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Abstract
Effective and efficient planning in continuous state
and action spaces is fundamentally hard, even when
the transition model is deterministic and known.
One way to alleviate this challenge is to perform
bilevel planning with abstractions, where a high-
level search for abstract plans is used to guide plan-
ning in the original transition space. In this pa-
per, we learn state and action abstractions that are
explicitly optimized for both effective (successful)
and efficient (fast) bilevel planning. Given demon-
strations, our data-efficient approach learns rela-
tional, neuro-symbolic abstractions that generalize
over object identities and numbers. The symbolic
components resemble the STRIPS operators found
in AI planning, and the neural components refine
the abstractions into executable actions. Experi-
mentally, we show across four robotic planning en-
vironments that our learned abstractions are able
to quickly solve held-out tasks of longer horizons
than were seen in the demonstrations, and outper-
form the efficiency of abstractions that we manu-
ally specified. We also find that as the planner con-
figuration varies, the learned abstractions adapt ac-
cordingly, indicating that our abstraction learning
method is both “task-aware” and “planner-aware.”

1 Introduction
An autonomous agent should make good decisions quickly.
These two considerations — effectiveness and efficiency —
are especially important, and often competing, when an agent
is planning in long-horizon, continuous-space tasks. Abstrac-
tions offer a mechanism to overcome this intractability [Li
et al., 2006; Konidaris et al., 2018]. While state and action
abstractions have a rich history in AI and robotics, a major
limitation of early work is the downward refinability assump-
tion [Marthi et al., 2007]: that planning can be decomposed
into first searching for an abstract plan, and then refining it
into an actual plan. This is untenable in many applications,
especially in robotics, where complex geometric constraints
cannot be easily abstracted. To avoid this assumption, we
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consider bilevel planning, where reasoning in a high-level
abstraction provides guidance for reasoning in a low-level
task [Garrett et al., 2021]. Another clear limitation of early
work on abstractions is the reliance on manual specification,
which requires understanding not only the environment, but
also the interplay between the abstractions and the planner.

We identify three key desiderata of a system for planning
with state and action abstractions:
1. These state and action abstractions should be learned, not

manually designed for each environment.
2. Planning with the learned abstractions should be tolerant

to violations of the downward refinability assumption.
3. The abstractions should be trained to explicitly optimize

both the effectiveness and the efficiency of planning.
In this paper, we develop a framework for learning abstrac-

tions for planning that addresses all three desiderata. Specif-
ically, we learn state and action abstractions that are explic-
itly optimized for effective and efficient bilevel planning. We
consider learning from a modest number of demonstrations
(around 50-200 per environment in our experiments) in deter-
ministic, fully observed, goal-based planning problems. The
problems have object-centric continuous states and hybrid
discrete-continuous actions, as are common in robotics [Gar-
rett et al., 2021]. To obtain data-efficient generalization over
object identities, we learn relational, neuro-symbolic abstrac-
tions, where the symbolic components are predicates and op-
erators, like those used in AI planning [Fikes and Nilsson,
1971], and the neural components are samplers that refine the
abstractions into actions that can be executed in the actual
environment [Chitnis et al., 2016; Kim et al., 2018].

In experiments across four robotic planning environments,
we find that our framework is very data-efficient, and that
the resulting learned abstractions are both “task-aware” and
“planner-aware.” We demonstrate task-awareness by evalu-
ating the learned abstractions in held-out tasks involving dif-
ferent numbers of objects, longer horizons, and larger goal
expressions than were seen in the demonstrations, finding
them to lead to effective and efficient planning. Interestingly,
we find that in some environments, the learned abstractions
can even outperform ones that we manually specified. For
planner-awareness, we show that as the configuration of the
planner varies, the learned abstractions adapt accordingly. We
compare against several baselines and ablations of our system
to further validate our results.



Figure 1: Overview of our framework. Given a small set of goal predicates (first panel, top), we use demonstration data to learn new
predicates (first panel, bottom). In this Blocks example, implemented using the PyBullet physics simulator [Coumans and Bai, 2016], the
learned predicates P1 – P4 intuitively represent Holding, NotHolding, HandEmpty, and NothingAbove respectively. Collectively,
the predicates define a state abstraction that maps continuous states x in the environment to abstract states s. Object types are omitted for
clarity. After predicate invention, we learn abstractions of the continuous action space and transition model via planning operators (second
panel). For each operator, we learn a sampler (third panel), a neural network that maps continuous object features in a given state to continuous
action parameters for controllers which can be executed in the environment. In this example, the sampler proposes different placements on
the table for the held block. With these learned representations, we perform bilevel planning (fourth panel), with search in the abstract spaces
guiding planning in the continuous spaces. Here, the goal is to create two specific towers of blocks.

