explained the rules of
a Zelda-like game. One group of users – called the primi-
tive action group – are presented with text descriptions of the
agent’s primitive actions, while the users in the other group
– called the capability group – are presented with a text de-
scription of the six learned capabilities. The capability group
users are asked to choose a short summarization for each ca-
pability description, out of the eight possible summarizations
that we provide, whereas the primitive action group users are
asked to choose a short summarization for each primitive ac-
tion description, out of the five possible summarizations that
we provide. Then each user is given the same 5 questions in
order. Each question contains two game-state images; start
and end state. The user is asked what sequence of actions
or capabilities that the agent should execute to reach the end
state from the start state. Each question has 5 possible op-
tions for the user to choose from, and these options differ
depending on their group. We then collect the data about the
accuracy of the answers, and the time taken to answer each
question.

Study design
108 participants were recruited from Amazon Mechanical
Turk and randomly divided into two groups of 54 each. Each
user was provided with a survey on Qualtrics [Qualtrics,
2005] that explained the rules of GVGAI’s Zelda game. We
used screeners [Kennedy et al., 2020; Arndt et al., 2021]
to ensure quality of the data collected, and discarded 23 re-
sponses. The results are based on the responses of 41 and 43

users in primitive action and capability group, respectively.

Results
The results for the behavior analysis study are shown
in (Fig. 4) To evaluate the statistical significance
(p-value) of the difference in the mean of the time taken by
the two groups, we used Student’s t-test [Student, 1908].
The results indicate that the test results were statistically
significant with p-values less than 0.05 for all five questions.
Also, the users took less time to answer questions and they
got more responses correct when using the capabilities
as compared to using primitive actions. This validates
H1 that the discovered capabilities made it easier for the
users to analyze and predict the agent’s behavior correctly.
Detailed information about the user study is available in the
appendix.

5 Related Work
High-level skills from input options
Given a set of options encoding skills as input, Konidaris et
al. (2018) and James et al. (2020) propose methods for learn-
ing high-level propositional models of options representing
various “skills.” They assume access to predefined options
and learn the high-level symbols that describe those options
at the high-level. While they use options or skills as inputs
to learn models defining when those skills will be useful in
terms of auto-generated symbols (for which explanatory se-
mantics could be derived in a post-hoc fashion), our approach
uses user-provided interpretable concepts as apriori inputs to
learn agent capabilities: high-level actions as well as their in-
terpretable descriptions in terms of the input vocabulary.

Learning symbolic models using physics simulators
Multiple approaches learn different kinds of symbolic models
of the functionality of ATARI or physics based simulators us-
ing methods like conjunctions of binary input features [Kan-
sky et al., 2017], graph neural networks [Battaglia et al.,
2016; Cranmer et al., 2020], CNNs [Agrawal et al., 2016;
Fragkiadaki et al., 2016], etc. Some methods create inter-
pretable descriptions of reinforcement learning policies us-
ing trees [Liu et al., 2018] or specialized programming lan-
guages [Verma et al., 2018]. These approaches solve the or-
thogonal problem of learning the functionality of an agent
that could help a user understand how an agent would solve
a problem, whereas we focus on learning capabilities of the
agent that could help a user understand and answer what type
of problems it could solve.

Action model learning
The planning community has also worked on learning
STRIPS-like action models of agent functionality from ob-
servations of its behavior [Gil, 1994; Yang et al., 2007;
Cresswell et al., 2009; Zhuo and Kambhampati, 2013; Stern
and Juba, 2017; Aineto et al., 2019; Bonet and Geffner,
2020]. Jiménez et al. (2012) and Arora et al. (2018) present
a comprehensive review of such approaches. These meth-
ods work with broad assumptions that the agent model is in-
ternally expressed in the same vocabulary as the user’s [Gil,
1994; Weber et al., 2011; Juba et al., 2021], or at a similar

level of abstraction [Mehta et al., 2011; Verma et al., 2021;
Nayyar et al., 2022]. Additionally, such methods have as in-
put a given set of predicates in terms of which they learn the
functionality descriptions of the agent.

High-level actions
Works like Madumal et al. (2020) explain an agent’s policy
in terms of high-level actions but they assume that high-level
actions are a part of the input whereas our approach discovers
these actions. There is an orthogonal thread of research on
using high-level actions in AI planning as tasks, and learning
low-level policies for each of those tasks [Yang et al., 2018;
Illanes et al., 2020; Kokel et al., 2021]. These works assume
the high-level actions as input and learn the corresponding
low-level policies.

