
First-Order Dead End Situations for Policy Guidance in Relational Problems

Jun Hao Alvin Ng1,2 , Ronald P. A. Petrick1

Edinburgh Centre for Robotics
1Department of Computer Science, Heriot-Watt University

2School of Informatics, University of Edinburgh
Edinburgh, Scotland, United Kingdom
{Alvin.Ng, R.Petrick}@hw.ac.uk

Abstract

Dead ends in some domains pose a major challenge
to reinforcement learning (RL) algorithms. When
dead ends are reached, a model-free RL method
typically treats the observation as any other obser-
vations while a model-based RL method relies on
the learned model to predict dead ends. We intro-
duce a learning algorithm to learn effectively from
observed dead ends and influence a policy to avoid
dead ends in subsequent episodes. The algorithm is
extended to learn first-order representations which
can be generalised to unobserved state-action pairs
and to new problems. This allows transfer learn-
ing by directly transferring the learned first-order
knowledge to any problem such that dead ends can
be avoided. A second extension avoids situations
which lead to dead ends regardless of which ac-
tion is executed, or dead end traps. We evaluate the
efficacy of our method in two domains and show
that our method significantly reduces the number of
dead ends reached and achieves transfer learning.

1 Introduction
The ability to perceive, deliberate, and act is a form of in-
telligence necessary for solving complex sequential decision-
making problems. Reinforcement learning (RL) [Sutton and
Barto, 2018] is an approach to solve such problems if the
model is not known. An agent acts in an environment and
obtains some feedback, or observation, about its action in re-
turn. Through a trial-and-error iterative learning process it
learns where to incrementally improve its policy which in turn
provides more meaningful observations that allows the agent
to improve the policy further.

In problems with dead ends—absorbing states with at least
one unachieved goal—learning is less effective as no further
observations can be obtained when a dead end is reached.
Dead ends could also lead to potential dangers for the agent
or its environment. In an exact representation of the prob-
lem, that is, a problem where each state is treated as a unique
state and every observation only applies to the state in which
it was obtained, RL can be inefficient as it takes several ob-
servations of encountering a dead end to learn a policy which

can effectively avoid the dead end. In other words, the sample
complexity is high.

If a problem is structured such that acting similarly in some
states produces similar outcomes, then generalisation of the
observations is possible and can be useful in reducing the
sample complexity. Some problems are relational in nature
where actions change the relations between an arbitrary num-
ber of interacting objects. The interaction between an agent
and its environment is governed by the properties of objects
and relations between objects. The repeated structure in the
model can be represented compactly rather than enumerated
explicitly in an exact representation. We refer to problems
with a relational structure as relational problems. This per-
spective of looking at states and actions with no regards to
objects, but rather variables, leads to a relational representa-
tion of the problem that can facilitate efficient learning.

By aggregating multiple different but similar situations as
one abstract situation, learning can be made more efficient.
The agent no longer needs to revisit the same state over and
over again to learn the correct action as there are other states
similar to it. Generalised knowledge learned from an observa-
tion in a particular state can instead be applied to other similar
states for more informed decision making.

In this paper, we present a novel family of algorithms
aimed at learning and avoiding the situations that lead to dead
ends. Observed dead ends are represented in a first-order rep-
resentation which generalises to unobserved situations. A
policy considers these situations to avoid actions which are
known to lead to dead ends. The first-order representation
also generalises to other problems, allowing transfer learn-
ing between problems of the same domain regardless of the
differences in their objects, initial states, and goal states.

The rest of the paper is organised as follows. First, we re-
view related work on dead ends in decision-making problems
and present the technical background. Then, we describe our
method and present empirical results in two domains. Lastly,
we conclude and discuss future work.

2 Related Work
Dead ends are an important area of study in planning which
aims to produce plans or policies that avoid dead ends with
certainty [Lipovetzky et al., 2016], analyse goal reachability,
and determine if problems are solvable [Steinmetz and Hoff-
mann, 2017]. Existing work uses the transition function to de-

tect or avoid dead ends during search while our work does not
require knowledge of the transition function.1 Instead, our
work avoids situations, or state-action pairs, leading to dead
ends; this does not require predictions of next states following
action execution. While our focus is on online learning and
execution, many offline planners consider dead ends in order
to guide search with the use of heuristics [Cserna et al., 2018;
Ståhlberg et al., 2021] or by pruning the search space [Cama-
cho et al., 2016; Kolobov et al., 2010].

There is also prior RL work which is more closely related
to our work. Safety in RL [Garcı́a and Fernández, 2015] en-
compasses a diverse range of approaches such as those that
change the optimisation criterion or modify the exploration
policy to consider risk. The notion of safety (or risk) varies
as well. For example, [Moldovan and Abbeel, 2012] defines
safety in terms of the probability of returning to the initial
state. [Fatemi et al., 2019] defines dead ends as states from
which all trajectories lead to an undesired terminal state with
probability 1. Suppose that a negative reward is given for
reaching undesired terminal states. Learning in a discounted
MDP could be inefficient as the discounted return for dead
ends are diminished as the trajectories leading to the terminal
states can be many. [Fatemi et al., 2019] proposes an ex-
ploration MDP which is a modification of the original MDP
where there is no discount and the reward function gives −1
for reaching an undesired terminal state and 0 otherwise. Two
Q-functions are learned in parallel using Q-learning, one for
the original MDP and one for the exploration MDP. The be-
haviour policy is generated from the Q-function for the ex-
ploration MDP. Our work does not rely on the Q-function to
avoid dead ends. Furthermore, our approach is able to gener-
alise over unobserved states and problems.