2 Problem Setting

We consider learning from demonstrations in determinis-
tic planning problems. These problems are goal-based and
object-centric, with continuous states and hybrid discrete-
continuous actions. Formally, an environment is a tuple
⟨Λ, d, C, f,ΨG⟩, and is associated with a distribution T over
tasks, where each task T ∈ T is a tuple ⟨O, x0, g⟩.
Λ is a finite set of object types, and the map d : Λ → N

defines the dimensionality of the real-valued feature vector
for each type. Within a task, O is an object set, where each
object has a type drawn from Λ; this O can (and typically
will) vary between tasks. The O induces a state space XO
(going forward, we simply write X when clear from context).
A state x ∈ X in a task is a mapping from each o ∈ O to a
feature vector in Rd(type(o)); x0 is the initial state of the task.
C is a finite set of controllers. A controller

C((λ1, . . . , λv),Θ) ∈ C can have both discrete typed pa-
rameters (λ1, . . . , λv) and a continuous real-valued vector
of parameters Θ. For instance, a controller Pick for pick-
ing up a block might have one discrete parameter of type
block and a Θ that is a placeholder for a specific grasp
pose. The controller set C and object set O induce an ac-
tion space AO (going forward, we write A when clear). An
action a ∈ A in a task is a controller C ∈ C with both
discrete and continuous arguments: a = C((o1, . . . ov), θ),
where the objects (o1, . . . ov) are drawn from the object set
O and must have types matching the controller’s discrete pa-
rameters (λ1, . . . , λv). Transitions through states and actions
are governed by f : X × A → X , a known, deterministic
transition model that is shared across tasks.

A predicate ψ is characterized by an ordered list of types
(λ1, . . . , λm) and a lifted binary state classifier cψ : X ×
Om → {true, false}, where cψ(x, (o1, . . . , om)) is defined
only when each object oi has type λi. For instance, the pred-
icate Holding may, given a state and two objects, robot and
block, describe whether the block is held by the robot in this
state. A lifted atom is a predicate with typed variables (e.g.,
Holding(?robot, ?block)). A ground atom ψ con-
sists of a predicate ψ and objects (o1, . . . , om), again with

all type(oi) = λi (e.g., Holding(robby, block7)).
Note that a ground atom induces a binary state classifier
cψ : X → {true, false}, where cψ(x) ≜ cψ(x, (o1, . . . , om)).

ΨG is a small set of goal predicates that we assume are
given and sufficient for representing task goals, but insuffi-
cient practically as standalone state abstractions. Specifically,
the goal g of a task is a set of ground atoms over predicates in
ΨG and objects in O. A goal g is said to hold in a state x if
for all ground atoms ψ ∈ g, the classifier cψ(x) returns true.
A solution to a task is a plan π = (a1, . . . , an), a sequence
of actions a ∈ A such that successive application of the tran-
sition model xi = f(xi−1, ai) on each ai ∈ π, starting from
initial state x0, results in a final state xn where g holds.

The agent is provided with a set of training tasks from T
and a set of demonstrations D, with one demonstration per
task. We assume action costs are unitary and demonstrations
are near-optimal, which will be exploited in Section 5. Each
demonstration consists of a training task ⟨O, x0, g⟩ and a plan
π∗ that solves the task. Note that for each π∗, we can recover
the associated state sequence starting at x0, since f is known
and deterministic. The agent’s objective is to efficiently solve
held-out tasks drawn from T , using anything it chooses to
learn from the demonstrations. In other words, the agent
should produce good solutions quickly. In our experiments,
to assess generalization, we evaluate the agent on tasks that
involve more objects, require longer action sequences, and
have larger goal expressions than the training tasks.

3 Key Representations
Since the agent has access to the transition model f , one ap-
proach for optimizing the objective described in Section 2 is
to forgo learning entirely and plan over the state state X and
action space A. However, planning directly in these large
spaces is highly infeasible. Instead, we propose to learn ab-
stractions using demonstrations. We adopt a very general def-
inition of an abstraction [Konidaris and Barto, 2009]: map-
pings from X and A to alternative state and action spaces.
In this section, we describe representations; in Section 4, we
discuss planning; and in Section 5, we address learning.



We first characterize an abstract state space
SΨ and a transformation from states in X
to abstract states. Next, we describe an ab-
stract action space Ω and an abstract transi-
tion model F : SΨ × Ω → SΨ that can be
used to plan in the abstract space. Finally,
we define samplers Σ for refining abstract ac-
tions back into A, so that abstract plans can
guide planning in the task. See the diagram
on the right for a summary.

(1) An abstract state space. We use a set of predicates Ψ
to induce an abstract state space SΨ. Recalling that a ground
atom ψ induces a classifier cψ over states x ∈ X , we have:

Definition 1 (Abstract state). An abstract state s is the set of
ground atoms under Ψ that hold true in x:

s = ABSTRACT(x,Ψ) ≜ {ψ : cψ(x) = true,∀ψ ∈ Ψ}.

The (discrete) abstract state space induced by Ψ is denoted
SΨ. Throughout this work, we use predicate sets Ψ that are
supersets of the given goal predicates ΨG. However, only the
goal predicates are given, and they alone are typically very
limited; in Section 5, we will discuss how the agent can use
data to invent predicates that will make up the majority of Ψ.
See Figure 1 (first panel) for an example of a predicate set Ψ,
made up of goal predicates and learned predicates.

(2) An abstract action space and abstract transition
model. We address both by having the agent learn operators:
Definition 2 (Operator). An operator is a tuple ω =
⟨PAR, PRE, EFF+, EFF−,CON⟩ where:
• PAR is an ordered list of parameters: variables with

types drawn from the type set Λ.
• PRE, EFF+, EFF− are preconditions, add effects, and
delete effects, each a set of lifted atoms over Ψ and PAR.
• CON is a tuple ⟨C, PARCON⟩ where
C((λ1, . . . , λv),Θ) ∈ C is a controller and PARCON

is an ordered list of controller arguments, each a variable
from PAR. Furthermore, |PARCON| = v, and each
argument i must be of the respective type λi.