As compared to the above two classes of methods, our
work focuses on solving the harder problem of discover-
ing the capabilities of the agent behavior resulting from its
planning/learning algorithms and learning the descriptions of
these capabilities.

6 Conclusion
We presented a novel approach for learning the capability
description of an AI system in terms of user-interpretable
concepts by combining information from passive execution
traces and active query answering. Our approach works for
settings where the user’s conceptual vocabulary is imprecise
and cannot directly express the agent’s capabilities. Our em-
pirical analysis showed that for the agents that internally use
black-box deterministic policies, or search techniques, we
can successfully discover the capabilities and their descrip-
tions. Extending this approach for partially observable set-
tings and relaxing the various assumptions we made are some
of the promising future directions for this work.

Acknowledgements
We thank Nancy Cooke, Akkamahadevi Hanni, and Sydney
Wallace for their help with the user study. We also thank
anonymous reviewers for their helpful feedback on the paper.
This work was supported in part by the NSF under grants
IIS 1942856, IIS 1909370, and the ONR grant N00014-21-1-
2045.

References
[Agrawal et al., 2016] Pulkit Agrawal, Ashvin V Nair, Pieter

Abbeel, Jitendra Malik, and Sergey Levine. Learning
to Poke by Poking: Experiential Learning of Intuitive
Physics. In Proc. NIPS, 2016.

[Aineto et al., 2019] Diego Aineto, Sergio Jiménez Celorrio,
and Eva Onaindia. Learning Action Models With Minimal
Observability. Artificial Intelligence, 275:104–137, 2019.

[Anjomshoae et al., 2019] Sule Anjomshoae, Amro Najjar,
Davide Calvaresi, and Kary Främling. Explainable Agents
and Robots: Results from a Systematic Literature Review.
In Proc. AAMAS, 2019.

[Arndt et al., 2021] Aaron D Arndt, John B Ford, Barry J
Babin, and Vinh Luong. Collecting Samples from Online
Services: How to Use Screeners to Improve Data Quality.
International Journal of Research in Marketing, 2021.

[Arora et al., 2018] Ankuj Arora, Humbert Fiorino, Damien
Pellier, Marc Métivier, and Sylvie Pesty. A Review of
Learning Planning Action Models. The Knowledge En-
gineering Review, 33:E20, 2018.

[Bäckström and Jonsson, 2013] Christer Bäckström and Pe-
ter Jonsson. Bridging the Gap Between Refinement and
Heuristics in Abstraction. In Proc. IJCAI, 2013.

[Barredo Arrieta et al., 2020] Alejandro Barredo Arrieta,
Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot,
Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja
Chatila, and Francisco Herrera. Explainable Artificial
Intelligence (XAI): Concepts, Taxonomies, Opportunities
and Challenges toward Responsible AI. Information
Fusion, 58:82–115, 2020.

[Battaglia et al., 2016] Peter Battaglia, Razvan Pascanu,
Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction Networks for Learning about
Objects, Relations and Physics. In Proc. NIPS, 2016.

[Bonet and Geffner, 2020] Blai Bonet and Hector Geffner.
Learning First-Order Symbolic Representations for Plan-
ning from the Structure of the State Space. In Proc. ECAI,
2020.

[Camacho and McIlraith, 2019] Alberto Camacho and
Sheila A McIlraith. Learning interpretable models
expressed in linear temporal logic. In Proc. ICAPS, 2019.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
Explanations as Model Reconciliation: Moving Beyond
Explanation as Soliloquy. In Proc. IJCAI, 2017.

[Cranmer et al., 2020] Miles Cranmer, Alvaro Sanchez Gon-
zalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David
Spergel, and Shirley Ho. Discovering Symbolic Mod-
els from Deep Learning with Inductive Biases. In Proc.
NeurIPS, 2020.

[Cresswell et al., 2009] Stephen Cresswell, Thomas Mc-
Cluskey, and Margaret West. Acquisition of Object-
Centred Domain Models from Planning Examples. In
Proc. ICAPS, 2009.

[Dhurandhar et al., 2018] Amit Dhurandhar, Pin-Yu Chen,
Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, and Payel Das. Explanations based on the
Missing: Towards Contrastive Explanations with Pertinent
Negatives. In Proc. NeurIPS, 2018.