3 Preliminaries
Here we present relevant background on representations for
relational problems and RL.

States and Actions. States and actions are ubiquitous in
decision-making problems. A state can be described with a
conjunction of literals where a literal is a state predicate or a
negated state predicate.

Definition 1 (State Predicates). A state predicate
p(x1, . . . , xn) consists of a symbol p and possibly some
terms x1, . . . , xn. Each term is associated with a type and
holds an object of the same type. A state predicate represents
a fact, a property of an object, or a relation between two or
more objects. A symbolic state predicate has variables in its
terms instead of objects. It can be ground to a state predicate
by substituting variables with objects.

Given a set of state predicates P , a state s is represented as
s =

∧|P |
i=1 pi where pi is the i-th literal.2 Assuming that all

possible combinations of state predicates or their negation are
valid states, then the size of the set of states S is |S| = 2|P |.

1We assume that the preconditions of actions are known though
this is not a hard requirement.

2A symbol with boldface denotes a set and | · | denotes the cardi-
nality of a set.

Similar to state predicates, an action a(y1, . . . , yn) consists
of a symbol a and possibly some terms y1, . . . , yn which are
objects while a symbolic action has variables as terms.

Markov Decision Process. Markov decision processes
(MDPs) model fully-observable environments for sequential
decision making under uncertainty.
Definition 2 (Markov Decision Process). A finite-horizon
MDP is a tuple (S,A,T ,R, s0, H, γ) where S is a set of
discrete states, A is a set of discrete actions, T : S ×A ×
S → [0, 1] is the transition function which defines a proba-
bility distribution over possible next states after executing an
action, R : S ×A → R is the reward function which spec-
ifies rewards for executing actions in states, s0 is the initial
state, H is the time horizon or the maximum number of time
steps, and γ ∈ (0, 1] is the discount factor.

Relational Markov Decision Process. The transition and re-
ward functions can be represented by tables or tabular forms.
T is a |S| × |A| × |S| matrix where an element stores
T (s′|s, a), the probability of observing s′ after executing a
in s. Similarly, R is a |S| × |A| matrix which stores the re-
ward R(s, a) for every state-action pair. This exact or flat
representation makes no assumptions about the structures of
T and R. For large state-action spaces, tabular forms are im-
practical as the number of elements scales exponentially with
the number of state predicates.

Factored MDPs [Boutilier et al., 2000] are one approach to
represent large scale MDPs compactly if T and R are struc-
tured. First, T is a factored transition function if the value
of each state predicate is determined independently of each
other, conditioned on the state and action:

T (s′|s, a) =
∏
i

T (p′i|s, a), (1)

where T (p′i|s, a) is a discrete probability distribution for a
state predicate pi ∈ P and p′i is the value of pi in s′ (i.e., at
the next time step). If T (p′i|s, a) depends only on a small
number of state predicates P− ⊂ P , then T is expressed as:

T (s′|s, a) =
∏
i

T (p′i|P
−, a). (2)

Second, R is a factored reward function if it can be decom-
posed as a sum of localised reward functions, each of which
depends on an action and a subset of P . A factored MDP
is an MDP but with factored transition and reward functions.
A relational Markov decision process (RMDP) is a first-order
representation of a factored MDP which generalises over ob-
jects through the use of variables and represents relational
problems. We use the formalism of RMDPs from [Mausam
and Weld, 2003].
Definition 3 (Relational Markov Decision Process). An
RMDP is a tuple (C,P ,A,O, T ,R, s0, H, γ) where C is a
set of classes or types, P is a set of symbolic state predi-
cates, A is a set of symbolic actions, O is a set of objects and
each object is associated with a type C ∈ C, T is the param-
eterised transition function, R is the parameterised reward
function, s0 is the initial state, H is the time horizon, and γ
is the discount factor.

An MDP can be constructed from an RMDP where P is
the grounding of P with O, S is ℘(P), A is the grounding
of A with O, and T and R are the grounding of T and R,
respectively. ℘ denotes the power set.

Relational Dynamic Influence Diagram Language
(RDDL). Planning languages are human-interpretable
languages used to write domains and problems. RDDL
[Sanner, 2011b] is a planning language used in the last three
International Probabilistic Planning Competitions (IPPCs)
in 2011 [Sanner, 2011a], 2014 [Grzes et al., 2014], and
2018. Semantically, RDDL describes parameterised DBNs
extended with an influence diagram. We use RDDL to write
problems which are represented by RMDPs.