We denote the set of operators as Ω. See Figure 1 (second
panel) for an example. Unlike in STRIPS, our operators are
augmented with controllers and controller arguments, which
will help us connect to the task actions in (3) below. Now,
given a task with object set O, the set of all ground operators
defines our (discrete) abstract action space for a task:
Definition 3 (Ground operator / abstract action). A ground
operator ω = ⟨ω, δ⟩ is an operator ω and a substitution
δ : PAR → O mapping parameters to objects. We use
PRE, EFF+, EFF−, and PARCON to denote the ground precon-
ditions, ground add effects, ground delete effects, and ground
controller arguments of ω, where variables in PAR are sub-
stituted with objects under δ.

We denote the set of ground operators (the abstract action
space) as Ω. Together with the abstract state space SΨ, the
preconditions and effects of the operators induce an abstract
transition model for a task:
Definition 4 (Abstract transition model). The abstract tran-
sition model induced by predicates Ψ and operators Ω is a

partial function F : SΨ × Ω → SΨ. F (s, ω) is only de-
fined if ω is applicable in s: PRE ⊆ s. If defined, F (s, ω) ≜
(s− EFF−) ∪ EFF+.

(3) A mechanism for refining abstract actions into task
actions. A ground operator ω induces a partially specified
controller, C((o1, . . . ov),Θ) with (o1, . . . ov) = PARCON,
where object arguments have been selected but continuous
parameters Θ have not. To refine this abstract action ω into a
task-level action a = C((o1, . . . ov), θ), we use samplers:

Definition 5 (Sampler). Each operator ω ∈ Ω is associated
with a sampler σ : X × O|PAR| → ∆(Θ), where ∆(Θ) is the
space of distributions over Θ, the continuous parameters of
the operator’s controller.

Definition 6 (Ground sampler). For ground operator ω ∈
Ω, if ω = ⟨ω, δ⟩ and σ is the sampler for ω, then the
ground sampler for ω is a state-conditioned distribution σ :
X → ∆(Θ), where σ(x) ≜ σ(x, δ(PAR)).

We denote the set of samplers as Σ. See Figure 1 (third
panel) for an example.

What connects the transition model f , abstract transition
model F , and samplers Σ? While previous works enforce the
downward refinability property [Marthi et al., 2007; Pasula et
al., 2007; Konidaris et al., 2018], it is important in robotics
to be robust to violations of this property, since learned ab-
stractions will typically lose critical geometric information.
Therefore, we only require our learned abstractions to sat-
isfy the following weak semantics: for every ground oper-
ator ω with partially specified controller C((o1, . . . , ov),Θ)
and associated ground sampler σ, there exists some x ∈ X
and some θ in the support of σ(x) such that F (s, ω) is de-
fined and equals s′, where s = ABSTRACT(x,Ψ), a =
C((o1, . . . , ov), θ), and s′ = ABSTRACT(f(x, a),Ψ). Note
that downward refinability [Marthi et al., 2007] makes a
much stronger assumption: that this statement holds for ev-
ery x ∈ X where F (s, ω) is defined.

4 Bilevel Planning
To use the components of an abstraction — predicates Ψ,
operators Ω, and samplers Σ — for efficient planning, we
build on bilevel planning techniques [Garrett et al., 2021;
Srivastava et al., 2014]. We conduct an outer search over ab-
stract plans using the predicates and operators, and an inner
search over refinements of an abstract plan into a task solution
π using the predicates and samplers.

Definition 7 (Abstract plan). An abstract plan π̂ for
a task ⟨O, x0, g⟩ is a sequence of ground operators
(ω1, . . . , ωn) such that applying the abstract transition
model si = F (si−1, ωi) successively starting from s0 =
ABSTRACT(x0,Ψ) results in a sequence of abstract states
(s0, . . . , sn) that achieves the goal, i.e., g ⊆ sn. This
(s0, . . . , sn) is called the expected abstract state sequence.

Because downward refinability does not hold in our set-
ting, an abstract plan π̂ is not guaranteed to be refinable into
a solution π for the task, which necessitates bilevel planning.
We now describe the planning algorithm in detail.



PLAN(x0, g, Ψ, Ω, Σ )
// Parameters: nabstract, nsamples.

1 s0 ← ABSTRACT(x0,Ψ)
2 for π̂ in GENABSTRACTPLAN(s0, g, Ω, nabstract)
3 if REFINE(π̂, x0, Ψ, Σ, nsamples) succeeds w/ π
4 return π

Algorithm 1: Pseudocode for our bilevel planning algorithm.
The inputs are an initial state x0, goal g, predicates Ψ, oper-
ators Ω, and samplers Σ; the output is a plan π. An outer
loop runs GENABSTRACTPLAN, which generates plans in the
abstract state and action spaces. An inner loop runs REFINE,
which attempts to concretize each abstract plan π̂ into a plan π.
If REFINE succeeds, then the found plan π is returned as the so-
lution; if REFINE fails, then GENABSTRACTPLAN continues.

