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Abstract

Deploying robots in real-world domains, such as
households and flexible manufacturing lines, re-
quires the robots to be taskable on demand. Linear
temporal logic (LTL) is a widely-used specification
language with a compositional grammar that nat-
urally induces commonalities across tasks. How-
ever, the majority of prior research on reinforce-
ment learning with LTL specifications treats ev-
ery new formula independently. We propose LTL-
Transfer, a novel algorithm that enables subpolicy
reuse across tasks by segmenting policies for train-
ing tasks into portable transition-centric skills capa-
ble of satisfying a wide array of unseen LTL specifi-
cations while respecting safety-critical constraints.
Our experiments in a Minecraft-inspired domain
demonstrate the capability of LTL-Transfer to sat-
isfy over 90% of 500 unseen tasks while training
on only 50 task specifications and never violating a
safety constraint. We also deployed LTL-Transfer
on a quadruped mobile manipulator in a household
environment to show its ability to transfer to many
fetch and delivery tasks in a zero-shot fashion.

1 Introduction

A key requirement for deploying autonomous agents in many
real-world domains is the ability to perform multiple novel
potential tasks on demand. These tasks typically share com-
ponents like the objects and the trajectory segments involved,
which creates the opportunity to reuse knowledge across tasks
[Taylor et al., 2009]. For example, a service robot on the fac-
tory floor might have to fetch the same set of components but
in different orders depending on the product being assembled,
in which case it should only need to learn to fetch a compo-
nent once.

Linear temporal logic (LTL) [Pnueli, 1977] is becoming
a popular means of specifying an objective for a reinforce-
ment learning agent [Littman er al., 2017][Toro Icarte et al.,
2018][Camacho et al., 2019]. Its compositional grammar re-
flects the compositional nature of most tasks. However, most

*Equal contribution.

(a) pick up book

(b) deliver book (c) pick up juice bottle (d) deliver juice bottle

Figure 1: The robot is executing 4 transition-centric options sequencially, each of which
is transferred from a training task. They are composed together to solve a novel task,
F(book A F(desk, N F(juice A Fdesk,))), i.e. fetch and deliver a book then a
bottle of juice to the user.

prior approaches to reinforcement learning for LTL specifi-
cations restart learning from scratch for each LTL formula.
We propose LTL-Transfer, a novel algorithm that exploits the
compositionality inherent to LTL task specifications to enable
an agent to maximally reuse policies learned in prior LTL for-
mulas to satisfy new, unseen specifications without additional
training. For example, a robot that has learned to fetch a set
of components on the factory floor should be able to fetch it
in any order. LTL-Transfer also ensures that transferred sub-
policies do not violate any safety constraints.

We demonstrated the efficacy of LTL-Transfer in a
Minecraft-inspired domain, where the agent can complete
over 90% of 500 new task specifications by training on only
50 specifications. Further, we demonstrate that it is possible
to transfer satisfying policies with as few as 5 training spec-
ifications for certain classes of LTL formulas. We then de-
ployed LTL-Transfer on a quadruped mobile manipulator to
show its zero-shot transfer ability in a real-world household
environment when performing with fetch and delivery tasks.

2 Preliminaries

Linear temporal logic (LTL) for task specification: LTL
is a promising alternative to a numerical reward function as
a means of expressing task specifications. An LTL formula
© is a Boolean function that determines whether a given tra-
jectory has satisfied the objective expressed by the formula.
[Littman er al., 2017] argue that such task specifications are
more natural than numerical reward functions, and they have
subsequently been used as a target language for acquiring task
specifications in several settings, including from natural lan-
guage [Patel er al., 2020] and learning from demonstration
[Shah et al., 2018]. Formally, an LTL formula is interpreted
over traces of Boolean propositions over discrete time, and is



defined through the following recursive syntax:
pi=a|-p eV [ Xe |1 Ueps (1

Here o represents an atomic proposition, mapping a state
to a Boolean value; ¢, @1, (o are any valid LTL formulas.
The operator X (next) is used to define a property X that
holds if ¢ holds at the next time step. The binary operator U
(until) is used to specify ordering constraints. The formula,
1 U a9, holds if (5 holds at time point in the future, and ¢,
holds until 5 first holds. The operators — (not), and V (or)
are identical to propositional logic operators. We also utilize
the following abbreviated operators: A (and), F (eventually),
and G (globally or always). F specifies that the formula ¢
must hold at least once in the future, while G specifies that
 must always hold in the future. Consider the Minecraft map
depicted in Figure 2. The task of collecting both wood and
axe is represented by the LTL formula Faze A Fwood. The
task of collecting wood after collecting axe is represented by
the formula F(aze A Fwood). Similarly, the task of collect-
ing wood only once axe has been collected is represented by
the formula Fwood A —wood U axe

Every LTL formula can be represented as a Biichi au-
tomaton [Vardi, 1996][Gerth et al., 1995] interpreted over
an infinite trace of truth values of the propositions used to
construct the formula, thus providing an automated transla-
tion of a specification into a transition-based representation.
We restrict ourselves to the co-safe [Kupferman and Vardi,
2001][Manna and Pneuli, 1990] fragment of LTL that con-
sists of formulas that can be verified by a finite length trace,
thus making it ideal for episodic tasks. [Camacho et al., 2019]
showed that each co-safe LTL formula can be translated into
an equivalent reward machine [Icarte er al., 2022][Icarte et
al., 2018] M, = <QLP7 40,¢5 Qte'rm,tpa o, Ty, Rg0>; where Qgp
is the finite set of states, qo,,, is the initial state, Qserm,, is the
set of terminal states; T, : Q, x 2P Q,, is the determin-
istic transition function; and R, : Qw — R represents the
reward accumulated by entering a given state. LTL-Transfer,
our proposed algorithm for transferring learned policies to
novel LTL specifications, is compatible with all algorithms
that generate policies by solving a product MDP of the re-
ward machine M, and the task environment.