Reinforcement Learning (RL). When the transition func-
tion is not known, RL can be used for sequential decision
making. The sample complexity of an RL algorithm is the
number of observations needed to achieve near-optimal re-
sults. The learning objective is to find a policy π which max-
imises

∑H
t=0 γ

trt, where rt is the immediate reward received
at time step t. π can be generated from the Q-function which
gives the expected return, or Q-value, for executing an action
a in a state s:

Qπ
H(s, a) = Eπ

[
H∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

]
. (3)

TD learning methods update their estimates of the Q-
function given observations (st, at, rt, st+1). TD(λ) methods
average over n-step returns by using eligibility traces. The
update rule for the Q-function is given by:

Qt+1(st, at) = Qt(st, at) + αδtet(st, at), (4)
δt = rt + γQt(st+1, at+1)−Qt(st, at), (5)

where α is the learning rate, et(s, a) is the eligibility trace for
(s, a), and δt is the TD error at time step t.

4 Learning from Dead Ends
We propose a method to learn from dead ends in relational
problems formulated as an RMDP where the transition func-
tion is unknown. Our method is used in conjunction with any
online RL algorithm and records observed dead ends in order
to avoid them in future episodes.
Definition 4 (Terminal States, Goals, and Dead Ends). A ter-
minal state is an absorbing state in which executing any ac-
tion will only lead back to itself; the immediate reward for
executing any action in a terminal state is zero. A problem
has at least one goal which is represented by a state predi-
cate or goal predicate. A goal state is a terminal state where
all goal predicates hold. A terminal state where at least one
goal predicate does not hold is a dead end.
Our definition of dead ends is different from [Lipovetzky et
al., 2016] which defines dead ends as states where the goal
state is unreachable. We consider only terminal states as dead
ends (i.e., at least one goal is not achieved and executing any
action does not change the state). If a goal can no longer
be achieved, then the goal state is unreachable. In [Lipovet-
zky et al., 2016], this is a dead end. However, since some

problems have more than one goal, there remains incentive
(i.e., immediate rewards) to attempt to achieve the remaining
goals. Thus, we do not consider states where the goal state is
unreachable as dead ends. In other words, we are interested
in a different type of problem from [Lipovetzky et al., 2016],
where agents can attempt to achieve the remaining goals even
when some of the goal states are not reachable. Our method
learns and avoids the situations leading to dead ends in this
context. We assume that a goal-directed policy exists such
that dead ends can be avoided with certainty.

Definition 5 (Dead End Situation). A dead end situation χ
describes a situation where executing an action a in a state s
has a non-zero probability of reaching a dead end. χ is either
(s, a) or (s̄, ā) where s̄ is the abstract state of s and ā is the
symbolic action of a.

It might seem straightforward to simply define a reward
function such that a negative reward is given for reaching
dead ends. However, as noted by [Fatemi et al., 2019], this is
not a general solution and can worsen performance in some
domains. When a Q-function approximation is used and it has
not yet converged, the negative rewards and Q-values are gen-
eralised to other state-action pairs such that the generated pol-
icy avoids them even if a trajectory leading to the goal must
pass through them. In our empirical results, we observed that
this is indeed the case for one of the domains tested.

An alternative method to learn from dead ends is to record
every dead end situation in a failure buffer χ. Given an ob-
servation (s, a, r, s′) where s′ is a dead end, the dead end sit-
uation χ = (s, a) is added to χ. A policy generated from
a Q-function is augmented with an auxiliary rule: do not se-
lect an action a in a state s if (s, a) is in χ. There are two
issues with this naive method: (1) lack of generalisation be-
cause only previously observed dead ends can be avoided,
and (2) high computational and space complexities in prob-
lems where there are many dead ends. The space complexity
for storing χ is O(|χ|). The time complexity for checking
if a state-action pair is in χ is O(|χ|). This cost is incurred
in every time step but can be reduced by binning dead end
situations according to their actions.

Example 1 (Dead End in Triangle Tireworld). In
the Triangle Tireworld (TT) [Little and Thiebaux,
2007] domain, a vehicle moves in a grid environment to
reach a goal location (indicated by the goal predicate
GOAL LOCATION(WP)).3 A particular problem for TT is
illustrated in Figure 1. There is a probability of 0.5 of
getting a flat tire when moving. The tire needs to be re-
placed with a spare tire; if there isn’t one, a dead end is
reached. The vehicle can load the spare tire if there is one
at its current location. A dead end is reached if the vehicle
has a flat tire (¬not flattire), it does not have a spare
(¬hasspare), and its current location WP does not have a
spare (¬spare in(WP)). One possible dead end situation

3Uppercase letters denote variables and lowercase letters denote
objects and types.

is χ = (s, a) where:

s =
∧(

GOAL LOCATION(la1a5), ROAD(la1a1, la1a2), . . . ,

¬goal reward received,¬hasspare,
¬spare in(la1a1),¬spare in(la1a2), . . . ,

vehicle at(la1a1),¬vehicle at(la1a2), . . . ,

not flattire
)
,

and a = move vehicle(la1a1, la1a2). This describes the
situation where the vehicle moves to la1a2, has a flat tire,
and has no means of replacing it.

It is desired to have a generalised and compact represen-
tation such that |χ| is reduced and an observed dead end sit-
uation can be generalised to unobserved dead end situations.
Recording a state-action pair (s, a) as χ could be an over-
specialised description of a dead end situation as some liter-
als in s might be inconsequential. This is especially so for
problems with factored transition functions where the transi-
tion of a state predicate depends on a subset of the state. In
Example 1, the ground literals of spare in(WP) for loca-
tions other than the vehicle’s current location (la1a1) or the
location it is moving to (la1a2) are inconsequential.