[Doshi-Velez and Kim, 2018] Finale Doshi-Velez and Been
Kim. Considerations for Evaluation and Generalization
in Interpretable Machine Learning, pages 3–17. Springer
International Publishing, 2018.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. STRIPS: A New Approach to the Application of The-

orem Proving to Problem Solving. Artificial Intelligence,
2(3-4):189–208, 1971.

[Fragkiadaki et al., 2016] Katerina Fragkiadaki, Pulkit
Agrawal, Sergey Levine, and Jitendra Malik. Learning
Visual Predictive Models of Physics for Playing Billiards.
In Proc. ICLR, 2016.

[Gil, 1994] Yolanda Gil. Learning by Experimentation: In-
cremental Refinement of Incomplete Planning Domains.
In Proc. ICML, 1994.

[Giunchiglia and Walsh, 1992] Fausto Giunchiglia and Toby
Walsh. A Theory of Abstraction. Artificial Intelligence,
57(2-3):323–389, 1992.

[Greydanus et al., 2018] Samuel Greydanus, Anurag Koul,
Jonathan Dodge, and Alan Fern. Visualizing and Under-
standing Atari Agents. In Proc. ICML, 2018.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, et al. Flexible Abstraction Heuristics for Opti-
mal Sequential Planning. In Proc. ICAPS, 2007.

[Illanes et al., 2020] León Illanes, Xi Yan, Rodrigo Toro
Icarte, and Sheila A McIlraith. Symbolic Plans as High-
Level Instructions for Reinforcement Learning. In Proc.
ICAPS, 2020.

[James et al., 2020] Steven James, Benjamin Rosman, and
George Konidaris. Learning Portable Representations for
High-Level Planning. In Proc. ICML, 2020.

[Jiménez et al., 2012] Sergio Jiménez, Tomás De La Rosa,
Susana Fernández, Fernando Fernández, and Daniel
Borrajo. A Review of Machine Learning for Auto-
mated Planning. The Knowledge Engineering Review,
27(4):433–467, 2012.

[Juba et al., 2021] Brendan Juba, Hai S. Le, and Roni Stern.
Safe Learning of Lifted Action Models. In Proc. KR, 2021.

[Kansky et al., 2017] Ken Kansky, Tom Silver, David A.
Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,
Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott
Phoenix, and Dileep George. Schema Networks: Zero-
shot Transfer with a Generative Causal Model of Intuitive
Physics. In Proc. ICML, 2017.

[Kennedy et al., 2020] Ryan Kennedy, Scott Clifford, Tyler
Burleigh, Philip D. Waggoner, Ryan Jewell, and Nicholas
J. G. Winter. The Shape of and Solutions to the MTurk
Quality Crisis. Political Science Research and Methods,
8(4):614–629, 2020.

[Kim et al., 2018] Been Kim, Martin Wattenberg, Justin
Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and
Rory Sayres. Interpretability Beyond Feature Attribu-
tion: Quantitative Testing with Concept Activation Vectors
(TCAV). In Proc. ICML, 2018.

[Kokel et al., 2021] Harsha Kokel, Arjun Manoharan, Sri-
raam Natarajan, Balaraman Ravindran, and Prasad Tade-
palli. RePReL: Integrating Relational Planning and Re-
inforcement Learning for Effective Abstraction. In Proc.
ICAPS, 2021.

[Konidaris et al., 2018] George Konidaris, Leslie Pack Kael-
bling, and Tomas Lozano-Perez. From Skills to Sym-
bols: Learning Symbolic Representations for Abstract
High-Level Planning. Journal of Artificial Intelligence Re-
search, 61(1):215–289, January 2018.

[Liu et al., 2018] Guiliang Liu, Oliver Schulte, Wang Zhu,
and Qingcan Li. Toward Interpretable Deep Reinforce-
ment Learning with Linear Model U-Trees. In Proc.
ECML PKDD, 2018.

[Madumal et al., 2020] Prashan Madumal, Tim Miller, Liz
Sonenberg, and Frank Vetere. Explainable Reinforcement
Learning Through a Causal Lens. In Proc. AAAI, 2020.

[Malle, 2004] Bertram F Malle. How the Mind Explains Be-
havior: Folk Explanations, Meaning, and Social Interac-
tion. The MIT Press, 2004.