4.1 Algorithm Description
The overall structure of the planner is outlined in Algo-
rithm 1. For the outer search that finds abstract plans π̂, de-
noted GENABSTRACTPLAN (Alg. 1, Line 2), we leverage the
STRIPS-style operators and predicates [Fikes and Nilsson,
1971] to automatically derive a domain-independent heuris-
tic popularized by the AI planning community, such as LM-
Cut [Helmert and Domshlak, 2009]. We use this heuristic
to run an A∗ search over the abstract state space SΨ and ab-
stract action space Ω. This A∗ search is used as a generator
(hence the name GENABSTRACTPLAN) of abstract plans π̂,
outputting one at a time1. Parameter nabstract governs the max-
imum number of abstract plans that can be generated before
the planner terminates with failure.

For each abstract plan π̂, we conduct an inner search that
attempts to REFINE (Alg. 1, Line 3) it into a solution π
(a plan that achieves the goal under the transition model
f ). While various implementations of REFINE are possi-
ble [Chitnis et al., 2016], we follow [Srivastava et al., 2014]
and perform a backtracking search over the abstract actions
ωi ∈ π̂. Recall that each ωi induces a partially specified
controllerCi((o1, . . . , ov)i,Θi) and has an associated ground
sampler σi. To begin the search, we initialize an indexing
variable i to 1. On each step of search, we sample con-
tinuous parameters θi ∼ σi(xi−1), which fully specify an
action ai = Ci((o1, . . . , ov)i, θi). We then check whether
xi = f(xi−1, ai) obeys the expected abstract state sequence,
i.e., whether si = ABSTRACT(xi,Ψ). If so, we continue
on to i ← i + 1. Otherwise, we repeat this step, sampling a
new θi ∼ σi(xi−1). Parameter nsamples governs the maximum
number of times we invoke the sampler for a single value of
i before backtracking to i ← i − 1. REFINE succeeds if the
goal g holds when i = |π̂|, and fails when i backtracks to 0.

If REFINE succeeds given a candidate π̂, the planner ter-
minates with success (Alg. 1, Line 4) and returns the plan
π = (a1, . . . , a|π̂|). Crucially, if REFINE fails, we continue

1This usage of A∗ search as a generator is related to the field of top-k
planning [Riabov et al., 2014; Katz et al., 2018; Ren et al., 2021].
We experimented with off-the-shelf top-k planners, but chose to
use A∗ because it was faster in our domains. Note that it is used
heavily in the learning loop (Section 5).

with GENABSTRACTPLAN to generate the next candidate π̂.
In the taxonomy of task and motion planners (TAMP), this
approach is in the “search-then-sample” category [Srivastava
et al., 2014; Dantam et al., 2016; Garrett et al., 2021]. As we
have described it, this planner is not probabilistically com-
plete, because abstract plans are not revisited. Furthermore,
there is no propagation of information from the inner search
to the outer search. Extensions to address these limitations
exist [Chitnis et al., 2016], but are not our focus in this work.

5 Learning Abstractions
We wish to learn predicates Ψ, operators Ω, and samplers Σ
data-efficiently, using the demonstrationsD. Due to space re-
strictions, we refer the reader to our prior work for a descrip-
tion of operator and sampler learning [Chitnis et al., 2021],
and focus here on predicate invention.

Inspired by prior work [Bonet and Geffner, 2019; Loula et
al., 2019; Curtis et al., 2021], we approach the predicate in-
vention problem from a program synthesis perspective [Crop-
per and Muggleton, 2016]. First, we define a compact rep-
resentation of an infinite space of predicates in the form of
a grammar. We then enumerate a large pool of candidate
predicates from this grammar, with simpler candidates enu-
merated first. Next, we perform a local search over subsets
of candidates, with the aim of identifying a good final subset
to use as Ψ. The crucial question in this step is: what objec-
tive function should we use to guide the search over candidate
predicate sets? We begin with this last question.

Scoring a Candidate Predicate Set
Ultimately, we want to find a set of predicates Ψ that will lead
to effective and efficient planning, after we use the predicates
to learn operators Ω and samplers Σ. The real objective we
want to minimize can be expressed as:

Jreal(Ψ) ≜ E(O,x0,g)∼T [TIME(PLAN(x0, g,Ψ,Ω,Σ))],

where Ω and Σ are learned using Ψ, PLAN is the algorithm
described in Section 4, and TIME(·) measures the time that
PLAN takes to find a solution2. However, we need an ob-
jective that can be used to guide a search over candidate
predicate sets, meaning the objective must be evaluated many
times. Unfortunately, Jreal is far too expensive for this, due
to two speed bottlenecks: sampler learning, which involves
training several neural networks; and the repeated calls to
REFINE from within PLAN, which each perform backtracking
search over an abstract plan. To overcome this intractability,
we propose to use a proxy objective Jproxy, one that is cheaper
to evaluate than Jreal, but that approximately preserves order-
ing, i.e., Jproxy(Ψ) < Jproxy(Ψ

′) ⇐⇒ Jreal(Ψ) < Jreal(Ψ
′).

Identifying a proxy objective that balances the trade-off
between tractability and fidelity to Jreal can be very chal-
lenging. In the course of our research, we considered
many options inspired by prior work, including per-operator
prediction error [Pasula et al., 2007; Silver et al., 2021],
bisimulation [Bonet and Geffner, 2019; Curtis et al., 2021],
and inverse planning-based objectives [Paxton et al., 2016;

2If no plan can be found (e.g., a task is infeasible under the abstrac-
tion), TIME would return a large constant representing a timeout.