Options framework: [Sutton e al., 1999] introduced
a framework for incorporating temporally-extended actions,
called options, into reinforcement learning. An option o =
(Z,B,7) is defined using the initiation set Z, which deter-
mines the states where the option can be executed; the ter-
mination condition 3, which determines when option execu-
tion ends; and the option policy . We utilize the options
framework to define the task-agnostic skills learned by LTL-
Transfer.

3 Related work

Most approaches aimed at extending the reinforcement learn-
ing paradigm to temporal tasks rely on the automaton equiv-
alent of the LTL formula to augment the state space and
generate an equivalent product MDP. Q-learning for re-
ward machines (Q-RM) [Camacho et al., 2019][Icarte et al.,
2022][Icarte et al., 2018], geometric-LTL (G-LTL) [Littman

et al., 20171, LPOPL [Toro Icarte er al., 2018] are examples
of approaches that extend the environment state-space with
the automaton equivalent to the LTL specification. Notably,
[Jothimurugan et al., 2021] proposed DiRL, an algorithm that
interleaves graph-based planning on the automaton with hier-
archical reinforcement learning to bias exploration towards
trajectories that lead to the successful completion of the LTL
specification. However, while these approaches exploit the
compositional structure of LTL to speed up learning, they do
not exploit the compositionality to transfer to novel task spec-
ifications. The policy to satisfy a novel LTL formula must be
learned from scratch.

A common approach towards generalization in a temporal
task setting has been to learn independent policies for each
subtask [Leén et al., 2020][Ledn et al., 20211[Araki et al.,
2021][Andreas ef al., 2017] an agent might perform in the
environment. When given a new specification, the agent se-
quentially composes these policies in an admissible order.
Consider the Minecraft-inspired grid world depicted in Fig-
ure 2 containing wood and axe objects. The subtask-based
approaches would train policies to complete subtasks involv-
ing reaching each of these objects. In the case of being tasked
with the specification ;.5 = Fwood A (—wood U aze) (i.e.
collect wood, but do not collect wood until axe is collected),
agents trained with the subtask-based approaches would vio-
late the ordering constraint by reaching axe through the grid
cells containing wood. These approaches rely on additional
fine-tuning to correctly satisfy the target task. We propose a
general framework for transferring learned policies to novel
specifications in a zero-shot setting while preserving the abil-
ity to not violate safety constraints.

Our approach draws inspiration from prior works on
learning portable skills in Markov domains [Konidaris and
Barto, 2007][James et al., 2020][Bagaria and Konidaris,
2019][Bagaria et al., 2021]. These approaches rely on
learning a task-agnostic representation of preconditions, con-
straints, and effects of a skill based on the options framework
[Sutton er al., 1999]. We apply this paradigm towards learn-
ing portable skills requisite for satisfying temporal specifica-
tions.

[Kuo et al., 2020] proposed learning a modular policy net-
work by composing subnetworks for each proposition and
operators. The final policy network is created through the
subnetwork modules for a new task specification. [Vaezipoor
et al., 2021] propose learning a latent embedding over LTL
formulas using a graph neural network to tackle novel LTL
formulas. In contrast, our approach utilizes symbolic meth-
ods to identify subpolicies best suited for transfer, thus re-
quiring training on orders of magnitude fewer specifications
to achieve comparable results. Finally, [Xu and Topcu, 2019]
considered transfer learning between pairs of source and tar-
get tasks, while our approach envisions training on a collec-
tion of task specifications rather than pairs of source and tar-
get tasks.

4 Problem definition

Consider the environment map depicted in Figure 2b. As-
sume that the agent has trained to complete the spec-



ifications to individually collect aze (Faze) and wood
(Fwood). Now the agent must complete the specification
F(aze A F wood), i.e. first collect axe, then wood. Here the
agent should identify that sequentially composing the poli-
cies for Faxe and Fwood completes the new task (as de-
picted in blue). Now consider a different test specification
o = Fwood N —wood Uaze, i.e. collect wood, but avoid
visiting wood until aze is collected. Here the agent must re-
alize that policy for Faxe does not guarantee that wood is
not visited. Therefore it must not start the task execution us-
ing only these learned skills so as to not accidentally violate
the ordering constraint. We develop LTL-Transfer to gener-
ate such behavior when transferring learned policies to novel
LTL tasks. We begin by formally describing the problem set-
ting.

Train: F wood, F axe
2 _ Test:
] _g | V | 0 ¢, = F(axe A F wood)
ST ! . y: o Fw .
f “ﬁ\ /5% ﬁ\ ]‘r% fﬁ\ @, = Fwood A ~wood U axe
0 0 0 | /5 axe
] 0 wood

(a) Subtask Algorithms (b) LTL-Transfer (c) Ideal

Figure 2: An example 5X5 map in a Minecraft-like grid world. The agent is assumed
to have trained on the two training specifications, and is expected to satisfy (1 and 2.
Figure la depicts the trajectories adopted by an agent using a subtask-based algorithm
(blue for o1, red for ¢2). Figure 1b depicts the trajectories followed by LTL-Transfer,
our proposed algorithm. Note that LTL-Transfer does not start the task execution for 2,
as the training task policies do not guarantee the preservation of the ordering constraint.
Figure 1c depicts the optimal trajectories for 1 and ¢2.