[McDermott et al., 1998] Drew McDermott, Malik Ghallab,
Adele Howe, Craig Knoblock, A. Ram, Manuela Veloso,
Daniel S. Weld, and David Wilkins. PDDL – The Planning
Domain Definition Language. Technical Report CVC TR-
98-003/DCS TR-1165, Yale Center for Comp. Vision and
Control, 1998.

[Mehta et al., 2011] Neville Mehta, Prasad Tadepalli, and
Alan Fern. Autonomous Learning of Action Models for
Planning. In Proc. NIPS, 2011.

[Miller, 2019] Tim Miller. Explanation in Artificial Intelli-
gence: Insights from the Social Sciences. Artificial Intel-
ligence, 267:1–38, 2019.

[Mou and Xu, 2017] Yi Mou and Kun Xu. The Media
Inequality: Comparing the Initial Human-Human and
Human-AI Social Interactions. Computers in Human Be-
havior, 72:432–440, 2017.

[Nayyar et al., 2022] Rashmeet Kaur Nayyar, Pulkit Verma,
and Siddharth Srivastava. Differential Assessment of
Black-Box AI Agents. In Proc. AAAI, 2022.

[Paulus et al., 2018] Romain Paulus, Caiming Xiong, and
Richard Socher. A Deep Reinforced Model for Abstrac-
tive Summarization. In Proc. ICML, 2018.

[Perez-Liebana et al., 2016] Diego Perez-Liebana, Spyridon
Samothrakis, Julian Togelius, Tom Schaul, and Simon Lu-
cas. General Video Game AI: Competition, Challenges
and Opportunities. In Proc. AAAI, 2016.

[Popov et al., 2017] Ivaylo Popov, Nicolas Heess, Timothy
Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and
Martin Riedmiller. Data-efficient Deep Reinforcement
Learning for Dexterous Manipulation. arXiv preprint
arXiv:1704.03073, 2017.

[Qualtrics, 2005] Qualtrics. Qualtrics XM. https://www.
qualtrics.com/, 2005. Accessed: 2022-05-10.

[Randazzo, 2018] Ryan Randazzo. What went wrong with
Uber’s Volvo in fatal crash? Experts shocked by technol-
ogy failure. The AZ Republic, March 2018.

[Russell, 1997] Stuart J Russell. Rationality and Intelli-
gence. Artificial Intelligence, 94(1-2):57–77, 1997.

[Sacerdoti, 1974] Earl D Sacerdoti. Planning in a Hierarchy
of Abstraction Spaces. Artificial Intelligence, 5(2):115–
135, 1974.

[Schaul, 2013] Tom Schaul. A Video Game Description
Language for Model-based or Interactive Learning. In
2013 IEEE Conference on Computational Intelligence in
Games (CIG), 2013.

[Sreedharan et al., 2022] Sarath Sreedharan, Utkarsh Soni,
Mudit Verma, Siddharth Srivastava, and Subbarao Kamb-
hampati. Bridging the Gap: Providing Post-Hoc Symbolic
Explanations for Sequential Decision-Making Problems
with Inscrutable Representations. In Proc. ICLR, 2022.

[Srivastava et al., 2016] Siddharth Srivastava, Stuart Russell,
and Alessandro Pinto. Metaphysics of Planning Domain
Descriptions. In Proc. AAAI, 2016.

[Stern and Juba, 2017] Roni Stern and Brendan Juba. Effi-
cient, Safe, and Probably Approximately Complete Learn-
ing of Action Models. In Proc. IJCAI, 2017.

[Student, 1908] Student. The Probable Error of a Mean.
Biometrika, 6(1):1–25, 3 1908.

[Verma et al., 2018] Abhinav Verma, Vijayaraghavan Mu-
rali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaud-
huri. Programmatically Interpretable Reinforcement
Learning. In Proc. ICML, 2018.

[Verma et al., 2021] Pulkit Verma, Shashank Rao Marpally,
and Siddharth Srivastava. Asking the Right Questions:
Learning Interpretable Action Models Through Query An-
swering. In Proc. AAAI, 2021.

[Weber et al., 2011] Christopher Weber, Daniel Morwood,
and Daniel Bryce. Goal-Directed Knowledge Acquisition.
In ICML 2011 Workshop on Planning and Acting with Un-
certain Models, 2011.

[Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei
Jiang. Learning Action Models from Plan Examples Us-
ing Weighted MAX-SAT. Artificial Intelligence, 171(2-
3):107–143, 2007.

[Yang et al., 2018] Fangkai Yang, Daoming Lyu, Bo Liu,
and Steven Gustafson. Peorl: Integrating Symbolic Plan-
ning and Hierarchical Reinforcement Learning for Robust
Decision-Making. In Proc. IJCAI, 2018.

[Zhuo and Kambhampati, 2013] Hankz Hankui Zhuo and
Subbarao Kambhampati. Action-Model Acquisition from
Noisy Plan Traces. In Proc. IJCAI, 2013.

https://www.qualtrics.com/
https://www.qualtrics.com/

A Proof of Theoretical Results
Theorem 1. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable, and stationary environment
with a state space S using a set of primitive actions A. Given
an input vocabulary P̃ , and the set of execution tracesE gen-
erated by A, if local connectivity holds, then the capability
model M̃ maintained by Alg. 1 is consistent with the set of
execution traces E.

Proof. We show that given the set of all execution traces E,
the parameterized capability model M̃ maintained by Alg. 1
is consistent with E, i.e., for every high-level transition s̃, s̃′
corresponding to a transition in E, there exists a capability c̃
which has a grounding c̃∗ such that c̃∗(s) = s̃′. We prove
this by contradiction. The partial capability model M̃ is ini-
tially generated using observed transitions s̃, s̃′ correspond-
ing to the transitions in E as grounded capabilities c̃∗s̃,s̃′ (lines
2 to 4 in Alg. 1). So the model M̃ is consistent with the set
of traces to start with. At each step, Alg. 1 adds a new literal
l to a capability c̃ in M̃ such that adding l keeps M̃ consis-
tent with the agent A (Thm. 2 from VMS21). Now consider
that adding l to M̃ makes it inconsistent with an execution
trace in E, i.e., there must exist a transition s̃1, s̃2 such that
no capability c̃∗ ∈ C̃∗ corresponds to it.

Consider the version of c̃1 corresponding to c∗s̃1,s̃2 that was
modified by Alg. 1. We show that modifications inconsistent
with this transition are not possible under the assumption that
the agent’s capabilities can be expressed using the input vo-
cabulary.
Case 1: Suppose Alg. 1 added a literal l in the precondition of
c̃1 that was not true in s̃1. Thm. 2 in VMS21 implies that ab-
sent and negated forms of l were inconsistent with executions
of c̃1 using the same agent that generated E. In other words,
the agent sometimes requires l as a precondition to execute
c̃1, even though l was not a part of s̃1. This contradicts the
assumption that c̃1 is expressible using the input vocabulary
in the form of Def. 3.
Case 2: Suppose Alg. 1 added a literal l in the effect of c̃1 that
was not present in s̃2. This implies that the negation and ab-
sence of l in the result of c̃1 were inconsistent with the agent’s
execution of c̃1 in query-responses generated by Alg. 1. A
similar contradiction about the assumption of expressiveness
follows.

Hence, the capability model M̃ maintained by Alg. 1 is
consistent with the set of execution traces E.

Theorem 2. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable, and stationary environment
with a state-space S using a set of primitive actions A. Given
an input vocabulary P̃ , and the set of execution tracesE gen-
erated by A, if local connectivity holds, then the capability
model M̃ returned by Alg. 1 is maximally consistent with the
set of execution traces E.

Proof. We will prove the two conditions for maximal con-
sistency separately. The first condition is that the model M̃
returned by Alg. 1 is consistent with E follows directly from
Thm. 1. Since the model maintained by Alg. 1 at each step

is consistent with E, hence the same model returned after the
last iteration is also consistent with E.

Next, we show that adding any predicate as a positive or
negative precondition or effect of a capability in M̃ returned
by Alg. 1 makes it inconsistent with at least one execution
trace that can be generated by at least one agent A# ∈ Λ,
where Λ is the set of possible agents that can generate all ex-
ecution traces inE. We prove this by contradiction. Note that
a literal is not added by Alg. 1 to an action’s precondition (or
effect) only if (1) in the observed traces, it was not present in
the state where (immediately after) that action was executed;
or (2) adding it in the precondition (or effect) of an action re-
sulted in a response to a query that was inconsistent with that
of the agent. Also, note that a predicate corresponding to a
literal is always added to the model in some form in each pre-
condition (or effect). Suppose a literal l that was not added
by Alg. 1 is added to M̃ in precondition (or effect) of a capa-
bility c̃ without making it inconsistent with the agent. Since a
predicate p corresponding to this literal l is already present in
c̃, this implies that the form of the predicate p added by Alg. 1
is incorrect. But this is not possible as shown by Thm. 1 and
Thm. 2 of VMS21. Hence this is not possible and adding an
additional literal in any form to an action’s precondition or
effect would make it inconsistent with the agent. This means
that it also makes the model inconsistent with at least one
agent A# ∈ Λ.