Zhi-Xuan et al., 2020], but found them all to be divergent
from Jreal, leading to poor performance (see the baselines in
Section 6). Our main insight was based on the following ob-
servation: although sampler learning and REFINE are slow,
operator learning and abstract search (on the training tasks)
are both fast — operator learning takes time linear in the size
of the dataset, and abstract search is guided by powerful AI
planning heuristics. Therefore, we can use these to design a
proxy objective Jproxy that mirrors Jreal, but with cheap ap-
proximation schemes to avoid the two bottlenecks.

In particular, we will consider a proxy objective that esti-
mates the time it would take to solve the training tasks under
the abstraction induced by a candidate predicate set Ψ, with-
out using samplers or doing refinement. Recalling that our
dataset D has one demonstration π∗ for each training task
⟨O, x0, g⟩, we propose the following proxy objective:

Jproxy(Ψ) ≜
1

|D|
∑

(O,x0,g,π∗)∈D

[ETPT(x0, g,Ψ,Ω, π∗)],

where ETPT abbreviates ESTIMATETOTALPLANNINGTIME
(see Algorithm 2). There are three key points to note about
Jproxy, in comparison to Jreal: (1) it estimates the expecta-
tion in Jreal using an average over the training tasks; (2) it
estimates planning times using the demonstration π∗ of each
training task; (3) it does not rely on samplers Σ.

To estimate the total planning time, we perform the same
A∗ abstract search described in Section 4.1, using the oper-
ators Ω learned from Ψ (Alg. 2, Line 4). In the process, we
keep track of two quantities: pterminate-here, which is a proba-
bility estimating whether PLAN with learned samplers would
terminate with success on this step; and texpected, which ap-
proximates the cumulative time elapsed of PLAN thus far.
Both quantities are initialized to 0 (Alg. 2, Lines 2-3).

To update pterminate-here on each abstract plan (Alg. 2, Lines
5-6), we must estimate both whether PLAN would have ter-
minated before this step, and whether PLAN would terminate
on this step. For the former, we can use (1 − pterminate-here).
For the latter, since PLAN terminates only if REFINE suc-
ceeds, we use a function called ESTIMATEREFINEPROB to
approximate the probability of successfully refining the given
abstract plan, if we were to learn samplers Σ and then call
REFINE. While various implementations are possible, we use
a simple strategy that leverages the demonstration:

ESTIMATEREFINEPROB(π̂, π∗) ≜ (1−ϵ)ϵ|COST(π̂)−COST(π∗)|.

Here, ϵ > 0 is a small constant (10−5 in our experiments),
and COST(·) is in our case simply the number of actions in
the plan, due to unitary costs. The intuition for this geometric
distribution is as follows. Since the demonstration π∗ is as-
sumed to be near-optimal, an abstract plan π̂ that is cheaper
than π∗ should look suspicious; if such a π̂ were refinable,
then the demonstrator would have likely used it to produced
a better demonstration. If π̂ is more expensive than π∗, then
even though this abstraction would eventually produce a re-
finable abstract plan, it may take a long time for the outer
loop of the planner, GENABSTRACTPLAN, to get to it (Sec-
tion 4.1). We note that this scheme for estimating refinability
is surprisingly minimal, in that it needs only the cost of each
demonstration rather than its contents.

ESTIMATETOTALPLANNINGTIME(x0, g, Ψ, Ω, π∗)
// Note: does not take in samplers!
// Parameters: nabstract, tupper.

1 s0 ← ABSTRACT(x0,Ψ)
2 pterminate-here ← 0.0
3 texpected ← 0.0
4 for π̂ in GENABSTRACTPLAN(s0, g, Ω, nabstract)

do
5 prefined ← ESTIMATEREFINEPROB(π̂, π∗)
6 pterminate-here ← (1− pterminate-here) · prefined
7 titer ← ESTIMATETIME(π̂, x0, Ψ, Ω)
8 texpected ← texpected + pterminate-here · titer
9 texpected ← texpected + (1− pterminate-here) · tupper

10 return texpected

Algorithm 2: Pseudocode for our predicate invention proxy
objective. The structure mimics that of Algorithm 1, with com-
monalities shown in blue. See Section 5 for details.

To update texpected on each abstract plan (Alg. 2, Lines 7-8),
we use a function called ESTIMATETIME to approximate the
time spent on this abstract plan, and weight the result of this
function by pterminate-here. To implement ESTIMATETIME, we
sum up estimates of the abstract search time and of the refine-
ment time. Since we are running abstract search, we can ex-
actly measure its time; however, we use the cumulative num-
ber of nodes created by the A∗ search so far as a processor-
independent estimate. To estimate refinement time, recall that
REFINE performs a backtracking search, and so over many
calls to REFINE, the potentially several that fail will domi-
nate the one or zero that succeed. Therefore, we estimate
refinement time as a large constant (103 in our experiments)
that captures the average cost of an exhaustive backtracking
search. Note that even though this is a constant, the fact that
it is multiplied by pterminate-here (Alg. 2, Line 8) means that its
impact on the overall score will vary greatly.

Before finishing, we add a final term to texpected (Alg. 2,
Line 9) corresponding to the probability that PLAN would fail
to refine any skeleton (tupper = 105 in our experiments). Fi-
nally, we return texpected as our estimated planning time for
a single training task (Alg. 2, Line 10). The expression for
Jproxy sums up these return values over all the training tasks.