Suppose that there are two dead end situations in χ: χi =
(si, a) and χj = (sj , a) where si = p1 ∧ . . . pm−1 ∧ pm and
sj = p1 ∧ . . . pm−1 ∧ ¬pm. The difference between si and
sj is the value of pm. si and sj can be abstracted to the same
abstract state, s̄ = p1 ∧ . . . pm−1, by eliminating pm. χi and
χj are replaced with χk = (s̄, a) in χ. The condition for a
state-action pair (st, at) to be in χ is now as follows:

∃(s̄, a) ∈ χ(a = at ∧ s̄ ⊆ st). (6)

Instead of an exact match for states, an abstract state matches
a state if the abstract state is a subset of the state. χk covers
or subsumes χi and χj since s̄ ⊂ si and s̄ ⊂ sj . That is, χk

is a generalisation of χi and χj .

Definition 6 (Coverage and Subsumption). A dead end sit-
uation χ = (s̄, ā) covers any state-action pair (st, at) if
ā = at ∧ s̄ ⊆ st is true (see Equation 6). The set of
state-action pairs covered by χ is denoted by coverage(χ).
Due to the transitive relation of ⊆, a dead end situation χi

subsumes another dead end situation χj if coverage(χj) ⊂
coverage(χi) is true; then χi is said to be more general than
χj . In other words, the generality of a dead end situation is
measured by the cardinality of its coverage.

Subsumption is only applicable when two dead end situa-
tions differ by one literal. It can be done recursively (e.g., χk

can be subsumed by another dead end situation). Dead end
situations which are subsumed by a (more general) dead end
situation are removed from χ. A literal which is eliminated
due to subsumption is inconsequential in representing a dead
end situation. Another possibility for subsumption is when
a dead end situation χ = (s, a) is subsumed by χk. We re-
fer to the aforementioned naive method with subsumption as
LDE (Learning from Dead Ends). It is domain-independent
and does not require any background knowledge. Subsump-
tion reduces the cardinality of χ which in turn reduces the

space complexity. Since subsumption is only possible be-
tween dead end situations involving the same action, the com-
putational complexity of checking for possible subsumption
is O

((|χ|
2

))
. While this can be costly, subsumption is only

attempted when a dead end situation is added to χ and only
between dead end situations involving the same action. In
practice, for every ten dead end situations which involves an
action is added to χ, we check for subsumption of its dead
end situations.

Conceptually, dead end situations are similar to no-
goods—conjunctions of literals that all states in which such a
conjunction holds are dead ends [Kolobov et al., 2010]. Our
work differs from [Kolobov et al., 2010] in how this knowl-
edge is learned and utilised. Furthermore, in the next sec-
tion, we discuss first-order abstractions of dead end situations
which generalise over all problems in a domain.

4.1 First-Order Generalisation
Subsumption produces a more general dead end situation
only when all of its subsumed dead end situations are ob-
served. Thus, LDE does not generalise to unobserved state-
action pairs. To address this, we map a state-action pair (s, a)
to a first-order representation (s̄, ā) where ā is the symbolic
action of a and s̄ is a conjunction of lifted literals given by:

s̄ =
∧

p∈P s

L (p, a), (7)

where s is a conjunction of literals P s and L is a function
which lifts a literal p by substituting objects in its terms with
bound variables if they are also terms of a; otherwise, they
are substituted with free variables. Variables are typed and
have the same type as the objects they substituted.
Example 2 (First-Order Dead End Situation). Following Ex-
ample 1, the first-order dead end situation χ = (s̄, ā) where:

s̄ =
∧(

GOAL LOCATION(⋆WP), ROAD(WP1,WP2),

ROAD(WP1, ⋆WP), ROAD(⋆WP,WP2),

ROAD(⋆WP, ⋆WP), ROAD(WP2, ⋆WP),

¬goal reward received,¬hasspare,
¬spare in(WP1),¬spare in(⋆WP),

spare in(⋆WP),¬spare in(WP2),

vehicle at(WP1),¬vehicle at(⋆WP),

¬vehicle at(WP2), not flattire
)
,

and ā = move vehicle(WP1,WP2).4 The coverage of χ
is measured by the number of states which map to abstract
states that are subsets of s̄. χ covers state-action pairs where
the vehicle has no spare, its current location WP1 has no
spare (which is inconsequential), and it moves to a location
WP2 that has no spare. This demonstrates the generality of
first-order dead end situations.

If (s, a) leads to a dead end, then the first-order dead end
situation χ = (s̄, ā) is added to χ. LDE-FO denotes this
extension to LDE. A state-action pair (st, at) is in χ if its

4⋆C denotes a free variable where C is the variable type.