Theorem 3. Let P̃ be a set of predicates P̃ ,A = ⟨S,A, T ⟩ be
an agent with a deterministic transition system T . If a high-
level model is expressible deterministically using the predi-
cates P̃ , and local connectivity is ensured, then the parame-
terized capability model M̃ learned by Alg. 1 is realizable.

Proof. We will prove that for all capabilities in C̃ learned as
part of the parameterized capability model M̃ , for all ground-
ings C̃∗, if the capability is executed in an abstract state s̃ such
that s̃ |= pre(c̃∗) then there exists a sequence of low-level
states that the agent can traverse to reach a state s̃′ ∈ c̃∗(s̃).

We prove this by cases. Consider a capability c̃ ∈ C̃ whose
description is learned using Alg. 1 . Using Thm. 1, the pre-
condition and effect of c̃ will be consistent with E generated
by the agent. Now consider a grounded capability c̃∗ corre-
sponding to the capability c̃. There are only two cases pos-
sible: (1) either c̃∗ appeared in the observed traces or was
executed successfully by the agent in response to one of the
queries posed to the agent; or (2) it was not present in either.
We prove each case separately.
Case 1: There exists a set of low-level states s and s′ such
that c̃∗(s̃) = s̃′, where s̃ = f(s) and s̃′ = f(s′). Now due
to local connectivity, all states in f−1(s) are connected with
each other and same is true for all states in f−1(s′). Hence
the agent can traverse from any state in f−1(s) to any state in
f−1(s′) on executing the capability c̃∗. This makes the capa-
bility c̃∗ realizable.
Case 2: Since c̃∗ was not observed directly and the only way
capabilities are added to M̃ is if they are lifted forms of ca-
pabilities identified from observation traces E, c̃∗ must be a
grounding of the lifted form c̃1 of a capability c̃∗1 that is of

the type considered in case 1. Alg. 1 constructs precondi-
tion and effect of c̃1 while ensuring consistency with query
responses and observations under the assumption that the ca-
pability model is expressible as in Def. 3. When this assump-
tion holds, the effect or precondition of a capability can only
depend on the vocabulary of available predicates, which are
considered exhaustively (hierarchically) by Alg. 1. This im-
plies that there must be a path from a concrete state s in the
grounding corresponding to c̃1’s precondition to a concrete
state s′ that satisfies the effects of grounding of c̃1’s effects.
By local connectivity, this extends to all concrete states in the
same abstract state as s̃ corresponding to s.

Hence if a high-level model is expressible deterministically
using the predicates P̃ , and local connectivity is ensured, then
the parameterized capability model M̃ learned by Alg. 1 is
realizable.

Theorem 4. Let P̃ be a set of predicates, A = ⟨S,A, T ⟩ be
an agent with a deterministic transition system T . Suppose
random samples of agent behavior in the form of execution
tracesE are coming from a distribution that assigns non-zero
probability to at least one transition corresponding to each
ground capability (c̃∗s̃i,s̃j , s̃i, s̃j ⊆ P̃). If a high-level model
is expressible deterministically using the predicates P̃ and
local connectivity holds, then in the limit of infinite execution
tracesE, the probability of discovering all capabilities c̃ ∈ C̃
expressible using the predicates P̃ is 1.

Proof. Consider every possible abstract transition that the
agent can make. There are finite (let’s consider L) such tran-
sitions possible given the predicate vocabulary P̃ and a fixed
set of objects Õ. Now we are getting random execution traces
E from a distribution that assigns non-zero probability to at
least one transition corresponding to each ground capability
(c̃∗s̃i,s̃j). This means that the probability of not observing this
finite set of cardinality L will reduce with each successive
collection of L execution traces. Hence we will eventually
observe at least one transition corresponding to each ground
capability (c̃∗s̃i,s̃j). Then as shown in Thm. 1, we will discover
the capability c̃ corresponding to the ground transition c̃∗s̃i,s̃j
with probability 1.