Local Search with the Proxy Objective
With our proxy objective Jproxy established, we turn to the
question of how to best optimize it. We perform simple hill
climbing, which has the benefit of being much more efficient
than potential alternatives such as enforced hill climbing or
greedy best-first search. We initialize search with the given
goal predicates Ψ0 ← ΨG, and add a single new predicate ψ
from the candidate pool on each step i:

Ψi+1 ← argmin
ψ ̸∈Ψi

Jproxy(Ψi ∪ {ψ}).

We repeat until no improvement can be found, and use the
last predicate set as our final Ψ.

See Figure 2 for a real example of predicate invention via
hill climbing search, taken from our experiments.



Figure 2: Predicate invention via hill climbing. (Left) An example task in Blocks. (Middle) Hill climbing over predicate sets, starting with
the goal predicates ΨG. On each iteration, the single predicate that improves Jproxy the most is added to the set. The rightmost table column
shows success rates under a 10-second timeout on a held-out set of evaluation tasks. (Right) Abstract plans generated by planning in the
example task (left) with each predicate set (middle). Each iteration of hill climbing adds a predicate that causes all abstract plans above the
dotted line to be pruned from consideration. At iteration 0, the robot believes it can achieve the goal by simply stacking b2 on b3 and b1
on b2, even though it hasn’t picked up either block. The first step of this abstract plan (red) is unrefinable. At iteration 1, a predicate with
the intuitive meaning Holding is added, which makes the A∗ only consider abstract plans that pick up blocks before stacking them. Still,
the abstract plan shown is unrefinable on the first step because b4 is obstructing b2. At iteration 2, a predicate with the intuitive meaning
NothingAbove is added, which leads the agent move b4 out of the way before picking up b2. This plan is still unrefinable, though: the
second step fails, because the abstraction still does not recognize that the robot cannot be holding two blocks simultaneously. Finally, at
iteration 3, a predicate with the intuitive meaning HandEmpty is added, and the abstract search finds a refinable plan to solve the task.

Designing a Grammar of Predicates

Designing a grammar of predicates can in general be diffi-
cult, since there is a tradeoff between the expressivity of the
grammar and the practicality of searching over it. For our
experiments, we found that a simple grammar suffices:
• The base grammar includes two kinds of predicates:

all the goal predicates ΨG, and single-feature inequal-
ity classifiers. These inequality classifiers are less-than-
or-equal-to expressions that compare a constant against
an individual feature dimension from {1, . . . , d(λ)},
for some object type λ ∈ Λ. For the constant,
we consider an infinite stream of numbers in the pat-
tern 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, . . ., which
represent normalized values of the feature, based on the
range of values it takes on across all states in the dataset
D. We use this pattern because we want our grammar to
describe an infinite stream of classifiers.

• Negations of predicates in the base grammar are included.
• We include two types of universal quantification: (1)

quantifying over all variables, and (2) quantifying over
all but one variable. An example of the first is P() = ∀
?x, ?y . On(?x, ?y), while an example of the second is
P(?y) = ∀ ?x . On(?x, ?y).

• Following prior work [Curtis et al., 2021], we prune out
candidate predicates if they are equivalent to any previ-
ously enumerated predicate, in terms of all groundings
that hold in every state in the dataset D.

See Figure 1 for examples of the kinds of predicates our
grammar can generate. Note that there are many concepts this
grammar cannot represent, but it is nevertheless rich enough
to capture a wide class of state abstractions in practice. To
generate our candidate predicate set for local search (Section
10), we enumerate ngrammar predicates from the grammar. In
our experiments, we use ngrammar = 200.

6 Experiments
Our experiments are designed to answer the following ques-
tions: (Q1) To what extent do our learned abstractions help
both the effectiveness and the efficiency of planning, and how
do they compare to abstractions learned using other objective
functions? (Q2) How do our learned state abstractions com-
pare in performance to manually designed state abstractions?
(Q3) How data-efficient is learning, with respect to the num-
ber of demonstrations? (Q4) Do our abstractions vary as we
change the planner configuration, and if so, how?

6.1 Experimental Setup
We evaluate ten methods across four robotic planning envi-
ronments. All experiments were conducted on a quad-core
Intel Xeon Platinum 8260 processor, and all results are av-
eraged over 10 random seeds, which vary the training and
evaluation tasks, random initializations during learning, and
tiebreaking during planning. For each seed, in all four en-
vironments, we sample a set of 50 evaluation tasks from the
task distribution T , with hyperparameters chosen to involve
more objects and harder goals than were seen at training. Our
key measures of effective and efficient planning are (1) suc-
cess rate and (2) wall-clock time. Planning is limited to a
10-second timeout across all environments and methods.

Environments. Our first three environments were estab-
lished in prior work [Silver et al., 2021], but in that work,
all state abstractions were manually defined (we use the same
state abstractions for our Manual baseline below).
• PickPlace1D. In this toy environment, a robot must pick

blocks and place them onto target regions along a table
surface. All pick and place poses are in a 1D line. Evalu-
ation tasks require 1-4 actions to solve.

• Blocks. In this environment, a robot in 3D must interact
with blocks on a table to assemble them into towers. This



is a robotics adaptation of the blocks world domain in AI
planning. Evaluation tasks require 2-20 actions to solve.

• Painting. In this challenging environment, a robot in 3D
must pick, wash, dry, paint, and place widgets into either
a box or a shelf, as specified by the goal. Evaluation tasks
require 11-25 actions to solve.