We represent the environment as an MDP without the re-
ward function Ms = (S, A, Ts), where S is the set of states,
A is the set of actions, and Ts : S x A x § — [0, 1] repre-
sents the transition dynamics of the environment. We assume
that the learning agent does not have access to the transition
dynamics. Further, a set P of Boolean propositions c repre-
sents the facts about the environment, and a labeling function
L : S — 27 maps the state to these Boolean propositions.
These Boolean propositions are the compositional building
blocks for defining the tasks that can be performed within the
environment M.

We assume that a task within the environment Mg is de-
fined by a linear temporal logic (LTL) formula ¢, and that
the agent is trained on a set of training tasks @irqin =
{©1, 92, .-, pn}. We further assume that these policies were
learned using a class of reinforcement learning algorithms
that operate on a product MDP composed of the environment
M and the automaton representing the non-Markov LTL
task specification. Q-RM [Camacho et al., 2019][Icarte et
al., 2022][Icarte et al., 20181, G-LTL [Littman et al., 20171,
LPOPL [Toro Icarte ef al., 2018] are examples of such al-
gorithms. LPOPL explicitly allows for sharing policies for
specifications that share progression states; therefore, as the
baseline best suited for transfer in a zero-shot setting, we
choose LPOPL as our learning algorithm of choice. Although
LPOPL was not explicitly design for zero-shot transfer, but it
has limited transferability to unseen tasks. Any algorithm de-
signed to transfer to solve novel tasks should perform as well
as LPOPL.

LTL-Transfer operates in two stages. In the first stage, it

accepts the set of training tasks @4, and the learned poli-
cies, and outputs the set of task-agnostic, portable options O..
In the second stage, given a novel task specification ;. and
the set of options O., LTL-Transfer identifies and executes a
sequence of options to satisfy @yest.

5 LTL-Transfer with transition-centric
options

An LTL specification ¢ € D4, to be satis-
fied is represented as the reward machine M, =
(Qy1 90,05 Dterm,p, ¥, T, Rp).  This specification must
be satisfied by the agent operating in an environment
Ms = (S, A, Ts). The policy learned by LPOPL is Markov
with respect to the environment states S for a given RM
state, i.e. the subpolicy to be executed in state ¢ € Q,,
S — A

An option o7 is executed in the reward machine (RM) state
g. Our insight is that each of these options triggers a transition
in the reward machine on a path that leads towards an accep-
tance state, and these transitions may occur in multiple tasks.
There might be multiple paths through the reward machine to
an accepting state; therefore, the target transition of an option
of is conditioned on the environment state where the option
execution was initiated. We propose recompiling each state-
centric option into multiple transition-centric options by par-
titioning the initiation set of the state-centric option based on
the transition resulting from the execution of the option pol-
icy from the starting state. Each resulting transition-centric
option will maintain the truth assignments of P to ensure self-
transitions until it achieves the truth assignments required to
trigger the intended RM transition. These transition-centric
options are portable across different formulas. We describe
our proposed algorithm in Section 5.1.

Given a novel task specification @;cs; € Pirain, the agent
first constructs a reward machine representation of the spec-
ification, M., __,, then identifies a path through the reward
machine that can be traversed by a sequential composition of
the options from the set of transition-centric options O.. A
key feature of our transfer algorithm is that it is sound and
terminating, i.e. if it returns a solution with success, that
task execution will satisfy the task specification. Further, it
is guaranteed to terminate in finite time if it does not find a
sequence of options that can satisfy a given task. We describe
the details of this planning algorithm in Section 5.2.

The key advantage of this approach is that the compila-
tion of options can be computed offline for any given en-
vironment, and the options can then be transferred to novel
specifications. Thus learning to satisfy a limited number of
LTL specifications can help satisfy a wide gamut of unseen
LTL specifications.

5.1 Compilation of transition-centric options

The policy learned by LPOPL to satisfy a specification ¢
identifies the current reward machine state ¢ € Q,, the task is
in and executes a Markov policy 77 until the state of the re-
ward machine progresses. This subpolicy can be represented
as an option, of = (S, Be:q,ﬂjﬁ; where the initiation set
is the entire state-space of the task environment; the option



terminates when the truth assignments of the propositions o
do not satisfy the self-transition, represented by the Boolean
function (. defined as follows,

L
Be = {0’

A transition-centric option, o, .,, executes a Markov pol-
icy such that it ensures that the truth assignments of P satisfy
the self-transition formula e; at all time steps until the policy
yields a truth assignment that satisfies es. A transition-centric
option is defined by the following tuple:

Ocq,e0 = <S?/8€177T761?62)f62>' (3)

Here, the initiation set represents the entire environment
state-space S; the termination condition is defined by the dis-
satisfaction of the self-transition as represented by f.,; the
option executes the Markov policy 7 : & — A; e; and eq
represent the self-transition and the target edge formulas re-
spectively; and f,, : S — [0, 1] represents the probability of
completing the target edge e; when starting from s € S.

Algorithm 1 describes our approach to compiling each
state-centric option oy’ into a set of transition-centric options.
If £ is the set of pairs of self and outgoing edge formulas from
state ¢ of the reward machine, then executing the option’s
policy 77 results in a distribution over the outgoing edges
{e: ¢ ¢’ is out-neighbor of ¢} conditioned on the environ-
ment state s € S where the option execution was initiated.