B Domains and their Semantics
This section describes the four GVGAI game domains used
in this work and the semantics of the user interpretable pred-
icates in these domains. Note that information like the ori-
entation of the agent (player) in each of these domains is not
captured by any of the predicates. This information is im-
portant for low-level policies as certain actions can only be
executed in certain orientations.

B.1 Zelda
The Zelda-like domain, as shown in Fig.1a, consists of a key,
a door that opens using that key, the antagonist player Link,
and the protagonist monster Ganon. To win the game, Link
must defeat Ganon, and then should use the key to open the
door to escape. Link can move one cell at a time in the di-
rection it is facing. If Link moves into the cell adjacent to the

key, Link picks up the key by executing the keystroke E (spe-
cial keystroke). The same keystroke is used to Defeat Ganon
when Link is facing Ganon and is in a cell adjacent to Ganon,
and to escape when Link is in a cell adjacent to the door and
facing it. The user vocabulary for this domain is shown in
Tab. 1.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if Link has the key.
escaped() True if Link has escaped (game is over).
alive(?m) True if Ganon is still alive
next to(?ob2) True if Link is in a cell adjacent to ganon,

door, or key.

Table 1: Predicates in the user vocabulary for Zelda

B.2 Cook-Me-Pasta
The Cook-Me-Pasta domain, as shown in Fig.2b, consists of
raw pasta, sauce, boiling water, tuna (fish), lock, and key.
The objective is to cook tuna pasta using a three-step process.
First, the pasta is cooked by adding boiling water to the raw
pasta, this can be done by pressing E while holding both the
ingredients. Similarly, tuna is cooked by mixing sauce and
tuna. Finally, the cooked pasta and the cooked tuna are to
be mixed together. One or more of the ingredients can be
locked in a room which must be opened using a key. The user
vocabulary for this domain is shown in Tab. 2.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if the player has the key
pasta cooked() True if the pasta is cooked
is door(?loc) True if the location ?loc has a door

Table 2: Predicates in the user vocabulary for Cook-Me-Pasta.

B.3 Escape
The Escape domain, as shown in Fig.2c, consists of movable
blocks, fixed holes, and cheese. The blocks can be pushed
into the holes to clear out a path. The game is finished when
the player reaches the location with cheese. The user vocab-
ulary for this domain is shown in Tab. 3.

B.4 Snowman
The Snowman domain, as shown in Fig.2d, consists of three
pieces of a snowman: the top, middle, and bottom piece; a
key that can be used to unlock a door (like other domains),
and the goal cell. The objective of the game is to assemble
the snowman in the goal location in order, constrained by the
player being able to hold only one piece at any given time.
The user vocabulary for this domain is shown in Tab. 4.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
is hole(?loc) True if the location ?loc has a hole
is goal(?loc) True if the location ?loc is the goal loca-

tion
is block(?loc) True if the location ?loc has a movable

block

Table 3: Predicates in the user vocabulary for Escape.

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if the player has the key
player has(?o) True if the player has object ?o
is goal(?loc) True if the location ?loc is the goal loca-

tion
placed(?part) True if part ?part is placed at the goal

location.
is door(?loc) True if the location ?loc has a door

Table 4: Predicates in the user vocabulary for Snowman.

C User Study Details
In this section, we describe the details of the user study survey
that was given to the study participants. The participants were
split into two groups. The capability group and the primitive
action group.
Game description The participants in both groups were
shown the description of the game. As shown in Fig. 5, this
description lists out the rules of the game.
Capability descriptions The participants are then shown
the next part based on which group they fall in. The par-
ticipants in the capability group are shown description of 6
parameterized actions, each generated using boilerplate tem-
plates for each predicate. We show here (Fig. 6) the descrip-
tion of the capability c4 whose learned description was shown
in Fig.1(d) in the main paper. The participants are also given
an option to choose between eight possible descriptions of
from which they choose the correct summarization of that ca-
pability. This is illustrated in Fig. 6.
Action descriptions Similar to the capability group, the
participants in the primitive action group are shown textual
descriptions of the keystrokes, with five options to choose
from. Each option provides a possible description of the key-
board in English. Fig. 7 shows the description of keystroke
W with the five options.