Algorithm 1: Find dead end traps
11 Function LDE DT(Γ, A, χ):

Input: Trajectory Γ,
Set of actions A,
Failure buffer χ

2 while Γ is not empty do
3 (s, a, r, s′)← Pop from back of Γ
4 Aapp ← Get Applicable Actions(s,A,χ)
5 if |Aapp| > 1 then
6 Add (s, a) to χ
7 break

8 return χ

first-order representation (s̄t, āt) is in χ. Equation 6 is ap-
plied here where actions are replaced with symbolic actions.
Although LDE-FO is computationally more expensive than
LDE due to the additional step of converting a state-action
pair to a first-order representation, LDE-FO generalises to
unobserved dead end situations and over different problems
regardless of its number of objects. First-order dead end situ-
ations can be transferred to any problem of the same domain
such that dead ends can be avoided right away.
LDE-FO assumes that (1) the problem is relational and (2)

deictic objects or objects which are not in the terms of an
action can be treated as a homogeneous typed entity (i.e., de-
ictic objects of the same type are mapped to the same free
variable). This is analogous to existential quantification in
RDDL which treats deictic objects as homogeneous entities.
Our assumptions are valid for problems written in RDDL if
each conditional probability function has at most one deictic
object of each type. If (2) is violated, the deictic objects can
be included as terms in the action.

4.2 Dead End Traps
There might be states where a dead end could be reached
eventually regardless of which action is executed. These
states are referred to as dead end traps.

Definition 7 (Dead End Trap). A dead end trap is a state
where there is a non-zero probability of reaching a dead end
trap or a dead end eventually regardless of which action is
executed.

Definition 7 includes actions which do not change the state
(e.g., inapplicable actions) since they lead back to the same
state which is a dead end trap. Our dead end traps are seman-
tically similar to traps in traditional planning. For example,
[Lipovetzky et al., 2016] defines traps as conditional invariant
formulas: if the formula is satisfied in a state s, it is satisfied
in all states reachable from s.
LDE and LDE-FO avoid dead ends by influencing the pol-

icy to avoid actions which could lead to dead ends. How-
ever, this does not prevent dead ends in the presence of dead
end traps. Suppose that a state s is a dead end trap. Given
sufficient observations, the state-action pairs (s, a),∀a ∈ A
will be added to χ and no actions remain for selection. We
extend LDE and LDE-FO to avoid dead end traps, denoted

by LDE-DT and LDE-DT-FO, respectively. LDE-DT is out-
lined in Algorithm 1 which looks back at a previous time step
to determine the situation which led to a dead end trap. Al-
gorithm 1 is used only when a dead end is reached. The in-
puts are a trajectory Γ which is a sequence of observations
(s, a, r, s′) from the initial state to the dead end, the set of ac-
tions A, and the failure buffer χ. The observations in Γ are
checked sequentially, starting from the most recent one (lines
2 to 7). For each observation (s, a, r, s′), the set of applicable
actions in s is determined (line 4). Actions with precondi-
tions that are satisfied in s and which form a state-action pair
with s that is not in χ are deemed to be applicable. If there
is more than one applicable action (line 5), s might not be
a dead end trap, and thus LDE-DT stops looking backwards
and adds (s, a) (or (s̄, â) for LDE-DT-FO) to χ (line 6). Oth-
erwise, s is a dead end trap and the preceding observation is
considered next. This continues until the condition in line 5
is satisfied; situations which lead to dead end traps are added
to χ. If the condition is not satisfied, then the problem has an
unavoidable dead end and χ will not be updated.

Example 3 (Looking Back in the Face of Dead End Traps).
We consider two particular episodes for a problem instance
of TT which are illustrated in Figure 1. A dead end is reached
in both episodes. In the first episode, illustrated in Figure 1
(top), the vehicle moves from la1a1 to la1a2 at time step t =
0. At t = 1, the vehicle moves to la1a3. It has a flat tire at
t = 2. Since the vehicle did not have a spare and there are no
spares at la1a3, a dead end is reached at t = 2. The state-
action pair (s1,1, move vehicle(la1a2, la1a3)) is added to
χ where s1,1 denotes the state at episode 1, time step 1.

In the next episode, which is illustrated in Figure 1 (mid-
dle and bottom), the vehicle moves from la1a1 to la1a2 at
t = 0. At t = 1, the policy considers the dead end sit-
uation encountered in the first episode and will not select
move vehicle(la1a2, la1a3). The only available action is
to move to la1a2. At t = 1, the vehicle moves to la1a2. It
then has a flat tire at t = 2. A spare is loaded at t = 2 and the
tire is changed at t = 3. At t = 4, the vehicle moves to la1a3.
It has a flat tire at t = 5 and a dead end (s2,5) is reached. The
state-action pair (s2,4, move vehicle(la2a2, la1a3)) can be
added to χ but since there is only one applicable action, s2,4
is a dead end trap.

To avoid s2,4, an alternative action has to be selected at
t = 3. At t = 3, the vehicle has a flat tire and the only
applicable action is changetire. Thus, s2,3 is also a dead
end trap. We continue to look backwards at the previous time
step. Similarly, s2,2 (only loadtire(la2a2) is applicable)
and s2,1 (only move vehicle(la1a2, la2a2) is applicable
because move vehicle(la1a2, la1a3) is ruled out by χ) are
dead end traps. Lastly, at t = 0, there are two applicable ac-
tions. The dead end trap s2,1 can be avoided by executing the
other action, move vehicle(la1a1, la2a1). The state-action
pair (s2,1, move vehicle(la1a1, la1a2)) is added to χ. In
contrast, LDE will add (s2,4, move vehicle(la2a2, la1a3))
to χ. This will not prevent a dead end since there are no other
applicable actions in s2,4 and move vehicle(la2a2, la1a3)
will be executed.