Thus the distribution f.» —acts as a soft segmenter

9,9
fer
pling rollouts from all possible environment states in dis-
crete domains, or can be learned using sampling-based
methods [Bagaria and Konidaris, 2019][Bagaria et al.,
2021] in continuous domains.  Each state-centric op-
tion o, can be compiled into a set of transition-options,

{Oe;",q,e:q, : q € Qy, ¢'is out-neighbor of q}.

if L(s) ¥ e
otherwise.

@)

of the state-space S. is estimated by sam-

Algorithm 1 Compile state-centric options to transition-
centric options

1: function COMPILE(M 5, Dirain, Of)
and the learned state-centric options

> Environment, training specifications,

2 O 0

3 for o € Pirain do

4. M, < GENERATERM(¢)

5 OZ, - {05’ Lo =, qun’ c Oq} > All state-centric options

associated with task ¢

6: forof = (S, B¢, %) € OF do

7: E «+— {(eq"’yq7 efﬁq,) sed  is the self edge, q’ is an out-neighbor ofq}

8: for s € Sdo

9: Generate N, rollouts from s with 7

10: Record edge transition frequencies ns(e2) V (e1, e2) € €

11: . ms(ed o) /
: fe;qu/ (s) — —x== Vg €
{q’ : ¢’ is an out-neighbor of ¢}

12: 029 {o1? = (S, B¢ \7f el el . fef )} b Al
transition-centric options from state-centric option o;"

13: O + 0., UOL?

14: return O,

5.2 Transferring to novel task specifications

Our proposed algorithm for composing the transition-centric
options in the set O, to solve a novel task specification ;¢
is described in Algorithm 2. Once the reward machine for
the test task specification is generated, Line 3 examines each
edge of the reward machine, and identifies the transition-
centric options that can achieve the edge transition while
maintaining the self transition eff:;it, where ¢’ is the source
node of the edge; if no such option is identified, we remove
this edge from the reward machine. Line 7 identifies all paths
in the reward machine from the current node to the accepting
node of the RM. Lines 8 and 9 construct a set of all avail-
able options that can potentially achieve an outgoing transi-
tion from the current node to a node on one of the feasible
paths to the goal state.

The agent then executes the option with the highest prob-
ability of achieving the intended edge transition determined
by function f (Lines 12 and 13). Note that the termination
condition for the option, of, ., is satisfied when either the
option’s self-transition condition is violated, i.e. L(s) ¥ e,
or when it progresses to a new state of the reward machine

I? the option fails to progress the reward machine, it is
deleted from the set (Line 15), and the next option is executed.
If at any point, the set of executable options is empty without
having reached the accepting state ¢ ', Algorithm 2 exits with
a failure (Line 17). If the reward machine progresses to ¢ ', it
exits with success.

Algorithm 2 Zero-shot transfer to test task ¢*

1: function TRANSFER(M s, 0*, O.)

2: M, < GENERATE_.RM(p™)
31 M« PRUNE(M,,x)
4. s ¢ INITIALIZE(M s5)
5: q < qo,p
6: while ¢ # ¢ do bq' € Qterm,ex is the accepting state for the
underlying task specification.
7. P+« {pi : p; = leo,...e_ ;] are paths connecting g and ¢ | in M«
n »
8: Vp € P Oplo) =
{ocl,ﬁ2 : MATCHEDGE((e1, e2), (€2, p[0])), 0cy cq € oc} > Edge
options for the first edge in each path
9: Ot = U, Oppo)
10: (s,d") (s, q)
11: while O} # 0 and ¢’ = q do
12: 0" + arg maX,, ., €0 fe2(s) > Select option most likely to
complete the transition
: (s’,q") + EXECUTE(r™) © 7™ is the policy corresponding to the
option
if ¢ = g then
15: Olo] = O[oj \ 0™ > If o} does not induce progression, delete it
16: if ¢ = ¢ then
17: return Failure
18: else
19: (s,q) « (s',q")
20: return Success

5.3 Matching transition-centric options to reward
machine edges

The edge matching conditions identify whether a given
transition-centric option can be applied safely to transition



along an edge of the reward machine on a feasible path. Here
we propose two edge matching conditions, constrained and
relaxed, that both ensure that the task execution does not fail
due to an unsafe transition. The edge matching conditions are
used to prune the reward machine graph to contain only the
edges with feasible options available (Line 3) and enumer-
ate feasible options from a given reward machine state (Line
8). We use a propositional model counting approach [Valiant,
1979] to evaluate the edge matching conditions. We propose
the following two edge matching conditions (Further details
of the implementation of the edge matching conditions are
provided in the supplementary material):

Constrained Given a test specification ;.s;, Where the
task is in the state g, the self-transition edge is e(fgst and
the targeted edge transition is e“’ﬂ;“ we must determine if
the transition-centric option o, ., matches the required tran-
sitions. The Constrained edge matching criterion ensures that
every truth assignment that satisfies the outgoing edge of the
option, eo, also satisfies the targeted transition for the test
specification e“”t“t. Similarly, every truth assignment that
satisfies the self transition edge of the option e; must also
satisfy the self-transition formula ef*¢=*. This strict require-
ment reduces the applicability of the learned options for sat-
isfying novel specifications but ensures that the targeted edge
is always achieved.

Relaxed For the Relaxed edge matching criterion, the self
edges e and ef's=* must share satisfying truth assignments,

so must the targeted edges es and e%q“‘ However, it allows
the option to have valid truth assignments that may not sat-
isfy the intended outward transition; yet none of those truth
assignments should trigger a transition to an unrecoverable
failure state qJ- of the reward machine. Further, all truth as-
signments that terminate the option must not satisfy the self-
transition condition for the test specification. The Relaxed
edge matching conditions can retrieve a greater number of el-
igible options.