• Tools. In this challenging environment, a robot operat-
ing on a 2D table surface must assemble contraptions by
fastening screws, nails, and bolts, using a provided set of
screwdrivers, hammers, and wrenches respectively. This
environment has physical constraints outside the scope of
our predicate grammar, and therefore tests the ability to
cope with an insurmountable lack of downward refinabil-
ity. Evaluation tasks require 7-20 actions to solve.

Methods. We evaluate our method, six baselines, a manu-
ally designed state abstraction, and two ablations.
• Ours. Our main approach, which learns abstractions and

uses them to guide planning on the evaluation tasks.
• Bisimulation. A baseline that learns abstractions by ap-

proximately optimizing the bisimulation criteria [Givan
et al., 2003], as in prior work [Curtis et al., 2021]. Specif-
ically, this baseline learns abstractions that minimize the
number of transitions in the demonstrations where the ab-
stract transition model F is applicable but makes a mis-
prediction about the next abstract state.

• Branching. A baseline that learns abstractions by op-
timizing the branching factor of planning. Specifically,
this baseline learns abstractions that aim to minimize the
number of applicable operators in demonstration states.

• Boltzmann. A baseline that assumes the demonstrator
is acting noisily rationally with respect to the cost-to-go
under the (unknown) optimal abstractions. Specifically,
for any candidate abstraction in our search, we compute
the probability of the demonstration under a Boltzmann
policy, with the AI planning heuristic used as a proxy for
the true cost-to-go; we seek to maximize this probability.

• GNN Shooting. A baseline that trains a graph neural net-
work [Battaglia et al., 2018] policy. This GNN takes in
the current state x, abstract state s = ABSTRACT(x,ΨG),
and goal g. It outputs an action a, via a one-hot vector
over C corresponding to which controller to execute, one-
hot vectors over all objects at each discrete argument po-
sition, and a vector of continuous arguments. We train the
GNN using behavior cloning on the dataD. At evaluation
time, we sample trajectories by treating the outputted con-
tinuous arguments as the mean of a Gaussian with fixed
variance. We use the known transition model f to check
if the goal is achieved, and repeat until timeout.

• GNN Model-Free. A baseline that uses the same trained
GNN as above, but directly executes the policy.

• Random. A baseline that simply executes a random con-
troller with random arguments on each step. No learning.

• Manual. An oracle approach that plans with manually
designed predicates for each environment.

• Down Eval. An ablation of Ours that uses nabstract = 1
during evaluation only, in PLAN (Algorithm 1).

• No Invent. An ablation of Ours that uses Ψ = ΨG, i.e.,
only goal predicates are used for the state abstraction.

Additional details. All sampler neural networks are fully

connected, with two hidden layers of size 32 each, and trained
with the Adam optimizer [Kingma and Ba, 2014] for 1K
epochs using learning rate 1e-3. The regressor networks are
trained to predict a mean and covariance matrix of a mul-
tivariate Gaussian; this covariance matrix is restricted to be
diagonal and PSD with an exponential linear unit [Clevert et
al., 2015]. For training the classifier networks, we subsample
data to ensure a 1:1 balance between positive and negative
examples. All AI planning heuristics are implemented using
Pyperplan [Alkhazraji et al., 2020]; all experiments use the
LMCut heuristic unless otherwise specified. The planning
parameters are nabstract = 1000 for Tools and 8 for the other
environments, and nsamples = 1 for Tools and 10 for the other
environments.

6.2 Results and Discussion
Comparisons with baselines are shown in Figure 3, and allow
us to answer (Q1): our method solves many more held-out
tasks within the timeout. A major reason for this performance
gap is that unlike the baselines, our proxy objective Jproxy ex-
plicitly takes into account the effectiveness and efficiency of
bilevel planning with candidate abstractions. Table 1 com-
pares Ours with Manual and the two ablations. We can ad-
dress (Q2) by comparing Ours to Manual in this table, which
shows that the learned abstractions are on par with, and some-
times better than, our hand-designed abstractions.

Next, we look at the performance of the ablations in Ta-
ble 1. The results for No Invent show that, as expected, using
the goal predicates as a standalone state abstraction is com-
pletely insufficient for most tasks. Comparing Ours to Down
Eval shows that assuming downward refinability at evaluation
time works for PickPlace1D, Blocks, and Painting, but not for
Tools. We were surprised by this result because the manually
designed abstractions for PickPlace1D and Painting are not
downward refinable [Silver et al., 2021]. In contrast, the ab-
stractions learned by Ours for the Tools environment are not
downward refinable; for example, it is not possible to deter-
mine whether a screwdriver’s shape is compatible with that
of a screw, at the abstract level.

To address (Q3), the
figure on the right clearly
shows the data efficiency
of Ours. Each point
shows a mean over 10
seeds, with standard de-
viations shown as verti-
cal bars. Recall that we
provide a single demonstration for each training task. In most
environments, the figure shows that we obtain very good eval-
uation performance within just 50 demonstrations.

To address (Q4), the table on the right shows an ad-
ditional experiment we conducted in the Blocks environ-
ment, where we varied the AI planning heuristic used in
predicate invention and evaluation. The Node column
shows the number of nodes created during abstract search.
While the gap in performance is limited with LMCut, our
system shows a substantial improvement with hAdd. In
the latter case, our approach invents four unary predicates
with the intuitive meanings Holding, NothingAbove,



Figure 3: Ours versus baselines. Percentage of 50 evaluation tasks solved under a 10-second timeout, for all four environments. All results
are averaged over 10 seeds. Horizontal black bars denote standard deviations.