Figure 1: Trajectories in episodes 1 (top row) and 2 (middle row and bottom row) of a particular problem instance of TT. si,j and ai,j denote
the state and action executed, respectively, at episode i, time step j. Each subfigure illustrates a state that an action is executed in. The next
state is illustrated in the next subfigure. Locations are represented by circles. A green circle indicates that the location has a spare. A circle
with a border indicates that the vehicle is at that location. A blue border indicates that the vehicle has a spare while a red border indicates
otherwise. A dotted border indicates that the vehicle has a flat tire while a solid border indicates otherwise.

4.3 Soundness
LDE and its variants are sound if they do not erroneously de-
termine that executing an action could lead to a dead end. For
LDE-DT and LDE-DT-FO, this extends to dead end traps.

Theorem 1 (Soundness of LDE and its Variants). LDE,
LDE-DT, LDE-FO, and LDE-DT-FO are sound.

Proof (sketch). It is straightforward to see that LDE is sound
as it only adds observed dead end situations to χ. Subsump-
tion finds a more general dead end situation among observed
ones and does not generalise to unobserved state-action pairs.
Therefore, a state-action pair (s, a) is in χ if and only if there
is an observation (st, at, rt, st+1) where s = st, a = at, and
st+1 is a dead end. The same reasoning applies for dead end
traps; thus, LDE-DT is also sound.

Next, we prove that LDE-FO is sound. It uses a first-order
abstraction (Equation 7) to generalise to unobserved state-
action pairs. LDE-FO is sound if this generalisation does
not cause it to erroneously determine state-action pairs lead
to dead ends. Let (st, at, rt, st+1) be an observation where
st+1 is a dead end and (s̄t, āt, rt, s̄t+1) be its first-order rep-
resentation. Any state-action pair which maps to (s̄t, āt) must
lead to a next state, with non-zero probability, which maps to

s̄t+1. Formally, ∀s ∈ S, a ∈ A, if s 7→ s̄t and a 7→ āt,
then ∃s′T (s′|s, a) > 0 such that s′ 7→ s̄t+1. This is true if
T (st+1|st, at) = T (s̄t+1|s̄t, āt).

In relational problems, transition functions are parame-
terised and factored:

T (st+1|st, at) =
∏
i

T (p′i|P
−, at)

=
∏
i

T
(
p̄′i
∣∣ ⋃
p∈P−

L (p, at), āt
)

=
∏
i

T (p̄′i|P
−, āt)

= T (s̄t+1|s̄t, āt),

where p′i is the value of the state predicate pi ∈ P in st+1,
p̄i is the symbolic state predicate of pi, and P− results from
the lifting of P− using L . L substitutes objects in p which
are not terms of at with free variables. The validity of the
abstraction due to L requires our assumption that deictic ob-
jects of the same type can be treated as a homogeneous entity,
which completes the proof for LDE-FO. The same reasoning
applies for dead end traps; thus, LDE-DT-FO is also sound.

4.4 Online Reinforcement Learning
LDE (including LDE and its variants unless stated otherwise)
is used in an online RL algorithm where a behaviour policy
π considers the failure buffer χ to select an action in every
time step. π is generated from the Q-function approximation
and avoids any action which forms a state-action pair that is
in χ. We use the relational RL algorithm from our previous
work [Ng and Petrick, 2021b] for this purpose. A relational
RL learns in an abstract state-action space which achieves
generalisation to unseen state-action pairs and to new prob-
lems. This is done by approximating the Q-function with a
linear function approximation using first-order features. A
first-order feature is a lifted literal or a conjunction of lifted
literals which contains bound and/or free variables. The Q-
function approximation is updated in every time step with
Double Q-learning [Hasselt et al., 2016] and replacing eli-
gibility traces [Singh et al., 1995]. We refer readers to [Ng
and Petrick, 2021b] for further details.

Observations are recorded in Γ as
{(s0, a0, r0, s1), . . . , (sH−1, aH−1, rH−1, sH)}
for an episodic trajectory
(s0, a0, r0, s1, a1, r1, s2, . . . , sH−1, aH−1, rH−1, sH). If
the episode terminates with a dead end, the state-action pair
(st−1, at−1) which leads to the dead end st is added to χ
(e.g., with Algorithm 1). For first-order dead end situations,
χ can be transferred to another problem of the same domain
regardless of differences in their sets of objects (O), actions
(A), or state predicates (P). In this target problem, the
policy can utilise χ to avoid dead ends which are relationally
identical to those encountered in previous problems.

Dead end situations and the Q-function approximation are
learned in parallel but represented individually. This decou-
pled approach has two advantages. First, LDE can be used
with any online RL algorithm such as value-based or policy-
based methods. Second, χ can be transferred to problems
with different reward functions as long as the transition func-
tion is the same and the notion of dead ends remain un-
changed (e.g., the agent is not rewarded for reaching dead
ends in the target problem). Transferring the policy or Q-
function, if the online RL algorithm permits (e.g., [Ng and
Petrick, 2021b]), could deteriorate performance in this case.