6 Experiments

We evaluated the LTL-Transfer algorithm in the Minecraft-
inspired domains' commonly seen in research into com-
positional reinforcement learning and integration of tem-
poral logics with reinforcement learning [Andreas et
al., 2017][Toro Icarte et al., 2018][Jothimurugan et al.,
2021][Araki er al., 2021]. In these domains, the task spec-
ifications comprise a set of subtasks that the agent must com-
plete and a list of precedence constraints defining the admis-
sible orders in which the subtasks must be executed. These
specifications belong to the class of formulas that form the
support of the prior distributions proposed by [Shah et al.,
2018].

Our experiments are aimed at evaluating the following hy-
potheses:

1. H1: Both the Constrained and Relaxed edge matching
conditions should exceed LPOPL’s capability to transfer
to novel specifications. Note that while LPOPL was not

'We used the version by [Toro Icarte er al., 2018] https:/

bitbucket.org/RTorolcarte/Ipopl

explicitly developed to transfer to novel specifications in
a zero-shot setting, it can satisfy specifications that are
a progression of one of the formulas that the agent was
trained on. Thus any algorithm designed to transfer to
solve novel tasks should perform as well as LPOPL.

2. H2: Relaxed edge matching criterion will result in a
greater success rate than the Constrained criterion.

3. H3: It is easier to transfer learned policies for LTL for-
mulas conforming to certain types (Section 6.2).

4. H4: Training with formulas conforming to certain types
leads to a greater success rate when transferring to all
specification types.

6.1 Task Environment

We implement LTL-transfer? within a Minecraft-inspired dis-
crete grid-world domain [Andreas et al., 2017][Toro Icarte et
al., 2018]. Each grid cell can be occupied by one of nine ob-
ject types, or it may be vacant; note that multiple instances of
an object type may occur throughout the map. After the agent
enters a grid cell occupied by an object instance, the propo-
sition representing that object type becomes valid. The agent
can choose to move along any of the four cardinal directions,
and the outcome of these actions is deterministic. An invalid
action would result in the agent not moving at all. A given
task within this environment involves visiting a specified set
of object types in an admissible order determined by ordering
constraints. The different types of ordering constraints are
described in Section 6.2. Task environment maps are similar
to the 5 x 5 maps depicted in Figure 2; however, all the maps
used for evaluation were 19 x 19.

6.2 Specification Types

We considered the following three types of ordering con-
straints for a comprehensive evaluation of transferring
learned policies across different LTL specifications. Each
constraint is defined on a binary pair of propositions a and
b, and without loss of generality, we assume that a should
precede b. The three types of constraints are as follows:

1. Hard: Hard orders occur when b must never be true be-
fore a. In LTL, this property can be expressed through
the formula —b U a.

2. Soft: Soft orders allow b to occur before a as long as
b happens at least once after a holds for the first time.
Soft orders are expressed in LTL through the formula
F(a N Fb).

3. Strictly Soft: Strictly soft ordering constraints are simi-
lar to soft orders; however, b must be true strictly after a
first holds. Thus a and b holding simultaneously would
not satisfy a strictly soft order. Strictly soft orders are
expressed in LTL through the formula F(a A XFb)

We sampled five training sets: hard, soft, strictly soft, no-
orders, and mixed; with 50 formulas each that represent dif-
ferent specification types. The sub-tasks to be completed and
the ordering constraints were sampled from the priors pro-
posed by [Shah er al., 2018]. All ordering constraints within

2Code: https://github.com/jasonxyliu/Itl_transfer
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Figure 3: Figure 3a depicts the success rate on the mixed test set after training on
the mixed training set of various sizes for the LPOPL baseline and for the two edge-
matching criteria. Figure 3b depicts the success rate of the agent trained on mixed
training sets of various sizes using LTL-Transfer with the Constrained edge-matching
criterion when transferring to test sets of various specifications types. Figure 3c depicts
the success rates with the Relaxed edge-matching criterion. Note that the error bars
depict the 95% credible interval if the successful transfer was modeled as a Bernoulli
distribution.

the hard, soft, and strictly soft training sets were expressed
through the respective templates described here. There were
no ordering constraints to be satisfied for the no-orders. In
the mixed training set, each binary precedence constraint was
expressed as one of the three ordering types described in 6.2.

In addition to the training set, we sampled a test set of 100
formulas for each set type. This mimics the real-world sce-
nario where the agent would train on a few specifications but
might be expected to satisfy a wide array of specifications
during deployment.

6.3 Experiment configurations

For each experimental run, we specified the training set type
and size and the test set type. All experiments were conducted
on four different grid world maps. The evaluation metrics
include the success rate on each of the test set specifications.
We logged the reason for any failed run.

The precomputations for compiling the set of edge-centric
options were computed on a high-performance computing
(HPC) cluster hosted by Brown University. As the compi-
lation of state-centric options into transition-centric options
allows for large-scale parallelism with no interdependency,
we were able to share the workload among a large number of
CPU cores.

7 Results and Discussion

Comparison with LPOPL LPOPL’s use of progressions and
the multi-task learning framework allow it to handle tasks
that lie within the progression set of the training formulas.
To compare the performance of LTL-Transfer and LPOPL,
we trained each of them on mixed training sets of varying
sizes and evaluated their success rate on mixed test set. Fig-
ure 3a depicts the success rate of LTL-Transfer (orange and
blue lines) and LPOPL (green line). The error bars repre-
sent the 95% credible interval if the success rate was mod-
eled as the parameter of a Bernoulli distribution with a con-
jugate beta prior. Note that LTL-Transfer exceeds the perfor-
mance of LPOPL in zero-shot transfer to novel specifications
using both the Constrained and Relaxed edge matching cri-
teria (Section 5.3) thus supporting H1. By training on 50
specifications of the mixed type, LTL-Transfer with the Re-
laxed edge matching criterion can complete more than 90%
of unseen task specifications.
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Figure 4: Figure 4a depicts the heatmap of success rates with various training and test
specification types with the Constrained edge matching criterion. Similarly, Figure 4b
depicts the heatmap with the Relaxed edge matching criterion.