Ours Manual Down Eval No Invent
Environment Succ Node Time Succ Node Time Succ Node Time Succ Node Time
PickPlace1D 98.6 4.8 0.006 98.4 6.5 0.045 98.6 4.8 0.008 39.6 14.1 1.369
Blocks 98.4 2949 0.296 98.6 2941 0.251 98.2 2949 0.318 3.2 427.7 1.235
Painting 100.0 501.8 0.470 99.6 2608 0.464 98.8 489.0 0.208 0.0 – –
Tools 96.8 1897 0.457 100.0 4771 0.491 42.8 152.5 0.060 0.0 – –

Table 1: Ours versus Manual and ablations. Percentage of 50 evaluation tasks solved under a 10-second timeout (Succ), number of nodes
created during GENABSTRACTPLAN (Node), and wall-clock planning time in seconds (Time). The latter two average over solved tasks only.

HandEmpty, and NotOnAnyBlock, to supplement the
given goal predicates On and OnTable. Comparing
these to Manual, which has the same predicates and op-
erators as those in the International Planning Competition
(IPC), we see the following differences: Clear is omit-
ted, and NothingAbove and NotOnAnyBlock are added.

Ours Manual
h Succ Node Time Succ Node Time
LMCut 98.4 2949 0.296 98.6 2941 0.251
hAdd 98.6 121.6 0.115 97.8 3883 0.235

We observed
that the latter
are logical
transforma-
tions of predicates used in the standard IPC blocks world
representation, which motivated us to run a separate,
symbolic-only experiment, where we collected IPC blocks
world problems and transformed them to use these predicates
and associated learned operators. We found that using A∗

and hAdd, planning with our learned representations is
much faster than planning with the IPC representations.
For example, using Fast Downward [Helmert, 2006] on a
problem from IPC 2000 with 36 blocks, planning succeeds
with our representations in 12.5 seconds after approximately
7,000 expansions, whereas it fails within a 2 hour timeout
with the standard encoding. These results are especially
surprising because A∗ with hAdd is generally considered
inferior to other heuristic search algorithms.

7 Related Work
Our work continues a long line of research on learning state
abstractions [Li et al., 2006] and action abstractions [Arora
et al., 2018] for planning. Most relevant are works that learn
symbolic state and action abstractions compatible with AI
planners [Lang et al., 2012; Jetchev et al., 2013; Ugur and

Piater, 2015; Asai and Fukunaga, 2018; Bonet and Geffner,
2019; Ahmetoglu et al., 2020; Umili et al., 2021]. Our work
is particularly influenced by [Pasula et al., 2007], who use
search through a concept language to invent symbolic state
and action abstractions, and [Konidaris et al., 2018], who dis-
cover symbolic abstractions by leveraging the initiation and
termination sets of a provided set of options that satisfy an
abstract subgoal property.

Recent works have also considered learning abstractions
for multi-level planning, like those in the task and motion
planning (TAMP) [Garrett et al., 2021] and hierarchical plan-
ning [Bercher et al., 2019] literature. Some of these efforts
consider learning symbolic action abstractions [Nguyen et
al., 2017; Silver et al., 2021] or refinement strategies [Man-
dalika et al., 2019; Chitnis et al., 2021]; our operator and
sampler learning methods take inspiration from these prior
works. Recent efforts by Loula et al. (2019) and Cur-
tis et al. (2021) consider learning both state and action
abstractions for TAMP, like we do [Loula et al., 2019;
Curtis et al., 2021]. The main distinguishing feature of our
work is that our abstraction learning framework explicitly op-
timizes an objective that considers planning efficiency.

8 Conclusion
In this paper, we have described a framework for learn-
ing abstractions that are optimized for effective and effi-
cient bilevel planning. In experiments, we learned relational,
neuro-symbolic abstractions that generalize over object iden-
tities, efficiently solve long-horizon tasks, and even outper-
form manual abstractions. We also showed that these abstrac-
tions adapt to variations in the task and the planner.
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terthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

[Coumans and Bai, 2016] Erwin Coumans and Yunfei Bai.
PyBullet, a python module for physics simulation for
games, robotics and machine learning. GitHub repository,
2016.

[Cropper and Muggleton, 2016] Andrew Cropper and
Stephen H Muggleton. Learning higher-order logic

programs through abstraction and invention. In IJCAI,
pages 1418–1424, 2016.

[Curtis et al., 2021] Aidan Curtis, Tom Silver, Joshua B
Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kael-
bling. Discovering state and action abstractions for
generalized task and motion planning. arXiv preprint
arXiv:2109.11082, 2021.

[Dantam et al., 2016] Neil T Dantam, Zachary K Kingston,
Swarat Chaudhuri, and Lydia E Kavraki. Incremental task
and motion planning: A constraint-based approach. In
Robotics: Science and systems, volume 12, page 00052.
Ann Arbor, MI, USA, 2016.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. STRIPS: A new approach to the application of the-
orem proving to problem solving. Artificial intelligence,
2(3-4):189–208, 1971.

[Garrett et al., 2021] Caelan Reed Garrett, Rohan Chitnis,
Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and
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