Notice that we tried to keep the same format for the de-
scription of actions as that of capabilities, i.e., of the form
“if ⟨x⟩ conditions hold then ⟨y⟩ happens.” Also, the descrip-
tion of capabilities are parameterized by the player, monster,
cells, etc. whereas the description in primitive actions use the
object names like Link, Gannon, etc. directly.

Figure 5: Game description shown to the study participants

Figure 6: Description of the capability C4 with summarization op-
tions.

Questions After showing the capability and action descrip-

Figure 7: Description of the keystroke W with summary options

tions, the participants of both the groups are shown the same
questions. These questions give two-game images and ask the
participant the sequence of capabilities or actions (depending
on the user’s group) that the agent should execute to reach the
goal state from the initial state. One such question is shown
in Fig. 8. There were six such questions in total shown.in to-
tal to all the participants.
Sanity Question: One of these six was a sanity check ques-
tion. The answer was given in the question itself. The re-
sponses for any participant who got this question wrong were
discarded.

Figure 8: A sample user study question

Options The options given to the two sets of users for the
same question differed because the capability group partici-
pants were given options in terms of capability sequence that

the agent can execute (shown in Fig. 9), whereas the primi-
tive action group participants were given options in terms of
sequences of primitive actions (shown in Fig. 10). Note that
these options refer to the question shown in Fig. 8.

Figure 9: Options for question in Fig. 8 given to capability group
participants

Figure 10: Options for question in Fig. 8 given to primitive action
group participants

D Secondary User Study
We also investigated another hypothesis assessing whether
the users were able to understand the descriptions by assess-
ing whether they can effectively summarize the capabilities.
We formalize the hypothesis as:
H2. The user can effectively summarize the learned capabil-
ity descriptions.

We performed the following study to evaluate the hypoth-
esis:
Capability summarization study This study evaluates the
interpretability of the discovered capability descriptions. The
user is explained the rules of the Zelda-like game described
earlier (shown in Fig. 5), and then presented with a text de-
scription of the six learned capabilities. Finally, as shown
in Fig. 6, the user is asked to choose a short summarization
for each description, out of the eight possible summarizations
that we provide.
Results There were a total of 54 participants in the capabil-
ity group out of whom 43 got the sanity check question right.

S1 S2 S3 S4 S5 S6 S7 S8
C1 1.0 0 0 0 0 0 0 0
C2 0 1.0 0 0 0 0 0 0
C3 0 0 0.91 0 0 0 0.09 0
C4 0 0 0 1.0 0 0 0 0
C5 0 0 0 0 0.84 0 0 0.16
C6 0 0 0 0 0 1.00 0 0

Table 5: Accuracy of capability summarization study for the Zelda-
like game. An element in row Ci and column Sj represents the frac-
tion of instances when capability Ci was summarized as Sj by the
study participants. Correct summarization of Ci is Si (in green).
C1,S1: Go next to Ganon; C2,S2: Go next to Key; C3,S3: Go next to
Door; C4,S4: Defeat Ganon; C5,S5: Pick Key; C6,S6: Open Door;
S7: Go next to Wall; S8: Break Key.

The results of the capability summarization study (Tab.5) for
these 43 participants demonstrate that the users are able to
summarize the descriptions almost uniformly accurately ex-
cept for C3 and C5. This verifies H2 that the users can effec-
tively summarize the learned capability descriptions.

	Introduction
	Running example

	Formal Framework
	Abstraction
	Capability Descriptions

	Active Capability Discovery
	Discovering Candidate Partial Capabilities
	Generating execution traces
	Discovering candidate capabilities
	Generating partial capability descriptions
	Lifting the partial capability descriptions
	Combining candidate capabilities

	Completing Partial Capability Descriptions
	Active query generation
	Generating waypoints from queries
	Updating partial models based on agent responses

	Formal Analysis

	Empirical Evaluation
	Experimental Setup
	Empirical Results
	Scalability analysis
	Agent type analysis

	User Study
	Behavior analysis study
	Study design
	Results

	Related Work
	High-level skills from input options
	Learning symbolic models using physics simulators
	Action model learning
	High-level actions

	Conclusion
	Proof of Theoretical Results
	Domains and their Semantics
	Zelda
	Cook-Me-Pasta
	Escape
	Snowman

	User Study Details
	Secondary User Study