Effect of edge matching criterion Next, we trained our
agent on mixed specification types of varying sizes and used
LTL-Transfer to transfer the learned policies to complete the
specifications in all five test sets. The success rates with the
Constrained edge matching criterion are depicted in Figure
3b, while those for the Relaxed edge matching criterion are
depicted in Figure 3c. We note that the Relaxed edge match-
ing criterion is capable of successfully transferring to a larger
number of novel specifications across all specification types,
thus supporting H2.

Relative difficulty of specification type Figure 3b indi-
cates that the different specifications are equally difficult to
transfer learned policies to when using the Constrained edge
matching criterion. However, Figure 3c indicates that with
the Relaxed edge matching criterion, LTL-Transfer is capa-
ble of transferring to novel specifications with Soft or Strictly
Soft orders after training on very few specifications. It also
indicates that specifications with Hard orders are the most dif-
ficult to transfer to. Therefore H3 is supported only for the
Relaxed edge matching criterion, and not for the Constrained
criterion.

Transferring across specification type Finally, we eval-
uate whether certain specification types are more capable of
transferring to all specification types by training our agent on
different specification types and attempting to transfer those
policies to other specification types. Figure 4a depicts the
heatmap of success rates obtained by training the agent on
50 specifications of the type indicated by the row and trans-
ferring it to the test set of specification types indicated by
the column while using the Constrained edge matching crite-
rion. Similarly, Figure 4b depicts the success rates using the
Relaxed edge matching criterion. Note that no single specifi-
cation type proved to be the best training set, thus providing
evidence against H4.

Note that in all of our runs, the agent never violated a con-
straint leading to an unrecoverable failure, which is crucial in
safety-critical applications. The causes for failure to transfer
included cases where there was no feasible path to an accept-
ing state with the set of options, or the agent attempted all
available options without progressing the task.

8 Robot Demonstrations

We demonstrate LTL-Transfer on Spot [Boston Dynam-
ics, ], a quadruped mobile manipulator, in a household



environment where the robot can fetch and deliver ob-
jects while navigating through the space.  The robot
was trained on 2 LTL tasks —desk, U book A Fdesk,
and —desky U juice N Fdesky, then transferred the
learned skills to 8 combinations of soft-ordering tasks
F(obj. A F(desk. A F(obj. A Fdesk,))) in zero-shot fash-
ion. For the tasks that LTL-Transfer cannot transfer (e.g.
—deskq U book N —juice U desk, N —desk, Ujuice A
Fdesky), the robot, as expected, does not start execution thus
avoids violations of any constraints 3.

Please see the supplementary material for more details
about this environment, the training and test tasks.

9 Conclusion

We introduced LTL-Transfer, a novel algorithm that lever-
ages the compositionality of linear temporal logic to solve
a wide variety of novel, unseen LTL specifications. It seg-
ments policies from training tasks into portable, task-agnostic
transition-centric options that can be reused for any task. We
demonstrate that LTL-Transfer can solve over 90% of unseen
task specifications in our Minecraft-inspired domains while
training on only 50 specifications. We further demonstrated
that LTL-Transfer never violated any safety constraints and
aborted task execution when no feasible solution was found.

LTL-Transfer enables the possibility of maximally trans-
ferring the learned policies of the robot to new tasks. We en-
vision further developing LTL-Transfer to incorporate long-
term planning and intra-option policy updates to generate not
just satisfying but optimal solutions to novel tasks.
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10 Appendix

10.1 Edge matching criteria

LTL-Transfer uses a set of edge matching conditions to prune
the infeasible edges from the reward machine (RM) graph
given a set of transition-centric options and to determine the
candidate options given the current RM state and a partic-
ular outgoing edge to target. Below, we present two edge
matching conditions, constrained and relaxed, that both en-
sure progression of the reward machine towards and the tran-
sition leading to non-failure states.

Without the loss of generality, we assume the test specifi-
cation is (st the test task is in RM state g, where the self-
transition edge is ef's=* and the targeted edge transition is

eftqe,“. We are determining the applicability of the transition-

centric option 0g, c, .

Constrained edge matching criterion

The constrained edge matching criterion ensures every truth
assignment that satisfies the self-transition edge e?'=<* of RM
also satisfies the self-transition edge e; of the transition-
centric option, and the same condition holds for the outgoing
edge eff;,“ of RM and the outgoing edge es of the option.
Mathematically, the following equation must evaluate to true
to declare a constrained match, where asg and asg’ repre-
sent truth assignments, sat(f,asg) is a function that evalu-
ates the Boolean formula f on the truth assignment asg, and
sat_models(f) returns all truth assignments that satisfy the
Boolean formula f. We used the Sympy library for logic op-
erations [Meurer et al., 2017].

sat(e1,asg) A sat(ez,asg’)
Vasg € sat-models(ef's**), Vasg' € sat-models(e} i)
“
Relaxed edge matching criterion