5 Experiments
We evaluate the performance of our online relational RL al-
gorithm from [Ng and Petrick, 2021b] combined with LDE or
its variants. Experiments were conducted on an Intel Xeon
E5-2660 v3 2.60 GHz with 8 cores and 32 GB of RAM.
Results are averaged over 10 independent runs. The Q-
function approximation and failure buffer are updated across
episodes while no information is exchanged between runs.
We used ϵ-greedy policy with an exponentially decaying ϵ
over episodes. The parameters used are ϵ = 1, α = 0.3,
γ = 0.9, and λ = 0.7. α decays linearly over episodes to
0.05. In all of our results, the shading in the figures repre-
sents one standard deviation.

Benchmark Domains. We ran experiments on two domains:
TT (see Example 1) and Robot Inspection (RI) [Ng and
Petrick, 2021a]. TT is used in IPPC 2014 [Grzes et al., 2014].

It has problems numbered from 1 to 10, where a larger num-
ber represents a problem with a larger state space. We used
TT3 and TT6 where the size of the state-action spaces are
233 × 242 and 259 × 814, respectively.

In RI, a mobile robot needs to find objects by surveying a
location where the objects are at before it can inspect them.
The goals are to transmit information on inspected objects
at the communication tower. An immediate reward of 20 is
given for achieving each goal. The robot can move between
any two locations directly and there is a probability of 0.08
that it is low on energy after moving. It needs to return to
the docking station immediately to recharge, otherwise it is
stranded and a dead end is reached. Its camera can also lose
calibration during inspection with a probability of 0.15 which
reduces the success rate of surveying to 0.2 and inspection to
0.9 (the state is unaffected if these actions fail). The robot can
calibrate its camera at the docking station which restores the
success rate back to 1. The small and large scale problems
are denoted by RI1 and RI2 and the size of their state-action
spaces are 223 × 27 and 229 × 36, respectively. The time
horizon is 40 for RI1 and RI2. The set of objects O in
RI1 includes five locations and three objects while the set
of objects O in RI2 includes ten locations and six objects.
The problems are randomised by randomising the locations
of objects, the docking station, and the communication tower(
COMM TOWER AT(OBJ,WP)

)
.

Figure 2 shows the results for the large scale problems of
both domains. Since there is no penalty for reaching a dead
end in RI, an immediate reward of −1 is given for the re-
maining time steps if a dead end is reached.5 This is only
for the analysis of the results. For LDE-DT-FO, we consider
the case where first-order dead end situations are learned in
the small scale problems, TT3 and RI1, and transferred to
the large scale problems, TT6 and RI2. This is denoted by
LDE-DT-FO (transfer) in the figure. Dead end situa-
tions can still be added if dead ends are encountered in the
large scale problems. The Q-function approximation is not
transferred and is learned from scratch.

The performance is measured by the total rewards received
and the number of dead ends reached. In both problems,
the performance improved when learning from dead ends. In
TT6, LDE-DT and LDE-FO outperform LDE. The former is
due to the prevalence of dead end traps in TT and the latter is
due to the generalisation property of LDE-FO. The combina-
tion of the two, LDE-DT-FO, gives the best performance, re-
quiring only a few episodes to learn the optimal policy. When
first-order dead end situations are transferred, the optimal pol-
icy is obtained almost immediately.
RI2 has no dead end traps. As such, learning from dead

end traps does not improve the performance. Similar to
TT6, learning first-order dead end situations improves perfor-
mance. Although the transfer of dead end situations does not

5Suppose that this is not done. An episode which terminates in
a dead end at t = 1 will have a total reward of −1 while another
episode which achieves a goal and does not terminate in a dead end
will have a total reward of r−H = −20 where r = 20 is the reward
for achieving the goal, H = 40, and the action cost is −1. Clearly,
the latter episode is better than the former but the total rewards sug-
gest otherwise.

Figure 2: Performance of LDE and its variants for the problems TT6 (top) and RI2 (bottom). For LDE-DT-FO (transfer), first-order
dead end situations which are learned in the small scale problems, TT3 and RI1, are transferred to the large scale problems, TT6 and RI2.

lead to an increase in rewards, it reduced the number of dead
ends reached. Unlike TT which gives an immediate reward of
−100 for reaching a dead end, RI does not give a penalty for
reaching a dead end (other than terminating the episode which
prevents further accumulation of rewards). Thus, the differ-
ence in rewards between the variants of LDE is of a lesser
magnitude as compared to TT. We attempted to assign a neg-
ative reward for reaching dead ends in RI. Empirical results
(not shown) indicate that this does not always produce the in-
tended effect. During exploration, if the agent reaches a dead
end more often than achieving a goal (i.e., transmit informa-
tion about an object), then RL learns a policy which avoids
any move actions since the agent can only be low on energy
after moving to another location. This results in poor perfor-
mance where the agent remains in the same location where
possible, for example, by docking and undocking repeatedly.

The computational time for LDE and its variants are depen-
dent on the cardinality of the failure buffer χ. With a first-
order representation, the cardinality of χ is reduced which
decreases the computational time. The computational time
of LDE-DT is higher than LDE due to the additional cost
of checking for dead end traps. In RI2, the computational
time for LDE and LDE-DT is prohibitively long. This is be-
cause there are many dead end situations in RI; a dead end
is reached if the robot is low on energy and does not move to
the base immediately. This increases the cardinality of χ and,
subsequently, the time complexity of searching through χ for
a matching state-action pair. This highlights the scalability of
first-order dead end situations.