The relaxed edge matching criterion ensures that the self-
transition edges e; and eg'<* share satisfying truth assign-

ments, so are the outgoing edges e and ef‘q"‘,'“‘. We let the

failure edge e* be the edge from the current RM state g to
the failure state ¢ if one exists. To prevent the selection of
a transition-centric option o, ., that violates constraints, we
enforce that both self and outgoing edges of the option, e
and e;, must not share any satisfying truth assignment with
the failure edge et if one exists. Lastly, to guarantee RM
progression after applying the transition-centric option, the
relaxed edge matching condition ensures that the outgoing
edge e, of the option must share no satisfying truth assign-
ments with the self-transition edge ef*<** of the RM. Math-
ematically, the following equation must evaluate to true to
declare a relaxed match, where sat(f) is a function that de-
termines if any truth assignment exists to satisfy the Boolean
formula f.
sat(er Aeftest) A sat(ez Ael's )N

&)

—sat(e; A et) A —sat(eg Aet) A —sat(eg A ePrest)

q,9
10.2 Full Results

Cause of failure: As described in our draft, we logged the
reason for failure for each unsuccessful transfer attempt as

one of three possible causes: specification failure, where the
agent violates a constraint and the reward machine is pro-
gressed to an unrecoverable state; no feasible path, where
there are no matched transition-centric options for paths con-
necting the start state to an accepting state; options exhausted,
where there are no further transition-centric options available
to the agent to further progress the state of the task.

Figure 5 depicts the relative frequency of the failure modes
when the agent is trained and tested on mixed task specifi-
cations. Note that with the Constrained edge-matching cri-
terion, absence of feasible paths connecting the start and the
accepting state is the primary reason for failure (Figure 5a),
whereas with the Relaxed edge-matching criterion, the agent
utilizing all available safe options without progressing the
task is the primary reason for failure (Figure 5b).

Result Result
= No Feasible Path . No Feasible Path
084 Options Exhausted | g Options Exhausted
mmm Specification Failure mmm Specification Failure

0 ° 0 o o 2 ° n ) n 2 2

" Train Size " Train size

(a) Constrained (b) Relaxed

Figure 5: Reasons for failed task executions for agents trained and evaluated on Mixed
task specification datasets. Note that all values are depicted in fractions.

Learning curve for various training datasets: Next, we
present the results for learning curve of the success rate when
transferring policies learned on different specification types.

The learning curves for training on formulas from the Hard
training set with both the edge matching criteria are depicted
in Figure 6.

The learning curves for training on formulas from the Soft
training set with both the edge matching criteria are depicted
in Figure 7.

The learning curves for training on formulas from the
Strictly Soft training set with both the edge matching crite-
ria are depicted in Figure 8.

The learning curves for training on formulas from the No
Orders training set are being generated at the time of submis-
sion, and are expected to share nearly identical trends as the
learning curves from the other training sets given the com-
pleted data points. We will include the plots in the final ver-
sion of the paper.

Note that for training on each of the specification types,
the learning curve trends are nearly identical to the learning
curves on training with Mixed specification types as depicted
in Figure 3 in the main draft. Hard specification types remain
the most challenging specification ordering types to transfer
to.

10.3 Selected Solution Trajectories

Consider the case with mixed training set with 5 formulas on
map 0. The training formulas are:

* Fgrass A Fshelter A F(wood N XFworkbench)
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Figure 6: Figure 6a depicts the success rate of the agent trained on Hard training sets
of various sizes using LTL-Transfer with the constrained edge-matching criterion when
transferring to test sets of various specifications types. Figure 6b depicts the success
rates with the relaxed edge-matching criterion. Note that the error bars depict the 95%
credible interval if the successful transfer was modeled as a Bernoulli distribution.
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Figure 7: Figure 7a depicts the success rate of the agent trained on Soft training sets
of various sizes using LTL-Transfer with the constrained edge-matching criterion when
transferring to test sets of various specifications types. Figure 7b depicts the success
rates with the relaxed edge-matching criterion. Note that the error bars depict the 95%
credible interval if the successful transfer was modeled as a Bernoulli distribution.
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Figure 8: Figure 8a depicts the success rate of the agent trained on Strictly Soft training
sets of various sizes using LTL-Transfer with the constrained edge-matching criterion
when transferring to test sets of various specifications types. Figure 8b depicts the suc-
cess rates with the relaxed edge-matching criterion. Note that the error bars depict the
95% credible interval if the successful transfer was modeled as a Bernoulli distribution.

Ftoolshed AN Fworkbench A  Fshelter A
(mtoolshed Ushelter) AF(grass A Fbridge)

Ftoolshed N F(shelter N F(axe N Fwood))
* Firon A F(shelter N XF(bridge N XF factory))
e Ffactory

One of the Mixed test formulas was (¢ =
Fworkbench A Fgrass A Faxe. The reward ma-
chine for this task specification is depicted in Figure 9a.
Given the training set of formulas, and the use of the
Constrained edge matching criterion, the start state is dis-
connected from all downstream states as no transition-centric
options match with the edge transitions. Therefore, the agent
does not attempt to solve the task and returns failure with
the reason being no feasible path, i.e. a disconnected reward
machine graph after removing infeasible edges.

If the Relaxed edge matching criterion is used, there are
matching transition-centric options for each of the RM edges.
The trajectory adopted by the agent when transferring the
policies is depicted in Figure 10. The agent collects all the
three requisite resources before it terminates the task execu-
tion. Further note that the agent passes through a wood re-
source grid as the specification does not explicitly prohibit it.
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Figure 9: Figure 9a depicts the reward machine for the the specification @¢csr =
Fworkbench A Fgrass A Faxe as well as all feasible edges matched by the
Relaxed criterion. Note that all the edges have at least one matched transition-centric
option for the Relaxed criterion. Figure 9b depicts the edges that do not have a compat-
ible transition-centric option for the Constrained edge matching criterion.
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Figure 10: Trajectory executed by the agent using LTL-Transfer on the specification
@test = Fworkbench N Fgrass A Faze.

10.4 Example specifications

Here we provide the specifications and the interpretations of
three formulas each from the Hard, Soft, Strictly Soft, No Or-
ders, and Mixed formula types. Note that the training set



contained 50 formulas each (new formulas were added in-
crementally when varying the training set size), and the test
set contained 100 formulas each.

Hard: Example formulas belonging to the Hard dataset
are as follows:

1. Fwood A Faze A —wood Ugrass A
—grass Uworkbench A —workbench Ubridge:
Visit bridge, workbench, grass, wood, and axe.
Ensure that bridge, workbench, grass, wood in that
particular order. Objects later in the sequence cannot be
visited before the prior objects.

2. Fworkbench A F factory A Firon A Fshelter A
=factory U aze: Visit workbench, factory, iron,
shelter, and axe. Ensure that factory is not visited
before aze.

3. Ftoolshed A Fbridge A Ffactory A Faxe A
=bridge Uwood: Visit toolshed, bridge, factory, aze,
and wood. Ensure that bridge is not visited before
wood.

Soft: Examples belonging to the Soft dataset are as fol-
lows:

1. F(bridge A F(factory A F(iron A Fshelter))): Visit
bridge, factory, iron, and shelter in that sequence.
The objects later in the sequence may be visited before
the prior objects, provided that they are visited at least
once after the prior object has been visited.

2. Fworkbench A F(factory A Fgrass): Visit the
workbench, factory, and grass: Visit grass at least
once after visiting the factory.

3. F(aze A Ffactory) A Fworkbench: Visit aze,
factory, and workbench. Ensure that factory is vis-
ited at least once after axe is.

Strictly Soft: Examples belonging to the Strictly Soft
dataset are identical to the Soft specifications, except they do
not allow for simultaneous satisfaction of multiple sub-tasks.
The subtasks in sequence must occur strictly temporally after
the prior subtask. This is enforced using XFa instead of Fa.

No Orders: These specifications only contain a list of sub-
tasks to be completed. No temporal orders are enforced be-
tween the various subtasks.

Mixed: Examples belonging to the Mixed dataset are as
follows:

1. Ftoolshed A F factory A —toolshed U shelter A
F(grass A Fbridge): Visit the toolshed, factory,
shelter, grass, and bridge. Ensure that toolshed is not
visited before the shelter, and bridge is visited at least
once after grass.

2. Fgrass A —grass U toolshed A F(factory A
XFworkbench): Visit grass, toolshed, factory, and
workbench. Ensure that grass is not visited before
toolshed, and workbench is at least visited once strictly
after factory.

3. Firon A —iron U toolshed A F(shelter A XFwood):
Visit iron, toolshed, shelter, and wood. Ensure that
iron is not visited before toolshed, and wood is at least
visited once strictly after shelter.

10.5 Robot demonstrations

We demonstrated LTL-Transfer on Spot [Boston Dynamics,
1, a quadruped mobile manipulator, in a household environ-
ment, as shown in Figure 11, where the robot can fetch and
deliver objects while navigating through the space.

LTL-Transfer first trained policies to solve 2 training tasks
Diroin = {—desk, U book A Fdesk,, —desk, U juice A
Fdesky} in simulation. Then we demonstrated the zero-shot
transfer capability of LTL-Transfer on a set of test tasks, as
shown in Table 1. The robot can complete test tasks that it is
expected to succeed, as shown in an example video . For the
test tasks that it is expected to fail, the robot as expected does
not start execution because LTL-Transfer does not produce
a feasible path through the reward machine graph given the
transition-centric options learned from training tasks @, .

The state space of the household environment includes the
locations of the robot and the 4 objects, i.e. 2 desks, a book
on a bookshelf and a juice bottle on a kitchen counter. The
robot can move in 4 cardinal directions deterministically, and
an invalid movement does not change the robot’s position.
The robot performs the pick action after it moves to the grid
cell representing book or juice. We finetuned an off-the-shelf
object detection model ° to determine the grasp point from an
RGB image by selecting the center point of the most confi-
dent bounding box over the target object. The robot performs
the place action after it moves to the grid cell representing
desk, or desky at the end of a trajectory by an option policy
while carrying an object, i.e. a book or a juice bottle.

I

=

Figure 11: The map of the household environment and the corresponding propositions
used for the robot demonstrations.

*Video: https://youtu.be/FrY7CWgNMBk
>https://tensorflow-object-detection-api-tutorial.readthedocs.io/
en/latest/
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Table 1: 10 Test LTL Tasks for Robot Demonstrations.

Test LTL Task Expected to
F(book A F(desk, A F(juice A Fdesk,))) succeed
F(book N F(desk, N F(juice A Fdesky))) succeed
F(book A F(desk, A F(juice A Fdesk,))) succeed
F(book A F(desky, A F(juice A Fdesky))) succeed
F(juice A F(desk, N\ F(book A Fdesk,))) succeed
F(juice A F(desk, NF(book A Fdesky))) succeed
F(juice A F(desky, N\ F(book N Fdesk,))) succeed
F(juice A F(desk, A F(book A Fdesky))) succeed
—desk, U book N —juice U desk, N —desk, U juice A Fdesk;, | fail
—desky U juice A —book U desk, N —desk, U book A Fdesk, | fail
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