6 Conclusion and Future Work
We introduced a novel family of algorithms to learn dead
end situations or state-action pairs which were previously ob-
served to lead to dead ends. LDE learns from dead ends and
influences the policy to avoid previously encountered dead
ends. The efficacy of LDE is improved by generalising obser-
vations with a first-order representation and detecting dead
end traps. LDE-FO allows transfer learning while LDE-DT
learns from dead end traps. Empirical results showed that
learning from dead ends is effective for avoiding dead ends
and significantly improves the performance of an online RL
algorithm in relational problems. Transfer learning also ac-
celerates learning by directly transferring first-order dead end
situations over problems of different scales. In future work,
we plan to investigate the use of learned transition functions
for multi-step lookahead to avoid dead ends more effectively.

Acknowledgements
This work was partially funded by the EPSRC ORCA Hub
(http://orcahub.org/) under grant number EP/R026173/1.

References
[Boutilier et al., 2000] Craig Boutilier, Richard Dearden,

and Moisés Goldszmidt. Stochastic dynamic program-
ming with factored representations. Artificial intelligence,
121(1-2):49–107, 2000.

[Camacho et al., 2016] Alberto Camacho, Christian Muise,
and Sheila A. McIlraith. From FOND to robust prob-

abilistic planning: Computing compact policies that by-
pass avoidable deadends. In Proceedings of the Interna-
tional Conference on International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 65–69,
2016.

[Cserna et al., 2018] Bence Cserna, William J. Doyle, Jor-
dan S. Ramsdell, and Wheeler Ruml. Avoiding dead ends
in real-time heuristic search. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2018.

[Fatemi et al., 2019] Mehdi Fatemi, Shikhar Sharma, Harm
van Seijen, and Samira Ebrahimi Kahou. Dead-ends and
secure exploration in reinforcement learning. In Proceed-
ings of the International Conference on Machine Learning
(ICML), 2019.

[Garcı́a and Fernández, 2015] Javier Garcı́a and Fernando
Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

[Grzes et al., 2014] Marek Grzes, Jesse Hoey, and Scott San-
ner. International Probabilistic Planning Competition
(IPPC) 2014. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
2014.

[Hasselt et al., 2016] Hado van Hasselt, Arthur Guez, and
David Silver. Deep reinforcement learning with Double
Q-learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 2094–2100, 2016.

[Kolobov et al., 2010] Andrey Kolobov, Mausam, and
Daniel S. Weld. SixthSense: Fast and reliable recognition
of dead ends in MDPs. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1108–1114,
2010.

[Lipovetzky et al., 2016] Nir Lipovetzky, Christian Muise,
and Hector Geffner. Traps, invariants, and dead-ends.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 211–215,
2016.

[Little and Thiebaux, 2007] Iain Little and Sylvie Thiebaux.
Probabilistic planning vs. replanning. In Proceedings of
the ICAPS Workshop on the International Planning Com-
petition: Past, Present and Future, 2007.

[Mausam and Weld, 2003] Mausam and Daniel S Weld.
Solving relational MDPs with first-order machine learn-
ing. In Proceedings of the ICAPS Workshop on Planning
Under Uncertainty And Incomplete Information, 2003.

[Moldovan and Abbeel, 2012] Teodor Mihai Moldovan and
Pieter Abbeel. Safe exploration in markov decision pro-
cesses. In Proceedings of the International Conference on
Machine Learning (ICML), pages 1451–1458, 2012.

[Ng and Petrick, 2021a] Jun Hao Alvin Ng and Ronald P. A.
Petrick. Generalised linear function approximation with
first-order features. In Proceedings of the IJCAI Workshop
on Generalization in Planning (GenPlan), 2021.

[Ng and Petrick, 2021b] Jun Hao Alvin Ng and Ronald P. A.
Petrick. Generalised task planning with first-order func-
tion approximation. In Proceedings of the Conference on
Robot Learning (CoRL), 2021.

[Sanner, 2011a] Scott Sanner. ICAPS 2011 International
Probabilistic Planning Competition (IPPC). http://users.
cecs.anu.edu.au/∼ssanner/IPPC 2011/, 2011. Accessed:
18.12.2020.

[Sanner, 2011b] Scott Sanner. Relational dynamic
influence diagram language (RDDL): Language
description. http://users.cecs.anu.edu.au/ ssan-
ner/IPPC 2011/RDDL.pdf, 2011.

[Singh et al., 1995] Satinder Singh, Richard Sutton, and
P. Kaelbling. Reinforcement learning with replacing eli-
gibility traces. Machine Learning, 22, 11 1995.

[Steinmetz and Hoffmann, 2017] Marcel Steinmetz and Jörg
Hoffmann. Search and learn: On dead-end detectors, the
traps they set, and trap learning. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 4398–4404, 2017.

[Ståhlberg et al., 2021] Simon Ståhlberg, Guillem Francès,
and Jendrik Seipp. Learning generalized unsolvability
heuristics for classical planning. In Proceedings of the
International Joint Conference on Artificial Intelligence,
pages 4175–4181, 2021.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/

	Introduction
	Related Work
	Preliminaries
	Learning from Dead Ends
	First-Order Generalisation
	Dead End Traps
	Soundness
	Online Reinforcement Learning

	Experiments
	Conclusion and Future Work

